Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sb1250-mac.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
3  * Copyright (c) 2006, 2007 Maciej W. Rozycki
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  *
20  * This driver is designed for the Broadcom SiByte SOC built-in
21  * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
22  *
23  * Updated to the driver model and the PHY abstraction layer
24  * by Maciej W. Rozycki.
25  */
26 
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/string.h>
31 #include <linux/timer.h>
32 #include <linux/errno.h>
33 #include <linux/ioport.h>
34 #include <linux/slab.h>
35 #include <linux/interrupt.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/init.h>
40 #include <linux/bitops.h>
41 #include <linux/err.h>
42 #include <linux/ethtool.h>
43 #include <linux/mii.h>
44 #include <linux/phy.h>
45 #include <linux/platform_device.h>
46 #include <linux/prefetch.h>
47 
48 #include <asm/cache.h>
49 #include <asm/io.h>
50 #include <asm/processor.h> /* Processor type for cache alignment. */
51 
52 /* Operational parameters that usually are not changed. */
53 
54 #define CONFIG_SBMAC_COALESCE
55 
56 /* Time in jiffies before concluding the transmitter is hung. */
57 #define TX_TIMEOUT (2*HZ)
58 
59 
60 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
61 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
62 
63 /* A few user-configurable values which may be modified when a driver
64  module is loaded. */
65 
66 /* 1 normal messages, 0 quiet .. 7 verbose. */
67 static int debug = 1;
69 MODULE_PARM_DESC(debug, "Debug messages");
70 
71 #ifdef CONFIG_SBMAC_COALESCE
72 static int int_pktcnt_tx = 255;
73 module_param(int_pktcnt_tx, int, S_IRUGO);
74 MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
75 
76 static int int_timeout_tx = 255;
77 module_param(int_timeout_tx, int, S_IRUGO);
78 MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
79 
80 static int int_pktcnt_rx = 64;
81 module_param(int_pktcnt_rx, int, S_IRUGO);
82 MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
83 
84 static int int_timeout_rx = 64;
85 module_param(int_timeout_rx, int, S_IRUGO);
86 MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
87 #endif
88 
89 #include <asm/sibyte/board.h>
90 #include <asm/sibyte/sb1250.h>
91 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
93 #include <asm/sibyte/bcm1480_int.h>
94 #define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST
95 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
96 #include <asm/sibyte/sb1250_regs.h>
97 #include <asm/sibyte/sb1250_int.h>
98 #else
99 #error invalid SiByte MAC configuration
100 #endif
101 #include <asm/sibyte/sb1250_scd.h>
102 #include <asm/sibyte/sb1250_mac.h>
103 #include <asm/sibyte/sb1250_dma.h>
104 
105 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
106 #define UNIT_INT(n) (K_BCM1480_INT_MAC_0 + ((n) * 2))
107 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
108 #define UNIT_INT(n) (K_INT_MAC_0 + (n))
109 #else
110 #error invalid SiByte MAC configuration
111 #endif
112 
113 #ifdef K_INT_PHY
114 #define SBMAC_PHY_INT K_INT_PHY
115 #else
116 #define SBMAC_PHY_INT PHY_POLL
117 #endif
118 
119 /**********************************************************************
120  * Simple types
121  ********************************************************************* */
122 
128 };
129 
134 };
135 
136 enum sbmac_fc {
142 };
143 
149 };
150 
151 
152 /**********************************************************************
153  * Macros
154  ********************************************************************* */
155 
156 
157 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
158  (d)->sbdma_dscrtable : (d)->f+1)
159 
160 
161 #define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
162 
163 #define SBMAC_MAX_TXDESCR 256
164 #define SBMAC_MAX_RXDESCR 256
165 
166 #define ENET_PACKET_SIZE 1518
167 /*#define ENET_PACKET_SIZE 9216 */
168 
169 /**********************************************************************
170  * DMA Descriptor structure
171  ********************************************************************* */
172 
173 struct sbdmadscr {
176 };
177 
178 /**********************************************************************
179  * DMA Controller structure
180  ********************************************************************* */
181 
182 struct sbmacdma {
183 
184  /*
185  * This stuff is used to identify the channel and the registers
186  * associated with it.
187  */
188  struct sbmac_softc *sbdma_eth; /* back pointer to associated
189  MAC */
190  int sbdma_channel; /* channel number */
191  int sbdma_txdir; /* direction (1=transmit) */
192  int sbdma_maxdescr; /* total # of descriptors
193  in ring */
194 #ifdef CONFIG_SBMAC_COALESCE
196  /* # descriptors rx/tx
197  before interrupt */
199  /* # usec rx/tx interrupt */
200 #endif
201  void __iomem *sbdma_config0; /* DMA config register 0 */
202  void __iomem *sbdma_config1; /* DMA config register 1 */
204  /* descriptor base address */
205  void __iomem *sbdma_dscrcnt; /* descriptor count register */
206  void __iomem *sbdma_curdscr; /* current descriptor
207  address */
209  /* pkt drop (rx only) */
210 
211  /*
212  * This stuff is for maintenance of the ring
213  */
216  /* base of descriptor table */
218  /* end of descriptor table */
220  /* context table, one
221  per descr */
223  /* and also the phys addr */
224  struct sbdmadscr *sbdma_addptr; /* next dscr for sw to add */
225  struct sbdmadscr *sbdma_remptr; /* next dscr for sw
226  to remove */
227 };
228 
229 
230 /**********************************************************************
231  * Ethernet softc structure
232  ********************************************************************* */
233 
234 struct sbmac_softc {
235 
236  /*
237  * Linux-specific things
238  */
239  struct net_device *sbm_dev; /* pointer to linux device */
241  struct phy_device *phy_dev; /* the associated PHY device */
242  struct mii_bus *mii_bus; /* the MII bus */
244  spinlock_t sbm_lock; /* spin lock */
245  int sbm_devflags; /* current device flags */
246 
247  /*
248  * Controller-specific things
249  */
250  void __iomem *sbm_base; /* MAC's base address */
251  enum sbmac_state sbm_state; /* current state */
252 
253  void __iomem *sbm_macenable; /* MAC Enable Register */
254  void __iomem *sbm_maccfg; /* MAC Config Register */
255  void __iomem *sbm_fifocfg; /* FIFO Config Register */
256  void __iomem *sbm_framecfg; /* Frame Config Register */
257  void __iomem *sbm_rxfilter; /* Receive Filter Register */
258  void __iomem *sbm_isr; /* Interrupt Status Register */
259  void __iomem *sbm_imr; /* Interrupt Mask Register */
260  void __iomem *sbm_mdio; /* MDIO Register */
261 
262  enum sbmac_speed sbm_speed; /* current speed */
263  enum sbmac_duplex sbm_duplex; /* current duplex */
264  enum sbmac_fc sbm_fc; /* cur. flow control setting */
265  int sbm_pause; /* current pause setting */
266  int sbm_link; /* current link state */
267 
268  unsigned char sbm_hwaddr[ETH_ALEN];
269 
270  struct sbmacdma sbm_txdma; /* only channel 0 for now */
273  int sbe_idx;
274 };
275 
276 
277 /**********************************************************************
278  * Externs
279  ********************************************************************* */
280 
281 /**********************************************************************
282  * Prototypes
283  ********************************************************************* */
284 
285 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
286  int txrx, int maxdescr);
287 static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
288 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
289  struct sk_buff *m);
290 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
291 static void sbdma_emptyring(struct sbmacdma *d);
292 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
293 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
294  int work_to_do, int poll);
295 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
296  int poll);
297 static int sbmac_initctx(struct sbmac_softc *s);
298 static void sbmac_channel_start(struct sbmac_softc *s);
299 static void sbmac_channel_stop(struct sbmac_softc *s);
300 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
301  enum sbmac_state);
302 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
303 static uint64_t sbmac_addr2reg(unsigned char *ptr);
304 static irqreturn_t sbmac_intr(int irq, void *dev_instance);
305 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
306 static void sbmac_setmulti(struct sbmac_softc *sc);
307 static int sbmac_init(struct platform_device *pldev, long long base);
308 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
309 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
310  enum sbmac_fc fc);
311 
312 static int sbmac_open(struct net_device *dev);
313 static void sbmac_tx_timeout (struct net_device *dev);
314 static void sbmac_set_rx_mode(struct net_device *dev);
315 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
316 static int sbmac_close(struct net_device *dev);
317 static int sbmac_poll(struct napi_struct *napi, int budget);
318 
319 static void sbmac_mii_poll(struct net_device *dev);
320 static int sbmac_mii_probe(struct net_device *dev);
321 
322 static void sbmac_mii_sync(void __iomem *sbm_mdio);
323 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
324  int bitcnt);
325 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
326 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
327  u16 val);
328 
329 
330 /**********************************************************************
331  * Globals
332  ********************************************************************* */
333 
334 static char sbmac_string[] = "sb1250-mac";
335 
336 static char sbmac_mdio_string[] = "sb1250-mac-mdio";
337 
338 
339 /**********************************************************************
340  * MDIO constants
341  ********************************************************************* */
342 
343 #define MII_COMMAND_START 0x01
344 #define MII_COMMAND_READ 0x02
345 #define MII_COMMAND_WRITE 0x01
346 #define MII_COMMAND_ACK 0x02
347 
348 #define M_MAC_MDIO_DIR_OUTPUT 0 /* for clarity */
349 
350 #define ENABLE 1
351 #define DISABLE 0
352 
353 /**********************************************************************
354  * SBMAC_MII_SYNC(sbm_mdio)
355  *
356  * Synchronize with the MII - send a pattern of bits to the MII
357  * that will guarantee that it is ready to accept a command.
358  *
359  * Input parameters:
360  * sbm_mdio - address of the MAC's MDIO register
361  *
362  * Return value:
363  * nothing
364  ********************************************************************* */
365 
366 static void sbmac_mii_sync(void __iomem *sbm_mdio)
367 {
368  int cnt;
369  uint64_t bits;
370  int mac_mdio_genc;
371 
372  mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
373 
375 
376  __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
377 
378  for (cnt = 0; cnt < 32; cnt++) {
379  __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
380  __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
381  }
382 }
383 
384 /**********************************************************************
385  * SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
386  *
387  * Send some bits to the MII. The bits to be sent are right-
388  * justified in the 'data' parameter.
389  *
390  * Input parameters:
391  * sbm_mdio - address of the MAC's MDIO register
392  * data - data to send
393  * bitcnt - number of bits to send
394  ********************************************************************* */
395 
396 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
397  int bitcnt)
398 {
399  int i;
400  uint64_t bits;
401  unsigned int curmask;
402  int mac_mdio_genc;
403 
404  mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
405 
406  bits = M_MAC_MDIO_DIR_OUTPUT;
407  __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
408 
409  curmask = 1 << (bitcnt - 1);
410 
411  for (i = 0; i < bitcnt; i++) {
412  if (data & curmask)
413  bits |= M_MAC_MDIO_OUT;
414  else bits &= ~M_MAC_MDIO_OUT;
415  __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
416  __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
417  __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
418  curmask >>= 1;
419  }
420 }
421 
422 
423 
424 /**********************************************************************
425  * SBMAC_MII_READ(bus, phyaddr, regidx)
426  * Read a PHY register.
427  *
428  * Input parameters:
429  * bus - MDIO bus handle
430  * phyaddr - PHY's address
431  * regnum - index of register to read
432  *
433  * Return value:
434  * value read, or 0xffff if an error occurred.
435  ********************************************************************* */
436 
437 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
438 {
439  struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
440  void __iomem *sbm_mdio = sc->sbm_mdio;
441  int idx;
442  int error;
443  int regval;
444  int mac_mdio_genc;
445 
446  /*
447  * Synchronize ourselves so that the PHY knows the next
448  * thing coming down is a command
449  */
450  sbmac_mii_sync(sbm_mdio);
451 
452  /*
453  * Send the data to the PHY. The sequence is
454  * a "start" command (2 bits)
455  * a "read" command (2 bits)
456  * the PHY addr (5 bits)
457  * the register index (5 bits)
458  */
459  sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
460  sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
461  sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
462  sbmac_mii_senddata(sbm_mdio, regidx, 5);
463 
464  mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
465 
466  /*
467  * Switch the port around without a clock transition.
468  */
469  __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
470 
471  /*
472  * Send out a clock pulse to signal we want the status
473  */
474  __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
475  sbm_mdio);
476  __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
477 
478  /*
479  * If an error occurred, the PHY will signal '1' back
480  */
481  error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
482 
483  /*
484  * Issue an 'idle' clock pulse, but keep the direction
485  * the same.
486  */
487  __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
488  sbm_mdio);
489  __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
490 
491  regval = 0;
492 
493  for (idx = 0; idx < 16; idx++) {
494  regval <<= 1;
495 
496  if (error == 0) {
497  if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
498  regval |= 1;
499  }
500 
501  __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
502  sbm_mdio);
503  __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
504  }
505 
506  /* Switch back to output */
507  __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
508 
509  if (error == 0)
510  return regval;
511  return 0xffff;
512 }
513 
514 
515 /**********************************************************************
516  * SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
517  *
518  * Write a value to a PHY register.
519  *
520  * Input parameters:
521  * bus - MDIO bus handle
522  * phyaddr - PHY to use
523  * regidx - register within the PHY
524  * regval - data to write to register
525  *
526  * Return value:
527  * 0 for success
528  ********************************************************************* */
529 
530 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
531  u16 regval)
532 {
533  struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
534  void __iomem *sbm_mdio = sc->sbm_mdio;
535  int mac_mdio_genc;
536 
537  sbmac_mii_sync(sbm_mdio);
538 
539  sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
540  sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
541  sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
542  sbmac_mii_senddata(sbm_mdio, regidx, 5);
543  sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
544  sbmac_mii_senddata(sbm_mdio, regval, 16);
545 
546  mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
547 
548  __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
549 
550  return 0;
551 }
552 
553 
554 
555 /**********************************************************************
556  * SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
557  *
558  * Initialize a DMA channel context. Since there are potentially
559  * eight DMA channels per MAC, it's nice to do this in a standard
560  * way.
561  *
562  * Input parameters:
563  * d - struct sbmacdma (DMA channel context)
564  * s - struct sbmac_softc (pointer to a MAC)
565  * chan - channel number (0..1 right now)
566  * txrx - Identifies DMA_TX or DMA_RX for channel direction
567  * maxdescr - number of descriptors
568  *
569  * Return value:
570  * nothing
571  ********************************************************************* */
572 
573 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
574  int txrx, int maxdescr)
575 {
576 #ifdef CONFIG_SBMAC_COALESCE
577  int int_pktcnt, int_timeout;
578 #endif
579 
580  /*
581  * Save away interesting stuff in the structure
582  */
583 
584  d->sbdma_eth = s;
585  d->sbdma_channel = chan;
586  d->sbdma_txdir = txrx;
587 
588 #if 0
589  /* RMON clearing */
591 #endif
592 
614 
615  /*
616  * initialize register pointers
617  */
618 
619  d->sbdma_config0 =
621  d->sbdma_config1 =
623  d->sbdma_dscrbase =
625  d->sbdma_dscrcnt =
627  d->sbdma_curdscr =
629  if (d->sbdma_txdir)
630  d->sbdma_oodpktlost = NULL;
631  else
632  d->sbdma_oodpktlost =
633  s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
634 
635  /*
636  * Allocate memory for the ring
637  */
638 
639  d->sbdma_maxdescr = maxdescr;
640 
641  d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
642  sizeof(*d->sbdma_dscrtable),
643  GFP_KERNEL);
644 
645  /*
646  * The descriptor table must be aligned to at least 16 bytes or the
647  * MAC will corrupt it.
648  */
649  d->sbdma_dscrtable = (struct sbdmadscr *)
650  ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
651  sizeof(*d->sbdma_dscrtable));
652 
654 
656 
657  /*
658  * And context table
659  */
660 
661  d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
662  sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
663 
664 #ifdef CONFIG_SBMAC_COALESCE
665  /*
666  * Setup Rx/Tx DMA coalescing defaults
667  */
668 
669  int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
670  if ( int_pktcnt ) {
671  d->sbdma_int_pktcnt = int_pktcnt;
672  } else {
673  d->sbdma_int_pktcnt = 1;
674  }
675 
676  int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
677  if ( int_timeout ) {
678  d->sbdma_int_timeout = int_timeout;
679  } else {
680  d->sbdma_int_timeout = 0;
681  }
682 #endif
683 
684 }
685 
686 /**********************************************************************
687  * SBDMA_CHANNEL_START(d)
688  *
689  * Initialize the hardware registers for a DMA channel.
690  *
691  * Input parameters:
692  * d - DMA channel to init (context must be previously init'd
693  * rxtx - DMA_RX or DMA_TX depending on what type of channel
694  *
695  * Return value:
696  * nothing
697  ********************************************************************* */
698 
699 static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
700 {
701  /*
702  * Turn on the DMA channel
703  */
704 
705 #ifdef CONFIG_SBMAC_COALESCE
707  0, d->sbdma_config1);
711  0, d->sbdma_config0);
712 #else
715  0, d->sbdma_config0);
716 #endif
717 
719 
720  /*
721  * Initialize ring pointers
722  */
723 
726 }
727 
728 /**********************************************************************
729  * SBDMA_CHANNEL_STOP(d)
730  *
731  * Initialize the hardware registers for a DMA channel.
732  *
733  * Input parameters:
734  * d - DMA channel to init (context must be previously init'd
735  *
736  * Return value:
737  * nothing
738  ********************************************************************* */
739 
740 static void sbdma_channel_stop(struct sbmacdma *d)
741 {
742  /*
743  * Turn off the DMA channel
744  */
745 
747 
749 
751 
752  /*
753  * Zero ring pointers
754  */
755 
756  d->sbdma_addptr = NULL;
757  d->sbdma_remptr = NULL;
758 }
759 
760 static inline void sbdma_align_skb(struct sk_buff *skb,
761  unsigned int power2, unsigned int offset)
762 {
763  unsigned char *addr = skb->data;
764  unsigned char *newaddr = PTR_ALIGN(addr, power2);
765 
766  skb_reserve(skb, newaddr - addr + offset);
767 }
768 
769 
770 /**********************************************************************
771  * SBDMA_ADD_RCVBUFFER(d,sb)
772  *
773  * Add a buffer to the specified DMA channel. For receive channels,
774  * this queues a buffer for inbound packets.
775  *
776  * Input parameters:
777  * sc - softc structure
778  * d - DMA channel descriptor
779  * sb - sk_buff to add, or NULL if we should allocate one
780  *
781  * Return value:
782  * 0 if buffer could not be added (ring is full)
783  * 1 if buffer added successfully
784  ********************************************************************* */
785 
786 
787 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
788  struct sk_buff *sb)
789 {
790  struct net_device *dev = sc->sbm_dev;
791  struct sbdmadscr *dsc;
792  struct sbdmadscr *nextdsc;
793  struct sk_buff *sb_new = NULL;
794  int pktsize = ENET_PACKET_SIZE;
795 
796  /* get pointer to our current place in the ring */
797 
798  dsc = d->sbdma_addptr;
799  nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
800 
801  /*
802  * figure out if the ring is full - if the next descriptor
803  * is the same as the one that we're going to remove from
804  * the ring, the ring is full
805  */
806 
807  if (nextdsc == d->sbdma_remptr) {
808  return -ENOSPC;
809  }
810 
811  /*
812  * Allocate a sk_buff if we don't already have one.
813  * If we do have an sk_buff, reset it so that it's empty.
814  *
815  * Note: sk_buffs don't seem to be guaranteed to have any sort
816  * of alignment when they are allocated. Therefore, allocate enough
817  * extra space to make sure that:
818  *
819  * 1. the data does not start in the middle of a cache line.
820  * 2. The data does not end in the middle of a cache line
821  * 3. The buffer can be aligned such that the IP addresses are
822  * naturally aligned.
823  *
824  * Remember, the SOCs MAC writes whole cache lines at a time,
825  * without reading the old contents first. So, if the sk_buff's
826  * data portion starts in the middle of a cache line, the SOC
827  * DMA will trash the beginning (and ending) portions.
828  */
829 
830  if (sb == NULL) {
831  sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
832  SMP_CACHE_BYTES * 2 +
833  NET_IP_ALIGN);
834  if (sb_new == NULL) {
835  pr_info("%s: sk_buff allocation failed\n",
836  d->sbdma_eth->sbm_dev->name);
837  return -ENOBUFS;
838  }
839 
840  sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
841  }
842  else {
843  sb_new = sb;
844  /*
845  * nothing special to reinit buffer, it's already aligned
846  * and sb->data already points to a good place.
847  */
848  }
849 
850  /*
851  * fill in the descriptor
852  */
853 
854 #ifdef CONFIG_SBMAC_COALESCE
855  /*
856  * Do not interrupt per DMA transfer.
857  */
858  dsc->dscr_a = virt_to_phys(sb_new->data) |
860 #else
861  dsc->dscr_a = virt_to_phys(sb_new->data) |
864 #endif
865 
866  /* receiving: no options */
867  dsc->dscr_b = 0;
868 
869  /*
870  * fill in the context
871  */
872 
873  d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
874 
875  /*
876  * point at next packet
877  */
878 
879  d->sbdma_addptr = nextdsc;
880 
881  /*
882  * Give the buffer to the DMA engine.
883  */
884 
886 
887  return 0; /* we did it */
888 }
889 
890 /**********************************************************************
891  * SBDMA_ADD_TXBUFFER(d,sb)
892  *
893  * Add a transmit buffer to the specified DMA channel, causing a
894  * transmit to start.
895  *
896  * Input parameters:
897  * d - DMA channel descriptor
898  * sb - sk_buff to add
899  *
900  * Return value:
901  * 0 transmit queued successfully
902  * otherwise error code
903  ********************************************************************* */
904 
905 
906 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
907 {
908  struct sbdmadscr *dsc;
909  struct sbdmadscr *nextdsc;
910  uint64_t phys;
911  uint64_t ncb;
912  int length;
913 
914  /* get pointer to our current place in the ring */
915 
916  dsc = d->sbdma_addptr;
917  nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
918 
919  /*
920  * figure out if the ring is full - if the next descriptor
921  * is the same as the one that we're going to remove from
922  * the ring, the ring is full
923  */
924 
925  if (nextdsc == d->sbdma_remptr) {
926  return -ENOSPC;
927  }
928 
929  /*
930  * Under Linux, it's not necessary to copy/coalesce buffers
931  * like it is on NetBSD. We think they're all contiguous,
932  * but that may not be true for GBE.
933  */
934 
935  length = sb->len;
936 
937  /*
938  * fill in the descriptor. Note that the number of cache
939  * blocks in the descriptor is the number of blocks
940  * *spanned*, so we need to add in the offset (if any)
941  * while doing the calculation.
942  */
943 
944  phys = virt_to_phys(sb->data);
945  ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
946 
947  dsc->dscr_a = phys |
948  V_DMA_DSCRA_A_SIZE(ncb) |
949 #ifndef CONFIG_SBMAC_COALESCE
951 #endif
953 
954  /* transmitting: set outbound options and length */
955 
957  V_DMA_DSCRB_PKT_SIZE(length);
958 
959  /*
960  * fill in the context
961  */
962 
963  d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
964 
965  /*
966  * point at next packet
967  */
968 
969  d->sbdma_addptr = nextdsc;
970 
971  /*
972  * Give the buffer to the DMA engine.
973  */
974 
976 
977  return 0; /* we did it */
978 }
979 
980 
981 
982 
983 /**********************************************************************
984  * SBDMA_EMPTYRING(d)
985  *
986  * Free all allocated sk_buffs on the specified DMA channel;
987  *
988  * Input parameters:
989  * d - DMA channel
990  *
991  * Return value:
992  * nothing
993  ********************************************************************* */
994 
995 static void sbdma_emptyring(struct sbmacdma *d)
996 {
997  int idx;
998  struct sk_buff *sb;
999 
1000  for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
1001  sb = d->sbdma_ctxtable[idx];
1002  if (sb) {
1003  dev_kfree_skb(sb);
1004  d->sbdma_ctxtable[idx] = NULL;
1005  }
1006  }
1007 }
1008 
1009 
1010 /**********************************************************************
1011  * SBDMA_FILLRING(d)
1012  *
1013  * Fill the specified DMA channel (must be receive channel)
1014  * with sk_buffs
1015  *
1016  * Input parameters:
1017  * sc - softc structure
1018  * d - DMA channel
1019  *
1020  * Return value:
1021  * nothing
1022  ********************************************************************* */
1023 
1024 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1025 {
1026  int idx;
1027 
1028  for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1029  if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1030  break;
1031  }
1032 }
1033 
1034 #ifdef CONFIG_NET_POLL_CONTROLLER
1035 static void sbmac_netpoll(struct net_device *netdev)
1036 {
1037  struct sbmac_softc *sc = netdev_priv(netdev);
1038  int irq = sc->sbm_dev->irq;
1039 
1040  __raw_writeq(0, sc->sbm_imr);
1041 
1042  sbmac_intr(irq, netdev);
1043 
1044 #ifdef CONFIG_SBMAC_COALESCE
1047  sc->sbm_imr);
1048 #else
1051 #endif
1052 }
1053 #endif
1054 
1055 /**********************************************************************
1056  * SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1057  *
1058  * Process "completed" receive buffers on the specified DMA channel.
1059  *
1060  * Input parameters:
1061  * sc - softc structure
1062  * d - DMA channel context
1063  * work_to_do - no. of packets to process before enabling interrupt
1064  * again (for NAPI)
1065  * poll - 1: using polling (for NAPI)
1066  *
1067  * Return value:
1068  * nothing
1069  ********************************************************************* */
1070 
1071 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1072  int work_to_do, int poll)
1073 {
1074  struct net_device *dev = sc->sbm_dev;
1075  int curidx;
1076  int hwidx;
1077  struct sbdmadscr *dsc;
1078  struct sk_buff *sb;
1079  int len;
1080  int work_done = 0;
1081  int dropped = 0;
1082 
1083  prefetch(d);
1084 
1085 again:
1086  /* Check if the HW dropped any frames */
1087  dev->stats.rx_fifo_errors
1088  += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1089  __raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1090 
1091  while (work_to_do-- > 0) {
1092  /*
1093  * figure out where we are (as an index) and where
1094  * the hardware is (also as an index)
1095  *
1096  * This could be done faster if (for example) the
1097  * descriptor table was page-aligned and contiguous in
1098  * both virtual and physical memory -- you could then
1099  * just compare the low-order bits of the virtual address
1100  * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1101  */
1102 
1103  dsc = d->sbdma_remptr;
1104  curidx = dsc - d->sbdma_dscrtable;
1105 
1106  prefetch(dsc);
1107  prefetch(&d->sbdma_ctxtable[curidx]);
1108 
1109  hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1110  d->sbdma_dscrtable_phys) /
1111  sizeof(*d->sbdma_dscrtable);
1112 
1113  /*
1114  * If they're the same, that means we've processed all
1115  * of the descriptors up to (but not including) the one that
1116  * the hardware is working on right now.
1117  */
1118 
1119  if (curidx == hwidx)
1120  goto done;
1121 
1122  /*
1123  * Otherwise, get the packet's sk_buff ptr back
1124  */
1125 
1126  sb = d->sbdma_ctxtable[curidx];
1127  d->sbdma_ctxtable[curidx] = NULL;
1128 
1129  len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1130 
1131  /*
1132  * Check packet status. If good, process it.
1133  * If not, silently drop it and put it back on the
1134  * receive ring.
1135  */
1136 
1137  if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1138 
1139  /*
1140  * Add a new buffer to replace the old one. If we fail
1141  * to allocate a buffer, we're going to drop this
1142  * packet and put it right back on the receive ring.
1143  */
1144 
1145  if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1146  -ENOBUFS)) {
1147  dev->stats.rx_dropped++;
1148  /* Re-add old buffer */
1149  sbdma_add_rcvbuffer(sc, d, sb);
1150  /* No point in continuing at the moment */
1151  printk(KERN_ERR "dropped packet (1)\n");
1152  d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1153  goto done;
1154  } else {
1155  /*
1156  * Set length into the packet
1157  */
1158  skb_put(sb,len);
1159 
1160  /*
1161  * Buffer has been replaced on the
1162  * receive ring. Pass the buffer to
1163  * the kernel
1164  */
1165  sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1166  /* Check hw IPv4/TCP checksum if supported */
1167  if (sc->rx_hw_checksum == ENABLE) {
1168  if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1169  !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1171  /* don't need to set sb->csum */
1172  } else {
1173  skb_checksum_none_assert(sb);
1174  }
1175  }
1176  prefetch(sb->data);
1177  prefetch((const void *)(((char *)sb->data)+32));
1178  if (poll)
1179  dropped = netif_receive_skb(sb);
1180  else
1181  dropped = netif_rx(sb);
1182 
1183  if (dropped == NET_RX_DROP) {
1184  dev->stats.rx_dropped++;
1185  d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1186  goto done;
1187  }
1188  else {
1189  dev->stats.rx_bytes += len;
1190  dev->stats.rx_packets++;
1191  }
1192  }
1193  } else {
1194  /*
1195  * Packet was mangled somehow. Just drop it and
1196  * put it back on the receive ring.
1197  */
1198  dev->stats.rx_errors++;
1199  sbdma_add_rcvbuffer(sc, d, sb);
1200  }
1201 
1202 
1203  /*
1204  * .. and advance to the next buffer.
1205  */
1206 
1207  d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1208  work_done++;
1209  }
1210  if (!poll) {
1211  work_to_do = 32;
1212  goto again; /* collect fifo drop statistics again */
1213  }
1214 done:
1215  return work_done;
1216 }
1217 
1218 /**********************************************************************
1219  * SBDMA_TX_PROCESS(sc,d)
1220  *
1221  * Process "completed" transmit buffers on the specified DMA channel.
1222  * This is normally called within the interrupt service routine.
1223  * Note that this isn't really ideal for priority channels, since
1224  * it processes all of the packets on a given channel before
1225  * returning.
1226  *
1227  * Input parameters:
1228  * sc - softc structure
1229  * d - DMA channel context
1230  * poll - 1: using polling (for NAPI)
1231  *
1232  * Return value:
1233  * nothing
1234  ********************************************************************* */
1235 
1236 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1237  int poll)
1238 {
1239  struct net_device *dev = sc->sbm_dev;
1240  int curidx;
1241  int hwidx;
1242  struct sbdmadscr *dsc;
1243  struct sk_buff *sb;
1244  unsigned long flags;
1245  int packets_handled = 0;
1246 
1247  spin_lock_irqsave(&(sc->sbm_lock), flags);
1248 
1249  if (d->sbdma_remptr == d->sbdma_addptr)
1250  goto end_unlock;
1251 
1252  hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1253  d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1254 
1255  for (;;) {
1256  /*
1257  * figure out where we are (as an index) and where
1258  * the hardware is (also as an index)
1259  *
1260  * This could be done faster if (for example) the
1261  * descriptor table was page-aligned and contiguous in
1262  * both virtual and physical memory -- you could then
1263  * just compare the low-order bits of the virtual address
1264  * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1265  */
1266 
1267  curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1268 
1269  /*
1270  * If they're the same, that means we've processed all
1271  * of the descriptors up to (but not including) the one that
1272  * the hardware is working on right now.
1273  */
1274 
1275  if (curidx == hwidx)
1276  break;
1277 
1278  /*
1279  * Otherwise, get the packet's sk_buff ptr back
1280  */
1281 
1282  dsc = &(d->sbdma_dscrtable[curidx]);
1283  sb = d->sbdma_ctxtable[curidx];
1284  d->sbdma_ctxtable[curidx] = NULL;
1285 
1286  /*
1287  * Stats
1288  */
1289 
1290  dev->stats.tx_bytes += sb->len;
1291  dev->stats.tx_packets++;
1292 
1293  /*
1294  * for transmits, we just free buffers.
1295  */
1296 
1297  dev_kfree_skb_irq(sb);
1298 
1299  /*
1300  * .. and advance to the next buffer.
1301  */
1302 
1303  d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1304 
1305  packets_handled++;
1306 
1307  }
1308 
1309  /*
1310  * Decide if we should wake up the protocol or not.
1311  * Other drivers seem to do this when we reach a low
1312  * watermark on the transmit queue.
1313  */
1314 
1315  if (packets_handled)
1316  netif_wake_queue(d->sbdma_eth->sbm_dev);
1317 
1318 end_unlock:
1319  spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1320 
1321 }
1322 
1323 
1324 
1325 /**********************************************************************
1326  * SBMAC_INITCTX(s)
1327  *
1328  * Initialize an Ethernet context structure - this is called
1329  * once per MAC on the 1250. Memory is allocated here, so don't
1330  * call it again from inside the ioctl routines that bring the
1331  * interface up/down
1332  *
1333  * Input parameters:
1334  * s - sbmac context structure
1335  *
1336  * Return value:
1337  * 0
1338  ********************************************************************* */
1339 
1340 static int sbmac_initctx(struct sbmac_softc *s)
1341 {
1342 
1343  /*
1344  * figure out the addresses of some ports
1345  */
1346 
1348  s->sbm_maccfg = s->sbm_base + R_MAC_CFG;
1352  s->sbm_isr = s->sbm_base + R_MAC_STATUS;
1353  s->sbm_imr = s->sbm_base + R_MAC_INT_MASK;
1354  s->sbm_mdio = s->sbm_base + R_MAC_MDIO;
1355 
1356  /*
1357  * Initialize the DMA channels. Right now, only one per MAC is used
1358  * Note: Only do this _once_, as it allocates memory from the kernel!
1359  */
1360 
1361  sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1362  sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1363 
1364  /*
1365  * initial state is OFF
1366  */
1367 
1369 
1370  return 0;
1371 }
1372 
1373 
1374 static void sbdma_uninitctx(struct sbmacdma *d)
1375 {
1376  if (d->sbdma_dscrtable_unaligned) {
1379  }
1380 
1381  if (d->sbdma_ctxtable) {
1382  kfree(d->sbdma_ctxtable);
1383  d->sbdma_ctxtable = NULL;
1384  }
1385 }
1386 
1387 
1388 static void sbmac_uninitctx(struct sbmac_softc *sc)
1389 {
1390  sbdma_uninitctx(&(sc->sbm_txdma));
1391  sbdma_uninitctx(&(sc->sbm_rxdma));
1392 }
1393 
1394 
1395 /**********************************************************************
1396  * SBMAC_CHANNEL_START(s)
1397  *
1398  * Start packet processing on this MAC.
1399  *
1400  * Input parameters:
1401  * s - sbmac structure
1402  *
1403  * Return value:
1404  * nothing
1405  ********************************************************************* */
1406 
1407 static void sbmac_channel_start(struct sbmac_softc *s)
1408 {
1409  uint64_t reg;
1410  void __iomem *port;
1411  uint64_t cfg,fifo,framecfg;
1412  int idx, th_value;
1413 
1414  /*
1415  * Don't do this if running
1416  */
1417 
1418  if (s->sbm_state == sbmac_state_on)
1419  return;
1420 
1421  /*
1422  * Bring the controller out of reset, but leave it off.
1423  */
1424 
1425  __raw_writeq(0, s->sbm_macenable);
1426 
1427  /*
1428  * Ignore all received packets
1429  */
1430 
1431  __raw_writeq(0, s->sbm_rxfilter);
1432 
1433  /*
1434  * Calculate values for various control registers.
1435  */
1436 
1437  cfg = M_MAC_RETRY_EN |
1441  M_MAC_FAST_SYNC |
1442  M_MAC_SS_EN |
1443  0;
1444 
1445  /*
1446  * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1447  * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1448  * Use a larger RD_THRSH for gigabit
1449  */
1451  th_value = 28;
1452  else
1453  th_value = 64;
1454 
1455  fifo = V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */
1456  ((s->sbm_speed == sbmac_speed_1000)
1457  ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1458  V_MAC_TX_RL_THRSH(4) |
1459  V_MAC_RX_PL_THRSH(4) |
1460  V_MAC_RX_RD_THRSH(4) | /* Must be '4' */
1461  V_MAC_RX_RL_THRSH(8) |
1462  0;
1463 
1464  framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1466  V_MAC_BACKOFF_SEL(1);
1467 
1468  /*
1469  * Clear out the hash address map
1470  */
1471 
1472  port = s->sbm_base + R_MAC_HASH_BASE;
1473  for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1474  __raw_writeq(0, port);
1475  port += sizeof(uint64_t);
1476  }
1477 
1478  /*
1479  * Clear out the exact-match table
1480  */
1481 
1482  port = s->sbm_base + R_MAC_ADDR_BASE;
1483  for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1484  __raw_writeq(0, port);
1485  port += sizeof(uint64_t);
1486  }
1487 
1488  /*
1489  * Clear out the DMA Channel mapping table registers
1490  */
1491 
1492  port = s->sbm_base + R_MAC_CHUP0_BASE;
1493  for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1494  __raw_writeq(0, port);
1495  port += sizeof(uint64_t);
1496  }
1497 
1498 
1499  port = s->sbm_base + R_MAC_CHLO0_BASE;
1500  for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1501  __raw_writeq(0, port);
1502  port += sizeof(uint64_t);
1503  }
1504 
1505  /*
1506  * Program the hardware address. It goes into the hardware-address
1507  * register as well as the first filter register.
1508  */
1509 
1510  reg = sbmac_addr2reg(s->sbm_hwaddr);
1511 
1512  port = s->sbm_base + R_MAC_ADDR_BASE;
1513  __raw_writeq(reg, port);
1514  port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1515 
1516 #ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1517  /*
1518  * Pass1 SOCs do not receive packets addressed to the
1519  * destination address in the R_MAC_ETHERNET_ADDR register.
1520  * Set the value to zero.
1521  */
1522  __raw_writeq(0, port);
1523 #else
1524  __raw_writeq(reg, port);
1525 #endif
1526 
1527  /*
1528  * Set the receive filter for no packets, and write values
1529  * to the various config registers
1530  */
1531 
1532  __raw_writeq(0, s->sbm_rxfilter);
1533  __raw_writeq(0, s->sbm_imr);
1534  __raw_writeq(framecfg, s->sbm_framecfg);
1535  __raw_writeq(fifo, s->sbm_fifocfg);
1536  __raw_writeq(cfg, s->sbm_maccfg);
1537 
1538  /*
1539  * Initialize DMA channels (rings should be ok now)
1540  */
1541 
1542  sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1543  sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1544 
1545  /*
1546  * Configure the speed, duplex, and flow control
1547  */
1548 
1549  sbmac_set_speed(s,s->sbm_speed);
1550  sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1551 
1552  /*
1553  * Fill the receive ring
1554  */
1555 
1556  sbdma_fillring(s, &(s->sbm_rxdma));
1557 
1558  /*
1559  * Turn on the rest of the bits in the enable register
1560  */
1561 
1562 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1565 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1567  M_MAC_TXDMA_EN0 |
1568  M_MAC_RX_ENABLE |
1569  M_MAC_TX_ENABLE, s->sbm_macenable);
1570 #else
1571 #error invalid SiByte MAC configuration
1572 #endif
1573 
1574 #ifdef CONFIG_SBMAC_COALESCE
1577 #else
1580 #endif
1581 
1582  /*
1583  * Enable receiving unicasts and broadcasts
1584  */
1585 
1587 
1588  /*
1589  * we're running now.
1590  */
1591 
1593 
1594  /*
1595  * Program multicast addresses
1596  */
1597 
1598  sbmac_setmulti(s);
1599 
1600  /*
1601  * If channel was in promiscuous mode before, turn that on
1602  */
1603 
1604  if (s->sbm_devflags & IFF_PROMISC) {
1605  sbmac_promiscuous_mode(s,1);
1606  }
1607 
1608 }
1609 
1610 
1611 /**********************************************************************
1612  * SBMAC_CHANNEL_STOP(s)
1613  *
1614  * Stop packet processing on this MAC.
1615  *
1616  * Input parameters:
1617  * s - sbmac structure
1618  *
1619  * Return value:
1620  * nothing
1621  ********************************************************************* */
1622 
1623 static void sbmac_channel_stop(struct sbmac_softc *s)
1624 {
1625  /* don't do this if already stopped */
1626 
1627  if (s->sbm_state == sbmac_state_off)
1628  return;
1629 
1630  /* don't accept any packets, disable all interrupts */
1631 
1632  __raw_writeq(0, s->sbm_rxfilter);
1633  __raw_writeq(0, s->sbm_imr);
1634 
1635  /* Turn off ticker */
1636 
1637  /* XXX */
1638 
1639  /* turn off receiver and transmitter */
1640 
1641  __raw_writeq(0, s->sbm_macenable);
1642 
1643  /* We're stopped now. */
1644 
1646 
1647  /*
1648  * Stop DMA channels (rings should be ok now)
1649  */
1650 
1651  sbdma_channel_stop(&(s->sbm_rxdma));
1652  sbdma_channel_stop(&(s->sbm_txdma));
1653 
1654  /* Empty the receive and transmit rings */
1655 
1656  sbdma_emptyring(&(s->sbm_rxdma));
1657  sbdma_emptyring(&(s->sbm_txdma));
1658 
1659 }
1660 
1661 /**********************************************************************
1662  * SBMAC_SET_CHANNEL_STATE(state)
1663  *
1664  * Set the channel's state ON or OFF
1665  *
1666  * Input parameters:
1667  * state - new state
1668  *
1669  * Return value:
1670  * old state
1671  ********************************************************************* */
1672 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1673  enum sbmac_state state)
1674 {
1675  enum sbmac_state oldstate = sc->sbm_state;
1676 
1677  /*
1678  * If same as previous state, return
1679  */
1680 
1681  if (state == oldstate) {
1682  return oldstate;
1683  }
1684 
1685  /*
1686  * If new state is ON, turn channel on
1687  */
1688 
1689  if (state == sbmac_state_on) {
1690  sbmac_channel_start(sc);
1691  }
1692  else {
1693  sbmac_channel_stop(sc);
1694  }
1695 
1696  /*
1697  * Return previous state
1698  */
1699 
1700  return oldstate;
1701 }
1702 
1703 
1704 /**********************************************************************
1705  * SBMAC_PROMISCUOUS_MODE(sc,onoff)
1706  *
1707  * Turn on or off promiscuous mode
1708  *
1709  * Input parameters:
1710  * sc - softc
1711  * onoff - 1 to turn on, 0 to turn off
1712  *
1713  * Return value:
1714  * nothing
1715  ********************************************************************* */
1716 
1717 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1718 {
1719  uint64_t reg;
1720 
1721  if (sc->sbm_state != sbmac_state_on)
1722  return;
1723 
1724  if (onoff) {
1725  reg = __raw_readq(sc->sbm_rxfilter);
1726  reg |= M_MAC_ALLPKT_EN;
1727  __raw_writeq(reg, sc->sbm_rxfilter);
1728  }
1729  else {
1730  reg = __raw_readq(sc->sbm_rxfilter);
1731  reg &= ~M_MAC_ALLPKT_EN;
1732  __raw_writeq(reg, sc->sbm_rxfilter);
1733  }
1734 }
1735 
1736 /**********************************************************************
1737  * SBMAC_SETIPHDR_OFFSET(sc,onoff)
1738  *
1739  * Set the iphdr offset as 15 assuming ethernet encapsulation
1740  *
1741  * Input parameters:
1742  * sc - softc
1743  *
1744  * Return value:
1745  * nothing
1746  ********************************************************************* */
1747 
1748 static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1749 {
1750  uint64_t reg;
1751 
1752  /* Hard code the off set to 15 for now */
1753  reg = __raw_readq(sc->sbm_rxfilter);
1754  reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1755  __raw_writeq(reg, sc->sbm_rxfilter);
1756 
1757  /* BCM1250 pass1 didn't have hardware checksum. Everything
1758  later does. */
1759  if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1760  sc->rx_hw_checksum = DISABLE;
1761  } else {
1762  sc->rx_hw_checksum = ENABLE;
1763  }
1764 }
1765 
1766 
1767 /**********************************************************************
1768  * SBMAC_ADDR2REG(ptr)
1769  *
1770  * Convert six bytes into the 64-bit register value that
1771  * we typically write into the SBMAC's address/mcast registers
1772  *
1773  * Input parameters:
1774  * ptr - pointer to 6 bytes
1775  *
1776  * Return value:
1777  * register value
1778  ********************************************************************* */
1779 
1780 static uint64_t sbmac_addr2reg(unsigned char *ptr)
1781 {
1782  uint64_t reg = 0;
1783 
1784  ptr += 6;
1785 
1786  reg |= (uint64_t) *(--ptr);
1787  reg <<= 8;
1788  reg |= (uint64_t) *(--ptr);
1789  reg <<= 8;
1790  reg |= (uint64_t) *(--ptr);
1791  reg <<= 8;
1792  reg |= (uint64_t) *(--ptr);
1793  reg <<= 8;
1794  reg |= (uint64_t) *(--ptr);
1795  reg <<= 8;
1796  reg |= (uint64_t) *(--ptr);
1797 
1798  return reg;
1799 }
1800 
1801 
1802 /**********************************************************************
1803  * SBMAC_SET_SPEED(s,speed)
1804  *
1805  * Configure LAN speed for the specified MAC.
1806  * Warning: must be called when MAC is off!
1807  *
1808  * Input parameters:
1809  * s - sbmac structure
1810  * speed - speed to set MAC to (see enum sbmac_speed)
1811  *
1812  * Return value:
1813  * 1 if successful
1814  * 0 indicates invalid parameters
1815  ********************************************************************* */
1816 
1817 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1818 {
1819  uint64_t cfg;
1820  uint64_t framecfg;
1821 
1822  /*
1823  * Save new current values
1824  */
1825 
1826  s->sbm_speed = speed;
1827 
1828  if (s->sbm_state == sbmac_state_on)
1829  return 0; /* save for next restart */
1830 
1831  /*
1832  * Read current register values
1833  */
1834 
1835  cfg = __raw_readq(s->sbm_maccfg);
1836  framecfg = __raw_readq(s->sbm_framecfg);
1837 
1838  /*
1839  * Mask out the stuff we want to change
1840  */
1841 
1842  cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1843  framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1844  M_MAC_SLOT_SIZE);
1845 
1846  /*
1847  * Now add in the new bits
1848  */
1849 
1850  switch (speed) {
1851  case sbmac_speed_10:
1852  framecfg |= V_MAC_IFG_RX_10 |
1853  V_MAC_IFG_TX_10 |
1856  cfg |= V_MAC_SPEED_SEL_10MBPS;
1857  break;
1858 
1859  case sbmac_speed_100:
1860  framecfg |= V_MAC_IFG_RX_100 |
1864  cfg |= V_MAC_SPEED_SEL_100MBPS ;
1865  break;
1866 
1867  case sbmac_speed_1000:
1868  framecfg |= V_MAC_IFG_RX_1000 |
1873  break;
1874 
1875  default:
1876  return 0;
1877  }
1878 
1879  /*
1880  * Send the bits back to the hardware
1881  */
1882 
1883  __raw_writeq(framecfg, s->sbm_framecfg);
1884  __raw_writeq(cfg, s->sbm_maccfg);
1885 
1886  return 1;
1887 }
1888 
1889 /**********************************************************************
1890  * SBMAC_SET_DUPLEX(s,duplex,fc)
1891  *
1892  * Set Ethernet duplex and flow control options for this MAC
1893  * Warning: must be called when MAC is off!
1894  *
1895  * Input parameters:
1896  * s - sbmac structure
1897  * duplex - duplex setting (see enum sbmac_duplex)
1898  * fc - flow control setting (see enum sbmac_fc)
1899  *
1900  * Return value:
1901  * 1 if ok
1902  * 0 if an invalid parameter combination was specified
1903  ********************************************************************* */
1904 
1905 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1906  enum sbmac_fc fc)
1907 {
1908  uint64_t cfg;
1909 
1910  /*
1911  * Save new current values
1912  */
1913 
1914  s->sbm_duplex = duplex;
1915  s->sbm_fc = fc;
1916 
1917  if (s->sbm_state == sbmac_state_on)
1918  return 0; /* save for next restart */
1919 
1920  /*
1921  * Read current register values
1922  */
1923 
1924  cfg = __raw_readq(s->sbm_maccfg);
1925 
1926  /*
1927  * Mask off the stuff we're about to change
1928  */
1929 
1930  cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1931 
1932 
1933  switch (duplex) {
1934  case sbmac_duplex_half:
1935  switch (fc) {
1936  case sbmac_fc_disabled:
1938  break;
1939 
1940  case sbmac_fc_collision:
1942  break;
1943 
1944  case sbmac_fc_carrier:
1946  break;
1947 
1948  case sbmac_fc_frame: /* not valid in half duplex */
1949  default: /* invalid selection */
1950  return 0;
1951  }
1952  break;
1953 
1954  case sbmac_duplex_full:
1955  switch (fc) {
1956  case sbmac_fc_disabled:
1957  cfg |= V_MAC_FC_CMD_DISABLED;
1958  break;
1959 
1960  case sbmac_fc_frame:
1961  cfg |= V_MAC_FC_CMD_ENABLED;
1962  break;
1963 
1964  case sbmac_fc_collision: /* not valid in full duplex */
1965  case sbmac_fc_carrier: /* not valid in full duplex */
1966  default:
1967  return 0;
1968  }
1969  break;
1970  default:
1971  return 0;
1972  }
1973 
1974  /*
1975  * Send the bits back to the hardware
1976  */
1977 
1978  __raw_writeq(cfg, s->sbm_maccfg);
1979 
1980  return 1;
1981 }
1982 
1983 
1984 
1985 
1986 /**********************************************************************
1987  * SBMAC_INTR()
1988  *
1989  * Interrupt handler for MAC interrupts
1990  *
1991  * Input parameters:
1992  * MAC structure
1993  *
1994  * Return value:
1995  * nothing
1996  ********************************************************************* */
1997 static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1998 {
1999  struct net_device *dev = (struct net_device *) dev_instance;
2000  struct sbmac_softc *sc = netdev_priv(dev);
2001  uint64_t isr;
2002  int handled = 0;
2003 
2004  /*
2005  * Read the ISR (this clears the bits in the real
2006  * register, except for counter addr)
2007  */
2008 
2009  isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
2010 
2011  if (isr == 0)
2012  return IRQ_RETVAL(0);
2013  handled = 1;
2014 
2015  /*
2016  * Transmits on channel 0
2017  */
2018 
2019  if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
2020  sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2021 
2022  if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2023  if (napi_schedule_prep(&sc->napi)) {
2024  __raw_writeq(0, sc->sbm_imr);
2025  __napi_schedule(&sc->napi);
2026  /* Depend on the exit from poll to reenable intr */
2027  }
2028  else {
2029  /* may leave some packets behind */
2030  sbdma_rx_process(sc,&(sc->sbm_rxdma),
2031  SBMAC_MAX_RXDESCR * 2, 0);
2032  }
2033  }
2034  return IRQ_RETVAL(handled);
2035 }
2036 
2037 /**********************************************************************
2038  * SBMAC_START_TX(skb,dev)
2039  *
2040  * Start output on the specified interface. Basically, we
2041  * queue as many buffers as we can until the ring fills up, or
2042  * we run off the end of the queue, whichever comes first.
2043  *
2044  * Input parameters:
2045  *
2046  *
2047  * Return value:
2048  * nothing
2049  ********************************************************************* */
2050 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2051 {
2052  struct sbmac_softc *sc = netdev_priv(dev);
2053  unsigned long flags;
2054 
2055  /* lock eth irq */
2056  spin_lock_irqsave(&sc->sbm_lock, flags);
2057 
2058  /*
2059  * Put the buffer on the transmit ring. If we
2060  * don't have room, stop the queue.
2061  */
2062 
2063  if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2064  /* XXX save skb that we could not send */
2065  netif_stop_queue(dev);
2066  spin_unlock_irqrestore(&sc->sbm_lock, flags);
2067 
2068  return NETDEV_TX_BUSY;
2069  }
2070 
2071  spin_unlock_irqrestore(&sc->sbm_lock, flags);
2072 
2073  return NETDEV_TX_OK;
2074 }
2075 
2076 /**********************************************************************
2077  * SBMAC_SETMULTI(sc)
2078  *
2079  * Reprogram the multicast table into the hardware, given
2080  * the list of multicasts associated with the interface
2081  * structure.
2082  *
2083  * Input parameters:
2084  * sc - softc
2085  *
2086  * Return value:
2087  * nothing
2088  ********************************************************************* */
2089 
2090 static void sbmac_setmulti(struct sbmac_softc *sc)
2091 {
2092  uint64_t reg;
2093  void __iomem *port;
2094  int idx;
2095  struct netdev_hw_addr *ha;
2096  struct net_device *dev = sc->sbm_dev;
2097 
2098  /*
2099  * Clear out entire multicast table. We do this by nuking
2100  * the entire hash table and all the direct matches except
2101  * the first one, which is used for our station address
2102  */
2103 
2104  for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2105  port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2106  __raw_writeq(0, port);
2107  }
2108 
2109  for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2110  port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2111  __raw_writeq(0, port);
2112  }
2113 
2114  /*
2115  * Clear the filter to say we don't want any multicasts.
2116  */
2117 
2118  reg = __raw_readq(sc->sbm_rxfilter);
2119  reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2120  __raw_writeq(reg, sc->sbm_rxfilter);
2121 
2122  if (dev->flags & IFF_ALLMULTI) {
2123  /*
2124  * Enable ALL multicasts. Do this by inverting the
2125  * multicast enable bit.
2126  */
2127  reg = __raw_readq(sc->sbm_rxfilter);
2128  reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2129  __raw_writeq(reg, sc->sbm_rxfilter);
2130  return;
2131  }
2132 
2133 
2134  /*
2135  * Progam new multicast entries. For now, only use the
2136  * perfect filter. In the future we'll need to use the
2137  * hash filter if the perfect filter overflows
2138  */
2139 
2140  /* XXX only using perfect filter for now, need to use hash
2141  * XXX if the table overflows */
2142 
2143  idx = 1; /* skip station address */
2144  netdev_for_each_mc_addr(ha, dev) {
2145  if (idx == MAC_ADDR_COUNT)
2146  break;
2147  reg = sbmac_addr2reg(ha->addr);
2148  port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2149  __raw_writeq(reg, port);
2150  idx++;
2151  }
2152 
2153  /*
2154  * Enable the "accept multicast bits" if we programmed at least one
2155  * multicast.
2156  */
2157 
2158  if (idx > 1) {
2159  reg = __raw_readq(sc->sbm_rxfilter);
2160  reg |= M_MAC_MCAST_EN;
2161  __raw_writeq(reg, sc->sbm_rxfilter);
2162  }
2163 }
2164 
2165 static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2166 {
2167  if (new_mtu > ENET_PACKET_SIZE)
2168  return -EINVAL;
2169  _dev->mtu = new_mtu;
2170  pr_info("changing the mtu to %d\n", new_mtu);
2171  return 0;
2172 }
2173 
2174 static const struct net_device_ops sbmac_netdev_ops = {
2175  .ndo_open = sbmac_open,
2176  .ndo_stop = sbmac_close,
2177  .ndo_start_xmit = sbmac_start_tx,
2178  .ndo_set_rx_mode = sbmac_set_rx_mode,
2179  .ndo_tx_timeout = sbmac_tx_timeout,
2180  .ndo_do_ioctl = sbmac_mii_ioctl,
2181  .ndo_change_mtu = sb1250_change_mtu,
2182  .ndo_validate_addr = eth_validate_addr,
2183  .ndo_set_mac_address = eth_mac_addr,
2184 #ifdef CONFIG_NET_POLL_CONTROLLER
2185  .ndo_poll_controller = sbmac_netpoll,
2186 #endif
2187 };
2188 
2189 /**********************************************************************
2190  * SBMAC_INIT(dev)
2191  *
2192  * Attach routine - init hardware and hook ourselves into linux
2193  *
2194  * Input parameters:
2195  * dev - net_device structure
2196  *
2197  * Return value:
2198  * status
2199  ********************************************************************* */
2200 
2201 static int sbmac_init(struct platform_device *pldev, long long base)
2202 {
2203  struct net_device *dev = dev_get_drvdata(&pldev->dev);
2204  int idx = pldev->id;
2205  struct sbmac_softc *sc = netdev_priv(dev);
2206  unsigned char *eaddr;
2207  uint64_t ea_reg;
2208  int i;
2209  int err;
2210 
2211  sc->sbm_dev = dev;
2212  sc->sbe_idx = idx;
2213 
2214  eaddr = sc->sbm_hwaddr;
2215 
2216  /*
2217  * Read the ethernet address. The firmware left this programmed
2218  * for us in the ethernet address register for each mac.
2219  */
2220 
2221  ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2223  for (i = 0; i < 6; i++) {
2224  eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2225  ea_reg >>= 8;
2226  }
2227 
2228  for (i = 0; i < 6; i++) {
2229  dev->dev_addr[i] = eaddr[i];
2230  }
2231 
2232  /*
2233  * Initialize context (get pointers to registers and stuff), then
2234  * allocate the memory for the descriptor tables.
2235  */
2236 
2237  sbmac_initctx(sc);
2238 
2239  /*
2240  * Set up Linux device callins
2241  */
2242 
2243  spin_lock_init(&(sc->sbm_lock));
2244 
2245  dev->netdev_ops = &sbmac_netdev_ops;
2246  dev->watchdog_timeo = TX_TIMEOUT;
2247 
2248  netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2249 
2250  dev->irq = UNIT_INT(idx);
2251 
2252  /* This is needed for PASS2 for Rx H/W checksum feature */
2253  sbmac_set_iphdr_offset(sc);
2254 
2255  sc->mii_bus = mdiobus_alloc();
2256  if (sc->mii_bus == NULL) {
2257  err = -ENOMEM;
2258  goto uninit_ctx;
2259  }
2260 
2261  sc->mii_bus->name = sbmac_mdio_string;
2262  snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2263  pldev->name, idx);
2264  sc->mii_bus->priv = sc;
2265  sc->mii_bus->read = sbmac_mii_read;
2266  sc->mii_bus->write = sbmac_mii_write;
2267  sc->mii_bus->irq = sc->phy_irq;
2268  for (i = 0; i < PHY_MAX_ADDR; ++i)
2269  sc->mii_bus->irq[i] = SBMAC_PHY_INT;
2270 
2271  sc->mii_bus->parent = &pldev->dev;
2272  /*
2273  * Probe PHY address
2274  */
2275  err = mdiobus_register(sc->mii_bus);
2276  if (err) {
2277  printk(KERN_ERR "%s: unable to register MDIO bus\n",
2278  dev->name);
2279  goto free_mdio;
2280  }
2281  dev_set_drvdata(&pldev->dev, sc->mii_bus);
2282 
2283  err = register_netdev(dev);
2284  if (err) {
2285  printk(KERN_ERR "%s.%d: unable to register netdev\n",
2286  sbmac_string, idx);
2287  goto unreg_mdio;
2288  }
2289 
2290  pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2291 
2292  if (sc->rx_hw_checksum == ENABLE)
2293  pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2294 
2295  /*
2296  * Display Ethernet address (this is called during the config
2297  * process so we need to finish off the config message that
2298  * was being displayed)
2299  */
2300  pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2301  dev->name, base, eaddr);
2302 
2303  return 0;
2304 unreg_mdio:
2306  dev_set_drvdata(&pldev->dev, NULL);
2307 free_mdio:
2308  mdiobus_free(sc->mii_bus);
2309 uninit_ctx:
2310  sbmac_uninitctx(sc);
2311  return err;
2312 }
2313 
2314 
2315 static int sbmac_open(struct net_device *dev)
2316 {
2317  struct sbmac_softc *sc = netdev_priv(dev);
2318  int err;
2319 
2320  if (debug > 1)
2321  pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2322 
2323  /*
2324  * map/route interrupt (clear status first, in case something
2325  * weird is pending; we haven't initialized the mac registers
2326  * yet)
2327  */
2328 
2329  __raw_readq(sc->sbm_isr);
2330  err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2331  if (err) {
2332  printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2333  dev->irq);
2334  goto out_err;
2335  }
2336 
2339  sc->sbm_fc = sbmac_fc_none;
2340  sc->sbm_pause = -1;
2341  sc->sbm_link = 0;
2342 
2343  /*
2344  * Attach to the PHY
2345  */
2346  err = sbmac_mii_probe(dev);
2347  if (err)
2348  goto out_unregister;
2349 
2350  /*
2351  * Turn on the channel
2352  */
2353 
2354  sbmac_set_channel_state(sc,sbmac_state_on);
2355 
2356  netif_start_queue(dev);
2357 
2358  sbmac_set_rx_mode(dev);
2359 
2360  phy_start(sc->phy_dev);
2361 
2362  napi_enable(&sc->napi);
2363 
2364  return 0;
2365 
2366 out_unregister:
2367  free_irq(dev->irq, dev);
2368 out_err:
2369  return err;
2370 }
2371 
2372 static int sbmac_mii_probe(struct net_device *dev)
2373 {
2374  struct sbmac_softc *sc = netdev_priv(dev);
2375  struct phy_device *phy_dev;
2376  int i;
2377 
2378  for (i = 0; i < PHY_MAX_ADDR; i++) {
2379  phy_dev = sc->mii_bus->phy_map[i];
2380  if (phy_dev)
2381  break;
2382  }
2383  if (!phy_dev) {
2384  printk(KERN_ERR "%s: no PHY found\n", dev->name);
2385  return -ENXIO;
2386  }
2387 
2388  phy_dev = phy_connect(dev, dev_name(&phy_dev->dev), &sbmac_mii_poll, 0,
2390  if (IS_ERR(phy_dev)) {
2391  printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2392  return PTR_ERR(phy_dev);
2393  }
2394 
2395  /* Remove any features not supported by the controller */
2396  phy_dev->supported &= SUPPORTED_10baseT_Half |
2403  SUPPORTED_MII |
2404  SUPPORTED_Pause |
2406  phy_dev->advertising = phy_dev->supported;
2407 
2408  pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
2409  dev->name, phy_dev->drv->name,
2410  dev_name(&phy_dev->dev), phy_dev->irq);
2411 
2412  sc->phy_dev = phy_dev;
2413 
2414  return 0;
2415 }
2416 
2417 
2418 static void sbmac_mii_poll(struct net_device *dev)
2419 {
2420  struct sbmac_softc *sc = netdev_priv(dev);
2421  struct phy_device *phy_dev = sc->phy_dev;
2422  unsigned long flags;
2423  enum sbmac_fc fc;
2424  int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2425 
2426  link_chg = (sc->sbm_link != phy_dev->link);
2427  speed_chg = (sc->sbm_speed != phy_dev->speed);
2428  duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2429  pause_chg = (sc->sbm_pause != phy_dev->pause);
2430 
2431  if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2432  return; /* Hmmm... */
2433 
2434  if (!phy_dev->link) {
2435  if (link_chg) {
2436  sc->sbm_link = phy_dev->link;
2439  sc->sbm_fc = sbmac_fc_disabled;
2440  sc->sbm_pause = -1;
2441  pr_info("%s: link unavailable\n", dev->name);
2442  }
2443  return;
2444  }
2445 
2446  if (phy_dev->duplex == DUPLEX_FULL) {
2447  if (phy_dev->pause)
2448  fc = sbmac_fc_frame;
2449  else
2450  fc = sbmac_fc_disabled;
2451  } else
2452  fc = sbmac_fc_collision;
2453  fc_chg = (sc->sbm_fc != fc);
2454 
2455  pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2456  phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2457 
2458  spin_lock_irqsave(&sc->sbm_lock, flags);
2459 
2460  sc->sbm_speed = phy_dev->speed;
2461  sc->sbm_duplex = phy_dev->duplex;
2462  sc->sbm_fc = fc;
2463  sc->sbm_pause = phy_dev->pause;
2464  sc->sbm_link = phy_dev->link;
2465 
2466  if ((speed_chg || duplex_chg || fc_chg) &&
2467  sc->sbm_state != sbmac_state_off) {
2468  /*
2469  * something changed, restart the channel
2470  */
2471  if (debug > 1)
2472  pr_debug("%s: restarting channel "
2473  "because PHY state changed\n", dev->name);
2474  sbmac_channel_stop(sc);
2475  sbmac_channel_start(sc);
2476  }
2477 
2478  spin_unlock_irqrestore(&sc->sbm_lock, flags);
2479 }
2480 
2481 
2482 static void sbmac_tx_timeout (struct net_device *dev)
2483 {
2484  struct sbmac_softc *sc = netdev_priv(dev);
2485  unsigned long flags;
2486 
2487  spin_lock_irqsave(&sc->sbm_lock, flags);
2488 
2489 
2490  dev->trans_start = jiffies; /* prevent tx timeout */
2491  dev->stats.tx_errors++;
2492 
2493  spin_unlock_irqrestore(&sc->sbm_lock, flags);
2494 
2495  printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2496 }
2497 
2498 
2499 
2500 
2501 static void sbmac_set_rx_mode(struct net_device *dev)
2502 {
2503  unsigned long flags;
2504  struct sbmac_softc *sc = netdev_priv(dev);
2505 
2506  spin_lock_irqsave(&sc->sbm_lock, flags);
2507  if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2508  /*
2509  * Promiscuous changed.
2510  */
2511 
2512  if (dev->flags & IFF_PROMISC) {
2513  sbmac_promiscuous_mode(sc,1);
2514  }
2515  else {
2516  sbmac_promiscuous_mode(sc,0);
2517  }
2518  }
2519  spin_unlock_irqrestore(&sc->sbm_lock, flags);
2520 
2521  /*
2522  * Program the multicasts. Do this every time.
2523  */
2524 
2525  sbmac_setmulti(sc);
2526 
2527 }
2528 
2529 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2530 {
2531  struct sbmac_softc *sc = netdev_priv(dev);
2532 
2533  if (!netif_running(dev) || !sc->phy_dev)
2534  return -EINVAL;
2535 
2536  return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2537 }
2538 
2539 static int sbmac_close(struct net_device *dev)
2540 {
2541  struct sbmac_softc *sc = netdev_priv(dev);
2542 
2543  napi_disable(&sc->napi);
2544 
2545  phy_stop(sc->phy_dev);
2546 
2547  sbmac_set_channel_state(sc, sbmac_state_off);
2548 
2549  netif_stop_queue(dev);
2550 
2551  if (debug > 1)
2552  pr_debug("%s: Shutting down ethercard\n", dev->name);
2553 
2554  phy_disconnect(sc->phy_dev);
2555  sc->phy_dev = NULL;
2556  free_irq(dev->irq, dev);
2557 
2558  sbdma_emptyring(&(sc->sbm_txdma));
2559  sbdma_emptyring(&(sc->sbm_rxdma));
2560 
2561  return 0;
2562 }
2563 
2564 static int sbmac_poll(struct napi_struct *napi, int budget)
2565 {
2566  struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2567  int work_done;
2568 
2569  work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2570  sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2571 
2572  if (work_done < budget) {
2573  napi_complete(napi);
2574 
2575 #ifdef CONFIG_SBMAC_COALESCE
2578  sc->sbm_imr);
2579 #else
2582 #endif
2583  }
2584 
2585  return work_done;
2586 }
2587 
2588 
2589 static int __devinit sbmac_probe(struct platform_device *pldev)
2590 {
2591  struct net_device *dev;
2592  struct sbmac_softc *sc;
2593  void __iomem *sbm_base;
2594  struct resource *res;
2595  u64 sbmac_orig_hwaddr;
2596  int err;
2597 
2598  res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2599  BUG_ON(!res);
2600  sbm_base = ioremap_nocache(res->start, resource_size(res));
2601  if (!sbm_base) {
2602  printk(KERN_ERR "%s: unable to map device registers\n",
2603  dev_name(&pldev->dev));
2604  err = -ENOMEM;
2605  goto out_out;
2606  }
2607 
2608  /*
2609  * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2610  * value for us by the firmware if we're going to use this MAC.
2611  * If we find a zero, skip this MAC.
2612  */
2613  sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2614  pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2615  sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2616  if (sbmac_orig_hwaddr == 0) {
2617  err = 0;
2618  goto out_unmap;
2619  }
2620 
2621  /*
2622  * Okay, cool. Initialize this MAC.
2623  */
2624  dev = alloc_etherdev(sizeof(struct sbmac_softc));
2625  if (!dev) {
2626  err = -ENOMEM;
2627  goto out_unmap;
2628  }
2629 
2630  dev_set_drvdata(&pldev->dev, dev);
2631  SET_NETDEV_DEV(dev, &pldev->dev);
2632 
2633  sc = netdev_priv(dev);
2634  sc->sbm_base = sbm_base;
2635 
2636  err = sbmac_init(pldev, res->start);
2637  if (err)
2638  goto out_kfree;
2639 
2640  return 0;
2641 
2642 out_kfree:
2643  free_netdev(dev);
2644  __raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2645 
2646 out_unmap:
2647  iounmap(sbm_base);
2648 
2649 out_out:
2650  return err;
2651 }
2652 
2653 static int __exit sbmac_remove(struct platform_device *pldev)
2654 {
2655  struct net_device *dev = dev_get_drvdata(&pldev->dev);
2656  struct sbmac_softc *sc = netdev_priv(dev);
2657 
2658  unregister_netdev(dev);
2659  sbmac_uninitctx(sc);
2661  mdiobus_free(sc->mii_bus);
2662  iounmap(sc->sbm_base);
2663  free_netdev(dev);
2664 
2665  return 0;
2666 }
2667 
2668 static struct platform_driver sbmac_driver = {
2669  .probe = sbmac_probe,
2670  .remove = __exit_p(sbmac_remove),
2671  .driver = {
2672  .name = sbmac_string,
2673  .owner = THIS_MODULE,
2674  },
2675 };
2676 
2677 module_platform_driver(sbmac_driver);