Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sbp2.c
Go to the documentation of this file.
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007 Kristian Hoegsberg <[email protected]>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  * James Goodwin <[email protected]>
25  * with later contributions and ongoing maintenance from
26  * Ben Collins <[email protected]>,
27  * Stefan Richter <[email protected]>
28  * and many others.
29  */
30 
31 #include <linux/blkdev.h>
32 #include <linux/bug.h>
33 #include <linux/completion.h>
34 #include <linux/delay.h>
35 #include <linux/device.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/firewire.h>
39 #include <linux/init.h>
40 #include <linux/jiffies.h>
41 #include <linux/kernel.h>
42 #include <linux/kref.h>
43 #include <linux/list.h>
44 #include <linux/mod_devicetable.h>
45 #include <linux/module.h>
46 #include <linux/moduleparam.h>
47 #include <linux/scatterlist.h>
48 #include <linux/slab.h>
49 #include <linux/spinlock.h>
50 #include <linux/string.h>
51 #include <linux/stringify.h>
52 #include <linux/workqueue.h>
53 
54 #include <asm/byteorder.h>
55 
56 #include <scsi/scsi.h>
57 #include <scsi/scsi_cmnd.h>
58 #include <scsi/scsi_device.h>
59 #include <scsi/scsi_host.h>
60 
61 /*
62  * So far only bridges from Oxford Semiconductor are known to support
63  * concurrent logins. Depending on firmware, four or two concurrent logins
64  * are possible on OXFW911 and newer Oxsemi bridges.
65  *
66  * Concurrent logins are useful together with cluster filesystems.
67  */
68 static bool sbp2_param_exclusive_login = 1;
69 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
70 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
71  "(default = Y, use N for concurrent initiators)");
72 
73 /*
74  * Flags for firmware oddities
75  *
76  * - 128kB max transfer
77  * Limit transfer size. Necessary for some old bridges.
78  *
79  * - 36 byte inquiry
80  * When scsi_mod probes the device, let the inquiry command look like that
81  * from MS Windows.
82  *
83  * - skip mode page 8
84  * Suppress sending of mode_sense for mode page 8 if the device pretends to
85  * support the SCSI Primary Block commands instead of Reduced Block Commands.
86  *
87  * - fix capacity
88  * Tell sd_mod to correct the last sector number reported by read_capacity.
89  * Avoids access beyond actual disk limits on devices with an off-by-one bug.
90  * Don't use this with devices which don't have this bug.
91  *
92  * - delay inquiry
93  * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
94  *
95  * - power condition
96  * Set the power condition field in the START STOP UNIT commands sent by
97  * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
98  * Some disks need this to spin down or to resume properly.
99  *
100  * - override internal blacklist
101  * Instead of adding to the built-in blacklist, use only the workarounds
102  * specified in the module load parameter.
103  * Useful if a blacklist entry interfered with a non-broken device.
104  */
105 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
106 #define SBP2_WORKAROUND_INQUIRY_36 0x2
107 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
108 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
109 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
110 #define SBP2_INQUIRY_DELAY 12
111 #define SBP2_WORKAROUND_POWER_CONDITION 0x20
112 #define SBP2_WORKAROUND_OVERRIDE 0x100
113 
114 static int sbp2_param_workarounds;
115 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
116 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
117  ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
118  ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
119  ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
120  ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
121  ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
122  ", set power condition in start stop unit = "
124  ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
125  ", or a combination)");
126 
127 /*
128  * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
129  * and one struct scsi_device per sbp2_logical_unit.
130  */
132  struct sbp2_target *tgt;
133  struct list_head link;
136 
139  int login_id;
140 
141  /*
142  * The generation is updated once we've logged in or reconnected
143  * to the logical unit. Thus, I/O to the device will automatically
144  * fail and get retried if it happens in a window where the device
145  * is not ready, e.g. after a bus reset but before we reconnect.
146  */
148  int retries;
150  bool has_sdev;
151  bool blocked;
152 };
153 
154 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
155 {
156  queue_delayed_work(fw_workqueue, &lu->work, delay);
157 }
158 
159 /*
160  * We create one struct sbp2_target per IEEE 1212 Unit Directory
161  * and one struct Scsi_Host per sbp2_target.
162  */
163 struct sbp2_target {
164  struct fw_unit *unit;
166 
170  int node_id;
172  unsigned int workarounds;
173  unsigned int mgt_orb_timeout;
174  unsigned int max_payload;
175 
176  int dont_block; /* counter for each logical unit */
177  int blocked; /* ditto */
178 };
179 
180 static struct fw_device *target_parent_device(struct sbp2_target *tgt)
181 {
182  return fw_parent_device(tgt->unit);
183 }
184 
185 static const struct device *tgt_dev(const struct sbp2_target *tgt)
186 {
187  return &tgt->unit->device;
188 }
189 
190 static const struct device *lu_dev(const struct sbp2_logical_unit *lu)
191 {
192  return &lu->tgt->unit->device;
193 }
194 
195 /* Impossible login_id, to detect logout attempt before successful login */
196 #define INVALID_LOGIN_ID 0x10000
197 
198 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
199 #define SBP2_ORB_NULL 0x80000000
200 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */
201 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
202 
203 /*
204  * There is no transport protocol limit to the CDB length, but we implement
205  * a fixed length only. 16 bytes is enough for disks larger than 2 TB.
206  */
207 #define SBP2_MAX_CDB_SIZE 16
208 
209 /*
210  * The maximum SBP-2 data buffer size is 0xffff. We quadlet-align this
211  * for compatibility with earlier versions of this driver.
212  */
213 #define SBP2_MAX_SEG_SIZE 0xfffc
214 
215 /* Unit directory keys */
216 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
217 #define SBP2_CSR_FIRMWARE_REVISION 0x3c
218 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
219 #define SBP2_CSR_UNIT_UNIQUE_ID 0x8d
220 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
221 
222 /* Management orb opcodes */
223 #define SBP2_LOGIN_REQUEST 0x0
224 #define SBP2_QUERY_LOGINS_REQUEST 0x1
225 #define SBP2_RECONNECT_REQUEST 0x3
226 #define SBP2_SET_PASSWORD_REQUEST 0x4
227 #define SBP2_LOGOUT_REQUEST 0x7
228 #define SBP2_ABORT_TASK_REQUEST 0xb
229 #define SBP2_ABORT_TASK_SET 0xc
230 #define SBP2_LOGICAL_UNIT_RESET 0xe
231 #define SBP2_TARGET_RESET_REQUEST 0xf
232 
233 /* Offsets for command block agent registers */
234 #define SBP2_AGENT_STATE 0x00
235 #define SBP2_AGENT_RESET 0x04
236 #define SBP2_ORB_POINTER 0x08
237 #define SBP2_DOORBELL 0x10
238 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
239 
240 /* Status write response codes */
241 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
242 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
243 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
244 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
245 
246 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
247 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
248 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
249 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
250 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
251 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
252 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
253 #define STATUS_GET_DATA(v) ((v).data)
254 
255 struct sbp2_status {
258  u8 data[24];
259 };
260 
261 struct sbp2_pointer {
264 };
265 
266 struct sbp2_orb {
268  struct kref kref;
270  int rcode;
271  void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
272  struct list_head link;
273 };
274 
275 #define MANAGEMENT_ORB_LUN(v) ((v))
276 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
277 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
278 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
279 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
280 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
281 
282 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
283 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
284 
286  struct sbp2_orb base;
287  struct {
293  } request;
296  struct completion done;
298 };
299 
304 };
305 #define COMMAND_ORB_DATA_SIZE(v) ((v))
306 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
307 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
308 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
309 #define COMMAND_ORB_SPEED(v) ((v) << 24)
310 #define COMMAND_ORB_DIRECTION ((1) << 27)
311 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
312 #define COMMAND_ORB_NOTIFY ((1) << 31)
313 
315  struct sbp2_orb base;
316  struct {
321  } request;
322  struct scsi_cmnd *cmd;
324 
325  struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
327 };
328 
329 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */
330 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */
331 
332 /*
333  * List of devices with known bugs.
334  *
335  * The firmware_revision field, masked with 0xffff00, is the best
336  * indicator for the type of bridge chip of a device. It yields a few
337  * false positives but this did not break correctly behaving devices
338  * so far.
339  */
340 static const struct {
343  unsigned int workarounds;
344 } sbp2_workarounds_table[] = {
345  /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
346  .firmware_revision = 0x002800,
347  .model = 0x001010,
348  .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
351  },
352  /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
353  .firmware_revision = 0x002800,
354  .model = 0x000000,
355  .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
356  },
357  /* Initio bridges, actually only needed for some older ones */ {
358  .firmware_revision = 0x000200,
359  .model = SBP2_ROM_VALUE_WILDCARD,
360  .workarounds = SBP2_WORKAROUND_INQUIRY_36,
361  },
362  /* PL-3507 bridge with Prolific firmware */ {
363  .firmware_revision = 0x012800,
364  .model = SBP2_ROM_VALUE_WILDCARD,
365  .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
366  },
367  /* Symbios bridge */ {
368  .firmware_revision = 0xa0b800,
369  .model = SBP2_ROM_VALUE_WILDCARD,
370  .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
371  },
372  /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
373  .firmware_revision = 0x002600,
374  .model = SBP2_ROM_VALUE_WILDCARD,
375  .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
376  },
377  /*
378  * iPod 2nd generation: needs 128k max transfer size workaround
379  * iPod 3rd generation: needs fix capacity workaround
380  */
381  {
382  .firmware_revision = 0x0a2700,
383  .model = 0x000000,
384  .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS |
386  },
387  /* iPod 4th generation */ {
388  .firmware_revision = 0x0a2700,
389  .model = 0x000021,
390  .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
391  },
392  /* iPod mini */ {
393  .firmware_revision = 0x0a2700,
394  .model = 0x000022,
395  .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
396  },
397  /* iPod mini */ {
398  .firmware_revision = 0x0a2700,
399  .model = 0x000023,
400  .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
401  },
402  /* iPod Photo */ {
403  .firmware_revision = 0x0a2700,
404  .model = 0x00007e,
405  .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
406  }
407 };
408 
409 static void free_orb(struct kref *kref)
410 {
411  struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
412 
413  kfree(orb);
414 }
415 
416 static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
417  int tcode, int destination, int source,
418  int generation, unsigned long long offset,
419  void *payload, size_t length, void *callback_data)
420 {
421  struct sbp2_logical_unit *lu = callback_data;
422  struct sbp2_orb *orb;
423  struct sbp2_status status;
424  unsigned long flags;
425 
426  if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
427  length < 8 || length > sizeof(status)) {
428  fw_send_response(card, request, RCODE_TYPE_ERROR);
429  return;
430  }
431 
432  status.status = be32_to_cpup(payload);
433  status.orb_low = be32_to_cpup(payload + 4);
434  memset(status.data, 0, sizeof(status.data));
435  if (length > 8)
436  memcpy(status.data, payload + 8, length - 8);
437 
438  if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
439  dev_notice(lu_dev(lu),
440  "non-ORB related status write, not handled\n");
441  fw_send_response(card, request, RCODE_COMPLETE);
442  return;
443  }
444 
445  /* Lookup the orb corresponding to this status write. */
446  spin_lock_irqsave(&card->lock, flags);
447  list_for_each_entry(orb, &lu->orb_list, link) {
448  if (STATUS_GET_ORB_HIGH(status) == 0 &&
450  orb->rcode = RCODE_COMPLETE;
451  list_del(&orb->link);
452  break;
453  }
454  }
455  spin_unlock_irqrestore(&card->lock, flags);
456 
457  if (&orb->link != &lu->orb_list) {
458  orb->callback(orb, &status);
459  kref_put(&orb->kref, free_orb); /* orb callback reference */
460  } else {
461  dev_err(lu_dev(lu), "status write for unknown ORB\n");
462  }
463 
464  fw_send_response(card, request, RCODE_COMPLETE);
465 }
466 
467 static void complete_transaction(struct fw_card *card, int rcode,
468  void *payload, size_t length, void *data)
469 {
470  struct sbp2_orb *orb = data;
471  unsigned long flags;
472 
473  /*
474  * This is a little tricky. We can get the status write for
475  * the orb before we get this callback. The status write
476  * handler above will assume the orb pointer transaction was
477  * successful and set the rcode to RCODE_COMPLETE for the orb.
478  * So this callback only sets the rcode if it hasn't already
479  * been set and only does the cleanup if the transaction
480  * failed and we didn't already get a status write.
481  */
482  spin_lock_irqsave(&card->lock, flags);
483 
484  if (orb->rcode == -1)
485  orb->rcode = rcode;
486  if (orb->rcode != RCODE_COMPLETE) {
487  list_del(&orb->link);
488  spin_unlock_irqrestore(&card->lock, flags);
489 
490  orb->callback(orb, NULL);
491  kref_put(&orb->kref, free_orb); /* orb callback reference */
492  } else {
493  spin_unlock_irqrestore(&card->lock, flags);
494  }
495 
496  kref_put(&orb->kref, free_orb); /* transaction callback reference */
497 }
498 
499 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
500  int node_id, int generation, u64 offset)
501 {
502  struct fw_device *device = target_parent_device(lu->tgt);
503  struct sbp2_pointer orb_pointer;
504  unsigned long flags;
505 
506  orb_pointer.high = 0;
507  orb_pointer.low = cpu_to_be32(orb->request_bus);
508 
509  spin_lock_irqsave(&device->card->lock, flags);
510  list_add_tail(&orb->link, &lu->orb_list);
511  spin_unlock_irqrestore(&device->card->lock, flags);
512 
513  kref_get(&orb->kref); /* transaction callback reference */
514  kref_get(&orb->kref); /* orb callback reference */
515 
517  node_id, generation, device->max_speed, offset,
518  &orb_pointer, 8, complete_transaction, orb);
519 }
520 
521 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
522 {
523  struct fw_device *device = target_parent_device(lu->tgt);
524  struct sbp2_orb *orb, *next;
525  struct list_head list;
526  unsigned long flags;
527  int retval = -ENOENT;
528 
529  INIT_LIST_HEAD(&list);
530  spin_lock_irqsave(&device->card->lock, flags);
531  list_splice_init(&lu->orb_list, &list);
532  spin_unlock_irqrestore(&device->card->lock, flags);
533 
534  list_for_each_entry_safe(orb, next, &list, link) {
535  retval = 0;
536  if (fw_cancel_transaction(device->card, &orb->t) == 0)
537  continue;
538 
539  orb->rcode = RCODE_CANCELLED;
540  orb->callback(orb, NULL);
541  kref_put(&orb->kref, free_orb); /* orb callback reference */
542  }
543 
544  return retval;
545 }
546 
547 static void complete_management_orb(struct sbp2_orb *base_orb,
548  struct sbp2_status *status)
549 {
550  struct sbp2_management_orb *orb =
551  container_of(base_orb, struct sbp2_management_orb, base);
552 
553  if (status)
554  memcpy(&orb->status, status, sizeof(*status));
555  complete(&orb->done);
556 }
557 
558 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
559  int generation, int function,
560  int lun_or_login_id, void *response)
561 {
562  struct fw_device *device = target_parent_device(lu->tgt);
563  struct sbp2_management_orb *orb;
564  unsigned int timeout;
565  int retval = -ENOMEM;
566 
567  if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
568  return 0;
569 
570  orb = kzalloc(sizeof(*orb), GFP_NOIO);
571  if (orb == NULL)
572  return -ENOMEM;
573 
574  kref_init(&orb->base.kref);
575  orb->response_bus =
576  dma_map_single(device->card->device, &orb->response,
577  sizeof(orb->response), DMA_FROM_DEVICE);
578  if (dma_mapping_error(device->card->device, orb->response_bus))
579  goto fail_mapping_response;
580 
581  orb->request.response.high = 0;
582  orb->request.response.low = cpu_to_be32(orb->response_bus);
583 
584  orb->request.misc = cpu_to_be32(
586  MANAGEMENT_ORB_FUNCTION(function) |
587  MANAGEMENT_ORB_LUN(lun_or_login_id));
588  orb->request.length = cpu_to_be32(
590 
591  orb->request.status_fifo.high =
592  cpu_to_be32(lu->address_handler.offset >> 32);
593  orb->request.status_fifo.low =
594  cpu_to_be32(lu->address_handler.offset);
595 
596  if (function == SBP2_LOGIN_REQUEST) {
597  /* Ask for 2^2 == 4 seconds reconnect grace period */
598  orb->request.misc |= cpu_to_be32(
600  MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
601  timeout = lu->tgt->mgt_orb_timeout;
602  } else {
603  timeout = SBP2_ORB_TIMEOUT;
604  }
605 
606  init_completion(&orb->done);
607  orb->base.callback = complete_management_orb;
608 
609  orb->base.request_bus =
610  dma_map_single(device->card->device, &orb->request,
611  sizeof(orb->request), DMA_TO_DEVICE);
612  if (dma_mapping_error(device->card->device, orb->base.request_bus))
613  goto fail_mapping_request;
614 
615  sbp2_send_orb(&orb->base, lu, node_id, generation,
616  lu->tgt->management_agent_address);
617 
619 
620  retval = -EIO;
621  if (sbp2_cancel_orbs(lu) == 0) {
622  dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n",
623  orb->base.rcode);
624  goto out;
625  }
626 
627  if (orb->base.rcode != RCODE_COMPLETE) {
628  dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n",
629  orb->base.rcode);
630  goto out;
631  }
632 
633  if (STATUS_GET_RESPONSE(orb->status) != 0 ||
634  STATUS_GET_SBP_STATUS(orb->status) != 0) {
635  dev_err(lu_dev(lu), "error status: %d:%d\n",
638  goto out;
639  }
640 
641  retval = 0;
642  out:
643  dma_unmap_single(device->card->device, orb->base.request_bus,
644  sizeof(orb->request), DMA_TO_DEVICE);
645  fail_mapping_request:
646  dma_unmap_single(device->card->device, orb->response_bus,
647  sizeof(orb->response), DMA_FROM_DEVICE);
648  fail_mapping_response:
649  if (response)
650  memcpy(response, orb->response, sizeof(orb->response));
651  kref_put(&orb->base.kref, free_orb);
652 
653  return retval;
654 }
655 
656 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
657 {
658  struct fw_device *device = target_parent_device(lu->tgt);
659  __be32 d = 0;
660 
662  lu->tgt->node_id, lu->generation, device->max_speed,
664  &d, 4);
665 }
666 
667 static void complete_agent_reset_write_no_wait(struct fw_card *card,
668  int rcode, void *payload, size_t length, void *data)
669 {
670  kfree(data);
671 }
672 
673 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
674 {
675  struct fw_device *device = target_parent_device(lu->tgt);
676  struct fw_transaction *t;
677  static __be32 d;
678 
679  t = kmalloc(sizeof(*t), GFP_ATOMIC);
680  if (t == NULL)
681  return;
682 
684  lu->tgt->node_id, lu->generation, device->max_speed,
686  &d, 4, complete_agent_reset_write_no_wait, t);
687 }
688 
689 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
690 {
691  /*
692  * We may access dont_block without taking card->lock here:
693  * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
694  * are currently serialized against each other.
695  * And a wrong result in sbp2_conditionally_block()'s access of
696  * dont_block is rather harmless, it simply misses its first chance.
697  */
698  --lu->tgt->dont_block;
699 }
700 
701 /*
702  * Blocks lu->tgt if all of the following conditions are met:
703  * - Login, INQUIRY, and high-level SCSI setup of all of the target's
704  * logical units have been finished (indicated by dont_block == 0).
705  * - lu->generation is stale.
706  *
707  * Note, scsi_block_requests() must be called while holding card->lock,
708  * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
709  * unblock the target.
710  */
711 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
712 {
713  struct sbp2_target *tgt = lu->tgt;
714  struct fw_card *card = target_parent_device(tgt)->card;
715  struct Scsi_Host *shost =
716  container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
717  unsigned long flags;
718 
719  spin_lock_irqsave(&card->lock, flags);
720  if (!tgt->dont_block && !lu->blocked &&
721  lu->generation != card->generation) {
722  lu->blocked = true;
723  if (++tgt->blocked == 1)
724  scsi_block_requests(shost);
725  }
726  spin_unlock_irqrestore(&card->lock, flags);
727 }
728 
729 /*
730  * Unblocks lu->tgt as soon as all its logical units can be unblocked.
731  * Note, it is harmless to run scsi_unblock_requests() outside the
732  * card->lock protected section. On the other hand, running it inside
733  * the section might clash with shost->host_lock.
734  */
735 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
736 {
737  struct sbp2_target *tgt = lu->tgt;
738  struct fw_card *card = target_parent_device(tgt)->card;
739  struct Scsi_Host *shost =
740  container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
741  unsigned long flags;
742  bool unblock = false;
743 
744  spin_lock_irqsave(&card->lock, flags);
745  if (lu->blocked && lu->generation == card->generation) {
746  lu->blocked = false;
747  unblock = --tgt->blocked == 0;
748  }
749  spin_unlock_irqrestore(&card->lock, flags);
750 
751  if (unblock)
752  scsi_unblock_requests(shost);
753 }
754 
755 /*
756  * Prevents future blocking of tgt and unblocks it.
757  * Note, it is harmless to run scsi_unblock_requests() outside the
758  * card->lock protected section. On the other hand, running it inside
759  * the section might clash with shost->host_lock.
760  */
761 static void sbp2_unblock(struct sbp2_target *tgt)
762 {
763  struct fw_card *card = target_parent_device(tgt)->card;
764  struct Scsi_Host *shost =
765  container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
766  unsigned long flags;
767 
768  spin_lock_irqsave(&card->lock, flags);
769  ++tgt->dont_block;
770  spin_unlock_irqrestore(&card->lock, flags);
771 
772  scsi_unblock_requests(shost);
773 }
774 
775 static int sbp2_lun2int(u16 lun)
776 {
777  struct scsi_lun eight_bytes_lun;
778 
779  memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
780  eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
781  eight_bytes_lun.scsi_lun[1] = lun & 0xff;
782 
783  return scsilun_to_int(&eight_bytes_lun);
784 }
785 
786 /*
787  * Write retransmit retry values into the BUSY_TIMEOUT register.
788  * - The single-phase retry protocol is supported by all SBP-2 devices, but the
789  * default retry_limit value is 0 (i.e. never retry transmission). We write a
790  * saner value after logging into the device.
791  * - The dual-phase retry protocol is optional to implement, and if not
792  * supported, writes to the dual-phase portion of the register will be
793  * ignored. We try to write the original 1394-1995 default here.
794  * - In the case of devices that are also SBP-3-compliant, all writes are
795  * ignored, as the register is read-only, but contains single-phase retry of
796  * 15, which is what we're trying to set for all SBP-2 device anyway, so this
797  * write attempt is safe and yields more consistent behavior for all devices.
798  *
799  * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
800  * and section 6.4 of the SBP-3 spec for further details.
801  */
802 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
803 {
804  struct fw_device *device = target_parent_device(lu->tgt);
806 
808  lu->tgt->node_id, lu->generation, device->max_speed,
810 }
811 
812 static void sbp2_reconnect(struct work_struct *work);
813 
814 static void sbp2_login(struct work_struct *work)
815 {
816  struct sbp2_logical_unit *lu =
817  container_of(work, struct sbp2_logical_unit, work.work);
818  struct sbp2_target *tgt = lu->tgt;
819  struct fw_device *device = target_parent_device(tgt);
820  struct Scsi_Host *shost;
821  struct scsi_device *sdev;
822  struct sbp2_login_response response;
823  int generation, node_id, local_node_id;
824 
825  if (fw_device_is_shutdown(device))
826  return;
827 
828  generation = device->generation;
829  smp_rmb(); /* node IDs must not be older than generation */
830  node_id = device->node_id;
831  local_node_id = device->card->node_id;
832 
833  /* If this is a re-login attempt, log out, or we might be rejected. */
834  if (lu->has_sdev)
835  sbp2_send_management_orb(lu, device->node_id, generation,
837 
838  if (sbp2_send_management_orb(lu, node_id, generation,
839  SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
840  if (lu->retries++ < 5) {
841  sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
842  } else {
843  dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n",
844  lu->lun);
845  /* Let any waiting I/O fail from now on. */
846  sbp2_unblock(lu->tgt);
847  }
848  return;
849  }
850 
851  tgt->node_id = node_id;
852  tgt->address_high = local_node_id << 16;
853  smp_wmb(); /* node IDs must not be older than generation */
854  lu->generation = generation;
855 
857  ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
858  << 32) | be32_to_cpu(response.command_block_agent.low);
859  lu->login_id = be32_to_cpu(response.misc) & 0xffff;
860 
861  dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n",
862  lu->lun, lu->retries);
863 
864  /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
865  sbp2_set_busy_timeout(lu);
866 
867  PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
868  sbp2_agent_reset(lu);
869 
870  /* This was a re-login. */
871  if (lu->has_sdev) {
872  sbp2_cancel_orbs(lu);
873  sbp2_conditionally_unblock(lu);
874 
875  return;
876  }
877 
878  if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
879  ssleep(SBP2_INQUIRY_DELAY);
880 
881  shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
882  sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
883  /*
884  * FIXME: We are unable to perform reconnects while in sbp2_login().
885  * Therefore __scsi_add_device() will get into trouble if a bus reset
886  * happens in parallel. It will either fail or leave us with an
887  * unusable sdev. As a workaround we check for this and retry the
888  * whole login and SCSI probing.
889  */
890 
891  /* Reported error during __scsi_add_device() */
892  if (IS_ERR(sdev))
893  goto out_logout_login;
894 
895  /* Unreported error during __scsi_add_device() */
896  smp_rmb(); /* get current card generation */
897  if (generation != device->card->generation) {
898  scsi_remove_device(sdev);
899  scsi_device_put(sdev);
900  goto out_logout_login;
901  }
902 
903  /* No error during __scsi_add_device() */
904  lu->has_sdev = true;
905  scsi_device_put(sdev);
906  sbp2_allow_block(lu);
907 
908  return;
909 
910  out_logout_login:
911  smp_rmb(); /* generation may have changed */
912  generation = device->generation;
913  smp_rmb(); /* node_id must not be older than generation */
914 
915  sbp2_send_management_orb(lu, device->node_id, generation,
917  /*
918  * If a bus reset happened, sbp2_update will have requeued
919  * lu->work already. Reset the work from reconnect to login.
920  */
921  PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
922 }
923 
924 static void sbp2_reconnect(struct work_struct *work)
925 {
926  struct sbp2_logical_unit *lu =
927  container_of(work, struct sbp2_logical_unit, work.work);
928  struct sbp2_target *tgt = lu->tgt;
929  struct fw_device *device = target_parent_device(tgt);
930  int generation, node_id, local_node_id;
931 
932  if (fw_device_is_shutdown(device))
933  return;
934 
935  generation = device->generation;
936  smp_rmb(); /* node IDs must not be older than generation */
937  node_id = device->node_id;
938  local_node_id = device->card->node_id;
939 
940  if (sbp2_send_management_orb(lu, node_id, generation,
942  lu->login_id, NULL) < 0) {
943  /*
944  * If reconnect was impossible even though we are in the
945  * current generation, fall back and try to log in again.
946  *
947  * We could check for "Function rejected" status, but
948  * looking at the bus generation as simpler and more general.
949  */
950  smp_rmb(); /* get current card generation */
951  if (generation == device->card->generation ||
952  lu->retries++ >= 5) {
953  dev_err(tgt_dev(tgt), "failed to reconnect\n");
954  lu->retries = 0;
955  PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
956  }
957  sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
958 
959  return;
960  }
961 
962  tgt->node_id = node_id;
963  tgt->address_high = local_node_id << 16;
964  smp_wmb(); /* node IDs must not be older than generation */
965  lu->generation = generation;
966 
967  dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n",
968  lu->lun, lu->retries);
969 
970  sbp2_agent_reset(lu);
971  sbp2_cancel_orbs(lu);
972  sbp2_conditionally_unblock(lu);
973 }
974 
975 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
976 {
977  struct sbp2_logical_unit *lu;
978 
979  lu = kmalloc(sizeof(*lu), GFP_KERNEL);
980  if (!lu)
981  return -ENOMEM;
982 
983  lu->address_handler.length = 0x100;
984  lu->address_handler.address_callback = sbp2_status_write;
985  lu->address_handler.callback_data = lu;
986 
988  &fw_high_memory_region) < 0) {
989  kfree(lu);
990  return -ENOMEM;
991  }
992 
993  lu->tgt = tgt;
994  lu->lun = lun_entry & 0xffff;
996  lu->retries = 0;
997  lu->has_sdev = false;
998  lu->blocked = false;
999  ++tgt->dont_block;
1000  INIT_LIST_HEAD(&lu->orb_list);
1001  INIT_DELAYED_WORK(&lu->work, sbp2_login);
1002 
1003  list_add_tail(&lu->link, &tgt->lu_list);
1004  return 0;
1005 }
1006 
1007 static void sbp2_get_unit_unique_id(struct sbp2_target *tgt,
1008  const u32 *leaf)
1009 {
1010  if ((leaf[0] & 0xffff0000) == 0x00020000)
1011  tgt->guid = (u64)leaf[1] << 32 | leaf[2];
1012 }
1013 
1014 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1015  const u32 *directory)
1016 {
1017  struct fw_csr_iterator ci;
1018  int key, value;
1019 
1020  fw_csr_iterator_init(&ci, directory);
1021  while (fw_csr_iterator_next(&ci, &key, &value))
1022  if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1023  sbp2_add_logical_unit(tgt, value) < 0)
1024  return -ENOMEM;
1025  return 0;
1026 }
1027 
1028 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1029  u32 *model, u32 *firmware_revision)
1030 {
1031  struct fw_csr_iterator ci;
1032  int key, value;
1033 
1034  fw_csr_iterator_init(&ci, directory);
1035  while (fw_csr_iterator_next(&ci, &key, &value)) {
1036  switch (key) {
1037 
1040  CSR_REGISTER_BASE + 4 * value;
1041  break;
1042 
1043  case CSR_DIRECTORY_ID:
1044  tgt->directory_id = value;
1045  break;
1046 
1047  case CSR_MODEL:
1048  *model = value;
1049  break;
1050 
1052  *firmware_revision = value;
1053  break;
1054 
1056  /* the timeout value is stored in 500ms units */
1057  tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1058  break;
1059 
1061  if (sbp2_add_logical_unit(tgt, value) < 0)
1062  return -ENOMEM;
1063  break;
1064 
1066  sbp2_get_unit_unique_id(tgt, ci.p - 1 + value);
1067  break;
1068 
1070  /* Adjust for the increment in the iterator */
1071  if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1072  return -ENOMEM;
1073  break;
1074  }
1075  }
1076  return 0;
1077 }
1078 
1079 /*
1080  * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1081  * provided in the config rom. Most devices do provide a value, which
1082  * we'll use for login management orbs, but with some sane limits.
1083  */
1084 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1085 {
1086  unsigned int timeout = tgt->mgt_orb_timeout;
1087 
1088  if (timeout > 40000)
1089  dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n",
1090  timeout / 1000);
1091 
1092  tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1093 }
1094 
1095 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1096  u32 firmware_revision)
1097 {
1098  int i;
1099  unsigned int w = sbp2_param_workarounds;
1100 
1101  if (w)
1102  dev_notice(tgt_dev(tgt),
1103  "Please notify [email protected] "
1104  "if you need the workarounds parameter\n");
1105 
1106  if (w & SBP2_WORKAROUND_OVERRIDE)
1107  goto out;
1108 
1109  for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1110 
1111  if (sbp2_workarounds_table[i].firmware_revision !=
1112  (firmware_revision & 0xffffff00))
1113  continue;
1114 
1115  if (sbp2_workarounds_table[i].model != model &&
1116  sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1117  continue;
1118 
1119  w |= sbp2_workarounds_table[i].workarounds;
1120  break;
1121  }
1122  out:
1123  if (w)
1124  dev_notice(tgt_dev(tgt), "workarounds 0x%x "
1125  "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1126  w, firmware_revision, model);
1127  tgt->workarounds = w;
1128 }
1129 
1130 static struct scsi_host_template scsi_driver_template;
1131 static int sbp2_remove(struct device *dev);
1132 
1133 static int sbp2_probe(struct device *dev)
1134 {
1135  struct fw_unit *unit = fw_unit(dev);
1136  struct fw_device *device = fw_parent_device(unit);
1137  struct sbp2_target *tgt;
1138  struct sbp2_logical_unit *lu;
1139  struct Scsi_Host *shost;
1140  u32 model, firmware_revision;
1141 
1142  /* cannot (or should not) handle targets on the local node */
1143  if (device->is_local)
1144  return -ENODEV;
1145 
1146  if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1147  BUG_ON(dma_set_max_seg_size(device->card->device,
1149 
1150  shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1151  if (shost == NULL)
1152  return -ENOMEM;
1153 
1154  tgt = (struct sbp2_target *)shost->hostdata;
1155  dev_set_drvdata(&unit->device, tgt);
1156  tgt->unit = unit;
1157  INIT_LIST_HEAD(&tgt->lu_list);
1158  tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1159 
1160  if (fw_device_enable_phys_dma(device) < 0)
1161  goto fail_shost_put;
1162 
1163  shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1164 
1165  if (scsi_add_host_with_dma(shost, &unit->device,
1166  device->card->device) < 0)
1167  goto fail_shost_put;
1168 
1169  /* implicit directory ID */
1170  tgt->directory_id = ((unit->directory - device->config_rom) * 4
1171  + CSR_CONFIG_ROM) & 0xffffff;
1172 
1173  firmware_revision = SBP2_ROM_VALUE_MISSING;
1174  model = SBP2_ROM_VALUE_MISSING;
1175 
1176  if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1177  &firmware_revision) < 0)
1178  goto fail_remove;
1179 
1180  sbp2_clamp_management_orb_timeout(tgt);
1181  sbp2_init_workarounds(tgt, model, firmware_revision);
1182 
1183  /*
1184  * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1185  * and so on up to 4096 bytes. The SBP-2 max_payload field
1186  * specifies the max payload size as 2 ^ (max_payload + 2), so
1187  * if we set this to max_speed + 7, we get the right value.
1188  */
1189  tgt->max_payload = min3(device->max_speed + 7, 10U,
1190  device->card->max_receive - 1);
1191 
1192  /* Do the login in a workqueue so we can easily reschedule retries. */
1193  list_for_each_entry(lu, &tgt->lu_list, link)
1194  sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1195 
1196  return 0;
1197 
1198  fail_remove:
1199  sbp2_remove(dev);
1200  return -ENOMEM;
1201 
1202  fail_shost_put:
1203  scsi_host_put(shost);
1204  return -ENOMEM;
1205 }
1206 
1207 static void sbp2_update(struct fw_unit *unit)
1208 {
1209  struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1210  struct sbp2_logical_unit *lu;
1211 
1212  fw_device_enable_phys_dma(fw_parent_device(unit));
1213 
1214  /*
1215  * Fw-core serializes sbp2_update() against sbp2_remove().
1216  * Iteration over tgt->lu_list is therefore safe here.
1217  */
1218  list_for_each_entry(lu, &tgt->lu_list, link) {
1219  sbp2_conditionally_block(lu);
1220  lu->retries = 0;
1221  sbp2_queue_work(lu, 0);
1222  }
1223 }
1224 
1225 static int sbp2_remove(struct device *dev)
1226 {
1227  struct fw_unit *unit = fw_unit(dev);
1228  struct fw_device *device = fw_parent_device(unit);
1229  struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1230  struct sbp2_logical_unit *lu, *next;
1231  struct Scsi_Host *shost =
1232  container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
1233  struct scsi_device *sdev;
1234 
1235  /* prevent deadlocks */
1236  sbp2_unblock(tgt);
1237 
1238  list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
1240  sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
1241  if (sdev) {
1242  scsi_remove_device(sdev);
1243  scsi_device_put(sdev);
1244  }
1245  if (lu->login_id != INVALID_LOGIN_ID) {
1246  int generation, node_id;
1247  /*
1248  * tgt->node_id may be obsolete here if we failed
1249  * during initial login or after a bus reset where
1250  * the topology changed.
1251  */
1252  generation = device->generation;
1253  smp_rmb(); /* node_id vs. generation */
1254  node_id = device->node_id;
1255  sbp2_send_management_orb(lu, node_id, generation,
1257  lu->login_id, NULL);
1258  }
1260  list_del(&lu->link);
1261  kfree(lu);
1262  }
1263  scsi_remove_host(shost);
1264  dev_notice(dev, "released target %d:0:0\n", shost->host_no);
1265 
1266  scsi_host_put(shost);
1267  return 0;
1268 }
1269 
1270 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1271 #define SBP2_SW_VERSION_ENTRY 0x00010483
1272 
1273 static const struct ieee1394_device_id sbp2_id_table[] = {
1274  {
1275  .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1277  .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1278  .version = SBP2_SW_VERSION_ENTRY,
1279  },
1280  { }
1281 };
1282 
1283 static struct fw_driver sbp2_driver = {
1284  .driver = {
1285  .owner = THIS_MODULE,
1286  .name = KBUILD_MODNAME,
1287  .bus = &fw_bus_type,
1288  .probe = sbp2_probe,
1289  .remove = sbp2_remove,
1290  },
1291  .update = sbp2_update,
1292  .id_table = sbp2_id_table,
1293 };
1294 
1295 static void sbp2_unmap_scatterlist(struct device *card_device,
1296  struct sbp2_command_orb *orb)
1297 {
1298  scsi_dma_unmap(orb->cmd);
1299 
1301  dma_unmap_single(card_device, orb->page_table_bus,
1302  sizeof(orb->page_table), DMA_TO_DEVICE);
1303 }
1304 
1305 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1306 {
1307  int sam_status;
1308  int sfmt = (sbp2_status[0] >> 6) & 0x03;
1309 
1310  if (sfmt == 2 || sfmt == 3) {
1311  /*
1312  * Reserved for future standardization (2) or
1313  * Status block format vendor-dependent (3)
1314  */
1315  return DID_ERROR << 16;
1316  }
1317 
1318  sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80);
1319  sense_data[1] = 0x0;
1320  sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f);
1321  sense_data[3] = sbp2_status[4];
1322  sense_data[4] = sbp2_status[5];
1323  sense_data[5] = sbp2_status[6];
1324  sense_data[6] = sbp2_status[7];
1325  sense_data[7] = 10;
1326  sense_data[8] = sbp2_status[8];
1327  sense_data[9] = sbp2_status[9];
1328  sense_data[10] = sbp2_status[10];
1329  sense_data[11] = sbp2_status[11];
1330  sense_data[12] = sbp2_status[2];
1331  sense_data[13] = sbp2_status[3];
1332  sense_data[14] = sbp2_status[12];
1333  sense_data[15] = sbp2_status[13];
1334 
1335  sam_status = sbp2_status[0] & 0x3f;
1336 
1337  switch (sam_status) {
1338  case SAM_STAT_GOOD:
1341  case SAM_STAT_BUSY:
1344  return DID_OK << 16 | sam_status;
1345 
1346  default:
1347  return DID_ERROR << 16;
1348  }
1349 }
1350 
1351 static void complete_command_orb(struct sbp2_orb *base_orb,
1352  struct sbp2_status *status)
1353 {
1354  struct sbp2_command_orb *orb =
1355  container_of(base_orb, struct sbp2_command_orb, base);
1356  struct fw_device *device = target_parent_device(orb->lu->tgt);
1357  int result;
1358 
1359  if (status != NULL) {
1360  if (STATUS_GET_DEAD(*status))
1361  sbp2_agent_reset_no_wait(orb->lu);
1362 
1363  switch (STATUS_GET_RESPONSE(*status)) {
1365  result = DID_OK << 16;
1366  break;
1368  result = DID_BUS_BUSY << 16;
1369  break;
1372  default:
1373  result = DID_ERROR << 16;
1374  break;
1375  }
1376 
1377  if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1378  result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1379  orb->cmd->sense_buffer);
1380  } else {
1381  /*
1382  * If the orb completes with status == NULL, something
1383  * went wrong, typically a bus reset happened mid-orb
1384  * or when sending the write (less likely).
1385  */
1386  result = DID_BUS_BUSY << 16;
1387  sbp2_conditionally_block(orb->lu);
1388  }
1389 
1390  dma_unmap_single(device->card->device, orb->base.request_bus,
1391  sizeof(orb->request), DMA_TO_DEVICE);
1392  sbp2_unmap_scatterlist(device->card->device, orb);
1393 
1394  orb->cmd->result = result;
1395  orb->cmd->scsi_done(orb->cmd);
1396 }
1397 
1398 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1399  struct fw_device *device, struct sbp2_logical_unit *lu)
1400 {
1401  struct scatterlist *sg = scsi_sglist(orb->cmd);
1402  int i, n;
1403 
1404  n = scsi_dma_map(orb->cmd);
1405  if (n <= 0)
1406  goto fail;
1407 
1408  /*
1409  * Handle the special case where there is only one element in
1410  * the scatter list by converting it to an immediate block
1411  * request. This is also a workaround for broken devices such
1412  * as the second generation iPod which doesn't support page
1413  * tables.
1414  */
1415  if (n == 1) {
1416  orb->request.data_descriptor.high =
1417  cpu_to_be32(lu->tgt->address_high);
1418  orb->request.data_descriptor.low =
1420  orb->request.misc |=
1422  return 0;
1423  }
1424 
1425  for_each_sg(sg, sg, n, i) {
1426  orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1427  orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1428  }
1429 
1430  orb->page_table_bus =
1431  dma_map_single(device->card->device, orb->page_table,
1432  sizeof(orb->page_table), DMA_TO_DEVICE);
1433  if (dma_mapping_error(device->card->device, orb->page_table_bus))
1434  goto fail_page_table;
1435 
1436  /*
1437  * The data_descriptor pointer is the one case where we need
1438  * to fill in the node ID part of the address. All other
1439  * pointers assume that the data referenced reside on the
1440  * initiator (i.e. us), but data_descriptor can refer to data
1441  * on other nodes so we need to put our ID in descriptor.high.
1442  */
1443  orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1444  orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
1447 
1448  return 0;
1449 
1450  fail_page_table:
1451  scsi_dma_unmap(orb->cmd);
1452  fail:
1453  return -ENOMEM;
1454 }
1455 
1456 /* SCSI stack integration */
1457 
1458 static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1459  struct scsi_cmnd *cmd)
1460 {
1461  struct sbp2_logical_unit *lu = cmd->device->hostdata;
1462  struct fw_device *device = target_parent_device(lu->tgt);
1463  struct sbp2_command_orb *orb;
1464  int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1465 
1466  /*
1467  * Bidirectional commands are not yet implemented, and unknown
1468  * transfer direction not handled.
1469  */
1470  if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1471  dev_err(lu_dev(lu), "cannot handle bidirectional command\n");
1472  cmd->result = DID_ERROR << 16;
1473  cmd->scsi_done(cmd);
1474  return 0;
1475  }
1476 
1477  orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1478  if (orb == NULL) {
1479  dev_notice(lu_dev(lu), "failed to alloc ORB\n");
1480  return SCSI_MLQUEUE_HOST_BUSY;
1481  }
1482 
1483  /* Initialize rcode to something not RCODE_COMPLETE. */
1484  orb->base.rcode = -1;
1485  kref_init(&orb->base.kref);
1486  orb->lu = lu;
1487  orb->cmd = cmd;
1488  orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1489  orb->request.misc = cpu_to_be32(
1490  COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1491  COMMAND_ORB_SPEED(device->max_speed) |
1493 
1494  if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1496 
1497  generation = device->generation;
1498  smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */
1499 
1500  if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1501  goto out;
1502 
1503  memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1504 
1505  orb->base.callback = complete_command_orb;
1506  orb->base.request_bus =
1507  dma_map_single(device->card->device, &orb->request,
1508  sizeof(orb->request), DMA_TO_DEVICE);
1509  if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1510  sbp2_unmap_scatterlist(device->card->device, orb);
1511  goto out;
1512  }
1513 
1514  sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1516  retval = 0;
1517  out:
1518  kref_put(&orb->base.kref, free_orb);
1519  return retval;
1520 }
1521 
1522 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1523 {
1524  struct sbp2_logical_unit *lu = sdev->hostdata;
1525 
1526  /* (Re-)Adding logical units via the SCSI stack is not supported. */
1527  if (!lu)
1528  return -ENOSYS;
1529 
1530  sdev->allow_restart = 1;
1531 
1532  /*
1533  * SBP-2 does not require any alignment, but we set it anyway
1534  * for compatibility with earlier versions of this driver.
1535  */
1537 
1538  if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1539  sdev->inquiry_len = 36;
1540 
1541  return 0;
1542 }
1543 
1544 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1545 {
1546  struct sbp2_logical_unit *lu = sdev->hostdata;
1547 
1548  sdev->use_10_for_rw = 1;
1549  sdev->no_report_opcodes = 1;
1550  sdev->no_write_same = 1;
1551 
1552  if (sbp2_param_exclusive_login)
1553  sdev->manage_start_stop = 1;
1554 
1555  if (sdev->type == TYPE_ROM)
1556  sdev->use_10_for_ms = 1;
1557 
1558  if (sdev->type == TYPE_DISK &&
1559  lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1560  sdev->skip_ms_page_8 = 1;
1561 
1562  if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1563  sdev->fix_capacity = 1;
1564 
1565  if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1566  sdev->start_stop_pwr_cond = 1;
1567 
1568  if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1569  blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1570 
1571  return 0;
1572 }
1573 
1574 /*
1575  * Called by scsi stack when something has really gone wrong. Usually
1576  * called when a command has timed-out for some reason.
1577  */
1578 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1579 {
1580  struct sbp2_logical_unit *lu = cmd->device->hostdata;
1581 
1582  dev_notice(lu_dev(lu), "sbp2_scsi_abort\n");
1583  sbp2_agent_reset(lu);
1584  sbp2_cancel_orbs(lu);
1585 
1586  return SUCCESS;
1587 }
1588 
1589 /*
1590  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1591  * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1592  *
1593  * This is the concatenation of target port identifier and logical unit
1594  * identifier as per SAM-2...SAM-4 annex A.
1595  */
1596 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1597  struct device_attribute *attr, char *buf)
1598 {
1599  struct scsi_device *sdev = to_scsi_device(dev);
1600  struct sbp2_logical_unit *lu;
1601 
1602  if (!sdev)
1603  return 0;
1604 
1605  lu = sdev->hostdata;
1606 
1607  return sprintf(buf, "%016llx:%06x:%04x\n",
1608  (unsigned long long)lu->tgt->guid,
1609  lu->tgt->directory_id, lu->lun);
1610 }
1611 
1612 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1613 
1614 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1615  &dev_attr_ieee1394_id,
1616  NULL
1617 };
1618 
1619 static struct scsi_host_template scsi_driver_template = {
1620  .module = THIS_MODULE,
1621  .name = "SBP-2 IEEE-1394",
1622  .proc_name = "sbp2",
1623  .queuecommand = sbp2_scsi_queuecommand,
1624  .slave_alloc = sbp2_scsi_slave_alloc,
1625  .slave_configure = sbp2_scsi_slave_configure,
1626  .eh_abort_handler = sbp2_scsi_abort,
1627  .this_id = -1,
1628  .sg_tablesize = SG_ALL,
1629  .use_clustering = ENABLE_CLUSTERING,
1630  .cmd_per_lun = 1,
1631  .can_queue = 1,
1632  .sdev_attrs = sbp2_scsi_sysfs_attrs,
1633 };
1634 
1635 MODULE_AUTHOR("Kristian Hoegsberg <[email protected]>");
1636 MODULE_DESCRIPTION("SCSI over IEEE1394");
1637 MODULE_LICENSE("GPL");
1638 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1639 
1640 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1641 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1642 MODULE_ALIAS("sbp2");
1643 #endif
1644 
1645 static int __init sbp2_init(void)
1646 {
1647  return driver_register(&sbp2_driver.driver);
1648 }
1649 
1650 static void __exit sbp2_cleanup(void)
1651 {
1652  driver_unregister(&sbp2_driver.driver);
1653 }
1654 
1655 module_init(sbp2_init);
1656 module_exit(sbp2_cleanup);