Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
skbuff.c
Go to the documentation of this file.
1 /*
2  * Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  * Authors: Alan Cox <[email protected]>
5  * Florian La Roche <[email protected]>
6  *
7  * Fixes:
8  * Alan Cox : Fixed the worst of the load
9  * balancer bugs.
10  * Dave Platt : Interrupt stacking fix.
11  * Richard Kooijman : Timestamp fixes.
12  * Alan Cox : Changed buffer format.
13  * Alan Cox : destructor hook for AF_UNIX etc.
14  * Linus Torvalds : Better skb_clone.
15  * Alan Cox : Added skb_copy.
16  * Alan Cox : Added all the changed routines Linus
17  * only put in the headers
18  * Ray VanTassle : Fixed --skb->lock in free
19  * Alan Cox : skb_copy copy arp field
20  * Andi Kleen : slabified it.
21  * Robert Olsson : Removed skb_head_pool
22  *
23  * NOTE:
24  * The __skb_ routines should be called with interrupts
25  * disabled, or you better be *real* sure that the operation is atomic
26  * with respect to whatever list is being frobbed (e.g. via lock_sock()
27  * or via disabling bottom half handlers, etc).
28  *
29  * This program is free software; you can redistribute it and/or
30  * modify it under the terms of the GNU General Public License
31  * as published by the Free Software Foundation; either version
32  * 2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  * The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/splice.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/scatterlist.h>
61 #include <linux/errqueue.h>
62 #include <linux/prefetch.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/xfrm.h>
69 
70 #include <asm/uaccess.h>
71 #include <trace/events/skb.h>
72 #include <linux/highmem.h>
73 
74 struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76 
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78  struct pipe_buffer *buf)
79 {
80  put_page(buf->page);
81 }
82 
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84  struct pipe_buffer *buf)
85 {
86  get_page(buf->page);
87 }
88 
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90  struct pipe_buffer *buf)
91 {
92  return 1;
93 }
94 
95 
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98  .can_merge = 0,
99  .map = generic_pipe_buf_map,
100  .unmap = generic_pipe_buf_unmap,
101  .confirm = generic_pipe_buf_confirm,
102  .release = sock_pipe_buf_release,
103  .steal = sock_pipe_buf_steal,
104  .get = sock_pipe_buf_get,
105 };
106 
107 /*
108  * Keep out-of-line to prevent kernel bloat.
109  * __builtin_return_address is not used because it is not always
110  * reliable.
111  */
112 
121 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
122 {
123  pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
124  __func__, here, skb->len, sz, skb->head, skb->data,
125  (unsigned long)skb->tail, (unsigned long)skb->end,
126  skb->dev ? skb->dev->name : "<NULL>");
127  BUG();
128 }
129 
139 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
140 {
141  pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
142  __func__, here, skb->len, sz, skb->head, skb->data,
143  (unsigned long)skb->tail, (unsigned long)skb->end,
144  skb->dev ? skb->dev->name : "<NULL>");
145  BUG();
146 }
147 
148 
149 /*
150  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
151  * the caller if emergency pfmemalloc reserves are being used. If it is and
152  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
153  * may be used. Otherwise, the packet data may be discarded until enough
154  * memory is free
155  */
156 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
157  __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
158 void *__kmalloc_reserve(size_t size, gfp_t flags, int node, unsigned long ip,
159  bool *pfmemalloc)
160 {
161  void *obj;
162  bool ret_pfmemalloc = false;
163 
164  /*
165  * Try a regular allocation, when that fails and we're not entitled
166  * to the reserves, fail.
167  */
168  obj = kmalloc_node_track_caller(size,
169  flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
170  node);
171  if (obj || !(gfp_pfmemalloc_allowed(flags)))
172  goto out;
173 
174  /* Try again but now we are using pfmemalloc reserves */
175  ret_pfmemalloc = true;
176  obj = kmalloc_node_track_caller(size, flags, node);
177 
178 out:
179  if (pfmemalloc)
180  *pfmemalloc = ret_pfmemalloc;
181 
182  return obj;
183 }
184 
185 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
186  * 'private' fields and also do memory statistics to find all the
187  * [BEEP] leaks.
188  *
189  */
190 
208 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
209  int flags, int node)
210 {
211  struct kmem_cache *cache;
212  struct skb_shared_info *shinfo;
213  struct sk_buff *skb;
214  u8 *data;
215  bool pfmemalloc;
216 
217  cache = (flags & SKB_ALLOC_FCLONE)
218  ? skbuff_fclone_cache : skbuff_head_cache;
219 
220  if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
221  gfp_mask |= __GFP_MEMALLOC;
222 
223  /* Get the HEAD */
224  skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
225  if (!skb)
226  goto out;
227  prefetchw(skb);
228 
229  /* We do our best to align skb_shared_info on a separate cache
230  * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
231  * aligned memory blocks, unless SLUB/SLAB debug is enabled.
232  * Both skb->head and skb_shared_info are cache line aligned.
233  */
234  size = SKB_DATA_ALIGN(size);
235  size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
236  data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
237  if (!data)
238  goto nodata;
239  /* kmalloc(size) might give us more room than requested.
240  * Put skb_shared_info exactly at the end of allocated zone,
241  * to allow max possible filling before reallocation.
242  */
243  size = SKB_WITH_OVERHEAD(ksize(data));
244  prefetchw(data + size);
245 
246  /*
247  * Only clear those fields we need to clear, not those that we will
248  * actually initialise below. Hence, don't put any more fields after
249  * the tail pointer in struct sk_buff!
250  */
251  memset(skb, 0, offsetof(struct sk_buff, tail));
252  /* Account for allocated memory : skb + skb->head */
253  skb->truesize = SKB_TRUESIZE(size);
254  skb->pfmemalloc = pfmemalloc;
255  atomic_set(&skb->users, 1);
256  skb->head = data;
257  skb->data = data;
258  skb_reset_tail_pointer(skb);
259  skb->end = skb->tail + size;
260 #ifdef NET_SKBUFF_DATA_USES_OFFSET
261  skb->mac_header = ~0U;
262 #endif
263 
264  /* make sure we initialize shinfo sequentially */
265  shinfo = skb_shinfo(skb);
266  memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
267  atomic_set(&shinfo->dataref, 1);
269 
270  if (flags & SKB_ALLOC_FCLONE) {
271  struct sk_buff *child = skb + 1;
272  atomic_t *fclone_ref = (atomic_t *) (child + 1);
273 
276  skb->fclone = SKB_FCLONE_ORIG;
277  atomic_set(fclone_ref, 1);
278 
280  child->pfmemalloc = pfmemalloc;
281  }
282 out:
283  return skb;
284 nodata:
285  kmem_cache_free(cache, skb);
286  skb = NULL;
287  goto out;
288 }
290 
308 struct sk_buff *build_skb(void *data, unsigned int frag_size)
309 {
310  struct skb_shared_info *shinfo;
311  struct sk_buff *skb;
312  unsigned int size = frag_size ? : ksize(data);
313 
314  skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
315  if (!skb)
316  return NULL;
317 
318  size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
319 
320  memset(skb, 0, offsetof(struct sk_buff, tail));
321  skb->truesize = SKB_TRUESIZE(size);
322  skb->head_frag = frag_size != 0;
323  atomic_set(&skb->users, 1);
324  skb->head = data;
325  skb->data = data;
326  skb_reset_tail_pointer(skb);
327  skb->end = skb->tail + size;
328 #ifdef NET_SKBUFF_DATA_USES_OFFSET
329  skb->mac_header = ~0U;
330 #endif
331 
332  /* make sure we initialize shinfo sequentially */
333  shinfo = skb_shinfo(skb);
334  memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
335  atomic_set(&shinfo->dataref, 1);
337 
338  return skb;
339 }
341 
343  struct page_frag frag;
344  /* we maintain a pagecount bias, so that we dont dirty cache line
345  * containing page->_count every time we allocate a fragment.
346  */
347  unsigned int pagecnt_bias;
348 };
350 
351 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
352 #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
353 #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE
354 
355 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
356 {
357  struct netdev_alloc_cache *nc;
358  void *data = NULL;
359  int order;
360  unsigned long flags;
361 
362  local_irq_save(flags);
364  if (unlikely(!nc->frag.page)) {
365 refill:
366  for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
367  gfp_t gfp = gfp_mask;
368 
369  if (order)
370  gfp |= __GFP_COMP | __GFP_NOWARN;
371  nc->frag.page = alloc_pages(gfp, order);
372  if (likely(nc->frag.page))
373  break;
374  if (--order < 0)
375  goto end;
376  }
377  nc->frag.size = PAGE_SIZE << order;
378 recycle:
379  atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
381  nc->frag.offset = 0;
382  }
383 
384  if (nc->frag.offset + fragsz > nc->frag.size) {
385  /* avoid unnecessary locked operations if possible */
386  if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
387  atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
388  goto recycle;
389  goto refill;
390  }
391 
392  data = page_address(nc->frag.page) + nc->frag.offset;
393  nc->frag.offset += fragsz;
394  nc->pagecnt_bias--;
395 end:
396  local_irq_restore(flags);
397  return data;
398 }
399 
407 void *netdev_alloc_frag(unsigned int fragsz)
408 {
409  return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
410 }
412 
427  unsigned int length, gfp_t gfp_mask)
428 {
429  struct sk_buff *skb = NULL;
430  unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
431  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
432 
433  if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
434  void *data;
435 
436  if (sk_memalloc_socks())
437  gfp_mask |= __GFP_MEMALLOC;
438 
439  data = __netdev_alloc_frag(fragsz, gfp_mask);
440 
441  if (likely(data)) {
442  skb = build_skb(data, fragsz);
443  if (unlikely(!skb))
444  put_page(virt_to_head_page(data));
445  }
446  } else {
447  skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
448  SKB_ALLOC_RX, NUMA_NO_NODE);
449  }
450  if (likely(skb)) {
451  skb_reserve(skb, NET_SKB_PAD);
452  skb->dev = dev;
453  }
454  return skb;
455 }
457 
458 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
459  int size, unsigned int truesize)
460 {
461  skb_fill_page_desc(skb, i, page, off, size);
462  skb->len += size;
463  skb->data_len += size;
464  skb->truesize += truesize;
465 }
467 
468 static void skb_drop_list(struct sk_buff **listp)
469 {
470  struct sk_buff *list = *listp;
471 
472  *listp = NULL;
473 
474  do {
475  struct sk_buff *this = list;
476  list = list->next;
477  kfree_skb(this);
478  } while (list);
479 }
480 
481 static inline void skb_drop_fraglist(struct sk_buff *skb)
482 {
483  skb_drop_list(&skb_shinfo(skb)->frag_list);
484 }
485 
486 static void skb_clone_fraglist(struct sk_buff *skb)
487 {
488  struct sk_buff *list;
489 
490  skb_walk_frags(skb, list)
491  skb_get(list);
492 }
493 
494 static void skb_free_head(struct sk_buff *skb)
495 {
496  if (skb->head_frag)
497  put_page(virt_to_head_page(skb->head));
498  else
499  kfree(skb->head);
500 }
501 
502 static void skb_release_data(struct sk_buff *skb)
503 {
504  if (!skb->cloned ||
505  !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
506  &skb_shinfo(skb)->dataref)) {
507  if (skb_shinfo(skb)->nr_frags) {
508  int i;
509  for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
510  skb_frag_unref(skb, i);
511  }
512 
513  /*
514  * If skb buf is from userspace, we need to notify the caller
515  * the lower device DMA has done;
516  */
517  if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
518  struct ubuf_info *uarg;
519 
520  uarg = skb_shinfo(skb)->destructor_arg;
521  if (uarg->callback)
522  uarg->callback(uarg);
523  }
524 
525  if (skb_has_frag_list(skb))
526  skb_drop_fraglist(skb);
527 
528  skb_free_head(skb);
529  }
530 }
531 
532 /*
533  * Free an skbuff by memory without cleaning the state.
534  */
535 static void kfree_skbmem(struct sk_buff *skb)
536 {
537  struct sk_buff *other;
538  atomic_t *fclone_ref;
539 
540  switch (skb->fclone) {
542  kmem_cache_free(skbuff_head_cache, skb);
543  break;
544 
545  case SKB_FCLONE_ORIG:
546  fclone_ref = (atomic_t *) (skb + 2);
547  if (atomic_dec_and_test(fclone_ref))
548  kmem_cache_free(skbuff_fclone_cache, skb);
549  break;
550 
551  case SKB_FCLONE_CLONE:
552  fclone_ref = (atomic_t *) (skb + 1);
553  other = skb - 1;
554 
555  /* The clone portion is available for
556  * fast-cloning again.
557  */
559 
560  if (atomic_dec_and_test(fclone_ref))
561  kmem_cache_free(skbuff_fclone_cache, other);
562  break;
563  }
564 }
565 
566 static void skb_release_head_state(struct sk_buff *skb)
567 {
568  skb_dst_drop(skb);
569 #ifdef CONFIG_XFRM
570  secpath_put(skb->sp);
571 #endif
572  if (skb->destructor) {
573  WARN_ON(in_irq());
574  skb->destructor(skb);
575  }
576 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
577  nf_conntrack_put(skb->nfct);
578 #endif
579 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
580  nf_conntrack_put_reasm(skb->nfct_reasm);
581 #endif
582 #ifdef CONFIG_BRIDGE_NETFILTER
583  nf_bridge_put(skb->nf_bridge);
584 #endif
585 /* XXX: IS this still necessary? - JHS */
586 #ifdef CONFIG_NET_SCHED
587  skb->tc_index = 0;
588 #ifdef CONFIG_NET_CLS_ACT
589  skb->tc_verd = 0;
590 #endif
591 #endif
592 }
593 
594 /* Free everything but the sk_buff shell. */
595 static void skb_release_all(struct sk_buff *skb)
596 {
597  skb_release_head_state(skb);
598  skb_release_data(skb);
599 }
600 
610 void __kfree_skb(struct sk_buff *skb)
611 {
612  skb_release_all(skb);
613  kfree_skbmem(skb);
614 }
616 
624 void kfree_skb(struct sk_buff *skb)
625 {
626  if (unlikely(!skb))
627  return;
628  if (likely(atomic_read(&skb->users) == 1))
629  smp_rmb();
630  else if (likely(!atomic_dec_and_test(&skb->users)))
631  return;
632  trace_kfree_skb(skb, __builtin_return_address(0));
633  __kfree_skb(skb);
634 }
636 
645 void consume_skb(struct sk_buff *skb)
646 {
647  if (unlikely(!skb))
648  return;
649  if (likely(atomic_read(&skb->users) == 1))
650  smp_rmb();
651  else if (likely(!atomic_dec_and_test(&skb->users)))
652  return;
653  trace_consume_skb(skb);
654  __kfree_skb(skb);
655 }
657 
658 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
659 {
660  new->tstamp = old->tstamp;
661  new->dev = old->dev;
662  new->transport_header = old->transport_header;
663  new->network_header = old->network_header;
664  new->mac_header = old->mac_header;
665  skb_dst_copy(new, old);
666  new->rxhash = old->rxhash;
667  new->ooo_okay = old->ooo_okay;
668  new->l4_rxhash = old->l4_rxhash;
669  new->no_fcs = old->no_fcs;
670 #ifdef CONFIG_XFRM
671  new->sp = secpath_get(old->sp);
672 #endif
673  memcpy(new->cb, old->cb, sizeof(old->cb));
674  new->csum = old->csum;
675  new->local_df = old->local_df;
676  new->pkt_type = old->pkt_type;
677  new->ip_summed = old->ip_summed;
678  skb_copy_queue_mapping(new, old);
679  new->priority = old->priority;
680 #if IS_ENABLED(CONFIG_IP_VS)
681  new->ipvs_property = old->ipvs_property;
682 #endif
683  new->pfmemalloc = old->pfmemalloc;
684  new->protocol = old->protocol;
685  new->mark = old->mark;
686  new->skb_iif = old->skb_iif;
687  __nf_copy(new, old);
688 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
689  new->nf_trace = old->nf_trace;
690 #endif
691 #ifdef CONFIG_NET_SCHED
692  new->tc_index = old->tc_index;
693 #ifdef CONFIG_NET_CLS_ACT
694  new->tc_verd = old->tc_verd;
695 #endif
696 #endif
697  new->vlan_tci = old->vlan_tci;
698 
699  skb_copy_secmark(new, old);
700 }
701 
702 /*
703  * You should not add any new code to this function. Add it to
704  * __copy_skb_header above instead.
705  */
706 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
707 {
708 #define C(x) n->x = skb->x
709 
710  n->next = n->prev = NULL;
711  n->sk = NULL;
712  __copy_skb_header(n, skb);
713 
714  C(len);
715  C(data_len);
716  C(mac_len);
717  n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
718  n->cloned = 1;
719  n->nohdr = 0;
720  n->destructor = NULL;
721  C(tail);
722  C(end);
723  C(head);
724  C(head_frag);
725  C(data);
726  C(truesize);
727  atomic_set(&n->users, 1);
728 
729  atomic_inc(&(skb_shinfo(skb)->dataref));
730  skb->cloned = 1;
731 
732  return n;
733 #undef C
734 }
735 
746 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
747 {
748  skb_release_all(dst);
749  return __skb_clone(dst, src);
750 }
752 
769 {
770  int i;
771  int num_frags = skb_shinfo(skb)->nr_frags;
772  struct page *page, *head = NULL;
773  struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
774 
775  for (i = 0; i < num_frags; i++) {
776  u8 *vaddr;
777  skb_frag_t *f = &skb_shinfo(skb)->frags[i];
778 
779  page = alloc_page(gfp_mask);
780  if (!page) {
781  while (head) {
782  struct page *next = (struct page *)head->private;
783  put_page(head);
784  head = next;
785  }
786  return -ENOMEM;
787  }
788  vaddr = kmap_atomic(skb_frag_page(f));
789  memcpy(page_address(page),
790  vaddr + f->page_offset, skb_frag_size(f));
791  kunmap_atomic(vaddr);
792  page->private = (unsigned long)head;
793  head = page;
794  }
795 
796  /* skb frags release userspace buffers */
797  for (i = 0; i < num_frags; i++)
798  skb_frag_unref(skb, i);
799 
800  uarg->callback(uarg);
801 
802  /* skb frags point to kernel buffers */
803  for (i = num_frags - 1; i >= 0; i--) {
804  __skb_fill_page_desc(skb, i, head, 0,
805  skb_shinfo(skb)->frags[i].size);
806  head = (struct page *)head->private;
807  }
808 
809  skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
810  return 0;
811 }
813 
828 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
829 {
830  struct sk_buff *n;
831 
832  if (skb_orphan_frags(skb, gfp_mask))
833  return NULL;
834 
835  n = skb + 1;
836  if (skb->fclone == SKB_FCLONE_ORIG &&
838  atomic_t *fclone_ref = (atomic_t *) (n + 1);
840  atomic_inc(fclone_ref);
841  } else {
842  if (skb_pfmemalloc(skb))
843  gfp_mask |= __GFP_MEMALLOC;
844 
845  n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
846  if (!n)
847  return NULL;
848 
852  }
853 
854  return __skb_clone(n, skb);
855 }
857 
858 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
859 {
860 #ifndef NET_SKBUFF_DATA_USES_OFFSET
861  /*
862  * Shift between the two data areas in bytes
863  */
864  unsigned long offset = new->data - old->data;
865 #endif
866 
867  __copy_skb_header(new, old);
868 
869 #ifndef NET_SKBUFF_DATA_USES_OFFSET
870  /* {transport,network,mac}_header are relative to skb->head */
871  new->transport_header += offset;
872  new->network_header += offset;
873  if (skb_mac_header_was_set(new))
874  new->mac_header += offset;
875 #endif
876  skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
877  skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
878  skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
879 }
880 
881 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
882 {
883  if (skb_pfmemalloc(skb))
884  return SKB_ALLOC_RX;
885  return 0;
886 }
887 
905 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
906 {
907  int headerlen = skb_headroom(skb);
908  unsigned int size = skb_end_offset(skb) + skb->data_len;
909  struct sk_buff *n = __alloc_skb(size, gfp_mask,
910  skb_alloc_rx_flag(skb), NUMA_NO_NODE);
911 
912  if (!n)
913  return NULL;
914 
915  /* Set the data pointer */
916  skb_reserve(n, headerlen);
917  /* Set the tail pointer and length */
918  skb_put(n, skb->len);
919 
920  if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
921  BUG();
922 
923  copy_skb_header(n, skb);
924  return n;
925 }
927 
942 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
943 {
944  unsigned int size = skb_headlen(skb) + headroom;
945  struct sk_buff *n = __alloc_skb(size, gfp_mask,
946  skb_alloc_rx_flag(skb), NUMA_NO_NODE);
947 
948  if (!n)
949  goto out;
950 
951  /* Set the data pointer */
952  skb_reserve(n, headroom);
953  /* Set the tail pointer and length */
954  skb_put(n, skb_headlen(skb));
955  /* Copy the bytes */
956  skb_copy_from_linear_data(skb, n->data, n->len);
957 
958  n->truesize += skb->data_len;
959  n->data_len = skb->data_len;
960  n->len = skb->len;
961 
962  if (skb_shinfo(skb)->nr_frags) {
963  int i;
964 
965  if (skb_orphan_frags(skb, gfp_mask)) {
966  kfree_skb(n);
967  n = NULL;
968  goto out;
969  }
970  for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
971  skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
972  skb_frag_ref(skb, i);
973  }
974  skb_shinfo(n)->nr_frags = i;
975  }
976 
977  if (skb_has_frag_list(skb)) {
978  skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
979  skb_clone_fraglist(n);
980  }
981 
982  copy_skb_header(n, skb);
983 out:
984  return n;
985 }
987 
1004 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1005  gfp_t gfp_mask)
1006 {
1007  int i;
1008  u8 *data;
1009  int size = nhead + skb_end_offset(skb) + ntail;
1010  long off;
1011 
1012  BUG_ON(nhead < 0);
1013 
1014  if (skb_shared(skb))
1015  BUG();
1016 
1017  size = SKB_DATA_ALIGN(size);
1018 
1019  if (skb_pfmemalloc(skb))
1020  gfp_mask |= __GFP_MEMALLOC;
1021  data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1022  gfp_mask, NUMA_NO_NODE, NULL);
1023  if (!data)
1024  goto nodata;
1025  size = SKB_WITH_OVERHEAD(ksize(data));
1026 
1027  /* Copy only real data... and, alas, header. This should be
1028  * optimized for the cases when header is void.
1029  */
1030  memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1031 
1032  memcpy((struct skb_shared_info *)(data + size),
1033  skb_shinfo(skb),
1034  offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1035 
1036  /*
1037  * if shinfo is shared we must drop the old head gracefully, but if it
1038  * is not we can just drop the old head and let the existing refcount
1039  * be since all we did is relocate the values
1040  */
1041  if (skb_cloned(skb)) {
1042  /* copy this zero copy skb frags */
1043  if (skb_orphan_frags(skb, gfp_mask))
1044  goto nofrags;
1045  for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1046  skb_frag_ref(skb, i);
1047 
1048  if (skb_has_frag_list(skb))
1049  skb_clone_fraglist(skb);
1050 
1051  skb_release_data(skb);
1052  } else {
1053  skb_free_head(skb);
1054  }
1055  off = (data + nhead) - skb->head;
1056 
1057  skb->head = data;
1058  skb->head_frag = 0;
1059  skb->data += off;
1060 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1061  skb->end = size;
1062  off = nhead;
1063 #else
1064  skb->end = skb->head + size;
1065 #endif
1066  /* {transport,network,mac}_header and tail are relative to skb->head */
1067  skb->tail += off;
1068  skb->transport_header += off;
1069  skb->network_header += off;
1070  if (skb_mac_header_was_set(skb))
1071  skb->mac_header += off;
1072  /* Only adjust this if it actually is csum_start rather than csum */
1073  if (skb->ip_summed == CHECKSUM_PARTIAL)
1074  skb->csum_start += nhead;
1075  skb->cloned = 0;
1076  skb->hdr_len = 0;
1077  skb->nohdr = 0;
1078  atomic_set(&skb_shinfo(skb)->dataref, 1);
1079  return 0;
1080 
1081 nofrags:
1082  kfree(data);
1083 nodata:
1084  return -ENOMEM;
1085 }
1087 
1088 /* Make private copy of skb with writable head and some headroom */
1089 
1090 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1091 {
1092  struct sk_buff *skb2;
1093  int delta = headroom - skb_headroom(skb);
1094 
1095  if (delta <= 0)
1096  skb2 = pskb_copy(skb, GFP_ATOMIC);
1097  else {
1098  skb2 = skb_clone(skb, GFP_ATOMIC);
1099  if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1100  GFP_ATOMIC)) {
1101  kfree_skb(skb2);
1102  skb2 = NULL;
1103  }
1104  }
1105  return skb2;
1106 }
1108 
1127 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1128  int newheadroom, int newtailroom,
1129  gfp_t gfp_mask)
1130 {
1131  /*
1132  * Allocate the copy buffer
1133  */
1134  struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1135  gfp_mask, skb_alloc_rx_flag(skb),
1136  NUMA_NO_NODE);
1137  int oldheadroom = skb_headroom(skb);
1138  int head_copy_len, head_copy_off;
1139  int off;
1140 
1141  if (!n)
1142  return NULL;
1143 
1144  skb_reserve(n, newheadroom);
1145 
1146  /* Set the tail pointer and length */
1147  skb_put(n, skb->len);
1148 
1149  head_copy_len = oldheadroom;
1150  head_copy_off = 0;
1151  if (newheadroom <= head_copy_len)
1152  head_copy_len = newheadroom;
1153  else
1154  head_copy_off = newheadroom - head_copy_len;
1155 
1156  /* Copy the linear header and data. */
1157  if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1158  skb->len + head_copy_len))
1159  BUG();
1160 
1161  copy_skb_header(n, skb);
1162 
1163  off = newheadroom - oldheadroom;
1164  if (n->ip_summed == CHECKSUM_PARTIAL)
1165  n->csum_start += off;
1166 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1167  n->transport_header += off;
1168  n->network_header += off;
1169  if (skb_mac_header_was_set(skb))
1170  n->mac_header += off;
1171 #endif
1172 
1173  return n;
1174 }
1176 
1189 int skb_pad(struct sk_buff *skb, int pad)
1190 {
1191  int err;
1192  int ntail;
1193 
1194  /* If the skbuff is non linear tailroom is always zero.. */
1195  if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1196  memset(skb->data+skb->len, 0, pad);
1197  return 0;
1198  }
1199 
1200  ntail = skb->data_len + pad - (skb->end - skb->tail);
1201  if (likely(skb_cloned(skb) || ntail > 0)) {
1202  err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1203  if (unlikely(err))
1204  goto free_skb;
1205  }
1206 
1207  /* FIXME: The use of this function with non-linear skb's really needs
1208  * to be audited.
1209  */
1210  err = skb_linearize(skb);
1211  if (unlikely(err))
1212  goto free_skb;
1213 
1214  memset(skb->data + skb->len, 0, pad);
1215  return 0;
1216 
1217 free_skb:
1218  kfree_skb(skb);
1219  return err;
1220 }
1222 
1232 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1233 {
1234  unsigned char *tmp = skb_tail_pointer(skb);
1235  SKB_LINEAR_ASSERT(skb);
1236  skb->tail += len;
1237  skb->len += len;
1238  if (unlikely(skb->tail > skb->end))
1239  skb_over_panic(skb, len, __builtin_return_address(0));
1240  return tmp;
1241 }
1243 
1253 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1254 {
1255  skb->data -= len;
1256  skb->len += len;
1257  if (unlikely(skb->data<skb->head))
1258  skb_under_panic(skb, len, __builtin_return_address(0));
1259  return skb->data;
1260 }
1262 
1273 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1274 {
1275  return skb_pull_inline(skb, len);
1276 }
1278 
1288 void skb_trim(struct sk_buff *skb, unsigned int len)
1289 {
1290  if (skb->len > len)
1291  __skb_trim(skb, len);
1292 }
1294 
1295 /* Trims skb to length len. It can change skb pointers.
1296  */
1297 
1298 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1299 {
1300  struct sk_buff **fragp;
1301  struct sk_buff *frag;
1302  int offset = skb_headlen(skb);
1303  int nfrags = skb_shinfo(skb)->nr_frags;
1304  int i;
1305  int err;
1306 
1307  if (skb_cloned(skb) &&
1308  unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1309  return err;
1310 
1311  i = 0;
1312  if (offset >= len)
1313  goto drop_pages;
1314 
1315  for (; i < nfrags; i++) {
1316  int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1317 
1318  if (end < len) {
1319  offset = end;
1320  continue;
1321  }
1322 
1323  skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1324 
1325 drop_pages:
1326  skb_shinfo(skb)->nr_frags = i;
1327 
1328  for (; i < nfrags; i++)
1329  skb_frag_unref(skb, i);
1330 
1331  if (skb_has_frag_list(skb))
1332  skb_drop_fraglist(skb);
1333  goto done;
1334  }
1335 
1336  for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1337  fragp = &frag->next) {
1338  int end = offset + frag->len;
1339 
1340  if (skb_shared(frag)) {
1341  struct sk_buff *nfrag;
1342 
1343  nfrag = skb_clone(frag, GFP_ATOMIC);
1344  if (unlikely(!nfrag))
1345  return -ENOMEM;
1346 
1347  nfrag->next = frag->next;
1348  consume_skb(frag);
1349  frag = nfrag;
1350  *fragp = frag;
1351  }
1352 
1353  if (end < len) {
1354  offset = end;
1355  continue;
1356  }
1357 
1358  if (end > len &&
1359  unlikely((err = pskb_trim(frag, len - offset))))
1360  return err;
1361 
1362  if (frag->next)
1363  skb_drop_list(&frag->next);
1364  break;
1365  }
1366 
1367 done:
1368  if (len > skb_headlen(skb)) {
1369  skb->data_len -= skb->len - len;
1370  skb->len = len;
1371  } else {
1372  skb->len = len;
1373  skb->data_len = 0;
1374  skb_set_tail_pointer(skb, len);
1375  }
1376 
1377  return 0;
1378 }
1380 
1399 /* Moves tail of skb head forward, copying data from fragmented part,
1400  * when it is necessary.
1401  * 1. It may fail due to malloc failure.
1402  * 2. It may change skb pointers.
1403  *
1404  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1405  */
1406 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1407 {
1408  /* If skb has not enough free space at tail, get new one
1409  * plus 128 bytes for future expansions. If we have enough
1410  * room at tail, reallocate without expansion only if skb is cloned.
1411  */
1412  int i, k, eat = (skb->tail + delta) - skb->end;
1413 
1414  if (eat > 0 || skb_cloned(skb)) {
1415  if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1416  GFP_ATOMIC))
1417  return NULL;
1418  }
1419 
1420  if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1421  BUG();
1422 
1423  /* Optimization: no fragments, no reasons to preestimate
1424  * size of pulled pages. Superb.
1425  */
1426  if (!skb_has_frag_list(skb))
1427  goto pull_pages;
1428 
1429  /* Estimate size of pulled pages. */
1430  eat = delta;
1431  for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1432  int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1433 
1434  if (size >= eat)
1435  goto pull_pages;
1436  eat -= size;
1437  }
1438 
1439  /* If we need update frag list, we are in troubles.
1440  * Certainly, it possible to add an offset to skb data,
1441  * but taking into account that pulling is expected to
1442  * be very rare operation, it is worth to fight against
1443  * further bloating skb head and crucify ourselves here instead.
1444  * Pure masohism, indeed. 8)8)
1445  */
1446  if (eat) {
1447  struct sk_buff *list = skb_shinfo(skb)->frag_list;
1448  struct sk_buff *clone = NULL;
1449  struct sk_buff *insp = NULL;
1450 
1451  do {
1452  BUG_ON(!list);
1453 
1454  if (list->len <= eat) {
1455  /* Eaten as whole. */
1456  eat -= list->len;
1457  list = list->next;
1458  insp = list;
1459  } else {
1460  /* Eaten partially. */
1461 
1462  if (skb_shared(list)) {
1463  /* Sucks! We need to fork list. :-( */
1464  clone = skb_clone(list, GFP_ATOMIC);
1465  if (!clone)
1466  return NULL;
1467  insp = list->next;
1468  list = clone;
1469  } else {
1470  /* This may be pulled without
1471  * problems. */
1472  insp = list;
1473  }
1474  if (!pskb_pull(list, eat)) {
1475  kfree_skb(clone);
1476  return NULL;
1477  }
1478  break;
1479  }
1480  } while (eat);
1481 
1482  /* Free pulled out fragments. */
1483  while ((list = skb_shinfo(skb)->frag_list) != insp) {
1484  skb_shinfo(skb)->frag_list = list->next;
1485  kfree_skb(list);
1486  }
1487  /* And insert new clone at head. */
1488  if (clone) {
1489  clone->next = list;
1490  skb_shinfo(skb)->frag_list = clone;
1491  }
1492  }
1493  /* Success! Now we may commit changes to skb data. */
1494 
1495 pull_pages:
1496  eat = delta;
1497  k = 0;
1498  for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1499  int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1500 
1501  if (size <= eat) {
1502  skb_frag_unref(skb, i);
1503  eat -= size;
1504  } else {
1505  skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1506  if (eat) {
1507  skb_shinfo(skb)->frags[k].page_offset += eat;
1508  skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1509  eat = 0;
1510  }
1511  k++;
1512  }
1513  }
1514  skb_shinfo(skb)->nr_frags = k;
1515 
1516  skb->tail += delta;
1517  skb->data_len -= delta;
1518 
1519  return skb_tail_pointer(skb);
1520 }
1522 
1538 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1539 {
1540  int start = skb_headlen(skb);
1541  struct sk_buff *frag_iter;
1542  int i, copy;
1543 
1544  if (offset > (int)skb->len - len)
1545  goto fault;
1546 
1547  /* Copy header. */
1548  if ((copy = start - offset) > 0) {
1549  if (copy > len)
1550  copy = len;
1551  skb_copy_from_linear_data_offset(skb, offset, to, copy);
1552  if ((len -= copy) == 0)
1553  return 0;
1554  offset += copy;
1555  to += copy;
1556  }
1557 
1558  for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1559  int end;
1560  skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1561 
1562  WARN_ON(start > offset + len);
1563 
1564  end = start + skb_frag_size(f);
1565  if ((copy = end - offset) > 0) {
1566  u8 *vaddr;
1567 
1568  if (copy > len)
1569  copy = len;
1570 
1571  vaddr = kmap_atomic(skb_frag_page(f));
1572  memcpy(to,
1573  vaddr + f->page_offset + offset - start,
1574  copy);
1575  kunmap_atomic(vaddr);
1576 
1577  if ((len -= copy) == 0)
1578  return 0;
1579  offset += copy;
1580  to += copy;
1581  }
1582  start = end;
1583  }
1584 
1585  skb_walk_frags(skb, frag_iter) {
1586  int end;
1587 
1588  WARN_ON(start > offset + len);
1589 
1590  end = start + frag_iter->len;
1591  if ((copy = end - offset) > 0) {
1592  if (copy > len)
1593  copy = len;
1594  if (skb_copy_bits(frag_iter, offset - start, to, copy))
1595  goto fault;
1596  if ((len -= copy) == 0)
1597  return 0;
1598  offset += copy;
1599  to += copy;
1600  }
1601  start = end;
1602  }
1603 
1604  if (!len)
1605  return 0;
1606 
1607 fault:
1608  return -EFAULT;
1609 }
1611 
1612 /*
1613  * Callback from splice_to_pipe(), if we need to release some pages
1614  * at the end of the spd in case we error'ed out in filling the pipe.
1615  */
1616 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1617 {
1618  put_page(spd->pages[i]);
1619 }
1620 
1621 static struct page *linear_to_page(struct page *page, unsigned int *len,
1622  unsigned int *offset,
1623  struct sk_buff *skb, struct sock *sk)
1624 {
1625  struct page_frag *pfrag = sk_page_frag(sk);
1626 
1627  if (!sk_page_frag_refill(sk, pfrag))
1628  return NULL;
1629 
1630  *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1631 
1632  memcpy(page_address(pfrag->page) + pfrag->offset,
1633  page_address(page) + *offset, *len);
1634  *offset = pfrag->offset;
1635  pfrag->offset += *len;
1636 
1637  return pfrag->page;
1638 }
1639 
1640 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1641  struct page *page,
1642  unsigned int offset)
1643 {
1644  return spd->nr_pages &&
1645  spd->pages[spd->nr_pages - 1] == page &&
1646  (spd->partial[spd->nr_pages - 1].offset +
1647  spd->partial[spd->nr_pages - 1].len == offset);
1648 }
1649 
1650 /*
1651  * Fill page/offset/length into spd, if it can hold more pages.
1652  */
1653 static bool spd_fill_page(struct splice_pipe_desc *spd,
1654  struct pipe_inode_info *pipe, struct page *page,
1655  unsigned int *len, unsigned int offset,
1656  struct sk_buff *skb, bool linear,
1657  struct sock *sk)
1658 {
1659  if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1660  return true;
1661 
1662  if (linear) {
1663  page = linear_to_page(page, len, &offset, skb, sk);
1664  if (!page)
1665  return true;
1666  }
1667  if (spd_can_coalesce(spd, page, offset)) {
1668  spd->partial[spd->nr_pages - 1].len += *len;
1669  return false;
1670  }
1671  get_page(page);
1672  spd->pages[spd->nr_pages] = page;
1673  spd->partial[spd->nr_pages].len = *len;
1674  spd->partial[spd->nr_pages].offset = offset;
1675  spd->nr_pages++;
1676 
1677  return false;
1678 }
1679 
1680 static inline void __segment_seek(struct page **page, unsigned int *poff,
1681  unsigned int *plen, unsigned int off)
1682 {
1683  unsigned long n;
1684 
1685  *poff += off;
1686  n = *poff / PAGE_SIZE;
1687  if (n)
1688  *page = nth_page(*page, n);
1689 
1690  *poff = *poff % PAGE_SIZE;
1691  *plen -= off;
1692 }
1693 
1694 static bool __splice_segment(struct page *page, unsigned int poff,
1695  unsigned int plen, unsigned int *off,
1696  unsigned int *len, struct sk_buff *skb,
1697  struct splice_pipe_desc *spd, bool linear,
1698  struct sock *sk,
1699  struct pipe_inode_info *pipe)
1700 {
1701  if (!*len)
1702  return true;
1703 
1704  /* skip this segment if already processed */
1705  if (*off >= plen) {
1706  *off -= plen;
1707  return false;
1708  }
1709 
1710  /* ignore any bits we already processed */
1711  if (*off) {
1712  __segment_seek(&page, &poff, &plen, *off);
1713  *off = 0;
1714  }
1715 
1716  do {
1717  unsigned int flen = min(*len, plen);
1718 
1719  /* the linear region may spread across several pages */
1720  flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1721 
1722  if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1723  return true;
1724 
1725  __segment_seek(&page, &poff, &plen, flen);
1726  *len -= flen;
1727 
1728  } while (*len && plen);
1729 
1730  return false;
1731 }
1732 
1733 /*
1734  * Map linear and fragment data from the skb to spd. It reports true if the
1735  * pipe is full or if we already spliced the requested length.
1736  */
1737 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1738  unsigned int *offset, unsigned int *len,
1739  struct splice_pipe_desc *spd, struct sock *sk)
1740 {
1741  int seg;
1742 
1743  /* map the linear part :
1744  * If skb->head_frag is set, this 'linear' part is backed by a
1745  * fragment, and if the head is not shared with any clones then
1746  * we can avoid a copy since we own the head portion of this page.
1747  */
1748  if (__splice_segment(virt_to_page(skb->data),
1749  (unsigned long) skb->data & (PAGE_SIZE - 1),
1750  skb_headlen(skb),
1751  offset, len, skb, spd,
1752  skb_head_is_locked(skb),
1753  sk, pipe))
1754  return true;
1755 
1756  /*
1757  * then map the fragments
1758  */
1759  for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1760  const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1761 
1762  if (__splice_segment(skb_frag_page(f),
1763  f->page_offset, skb_frag_size(f),
1764  offset, len, skb, spd, false, sk, pipe))
1765  return true;
1766  }
1767 
1768  return false;
1769 }
1770 
1771 /*
1772  * Map data from the skb to a pipe. Should handle both the linear part,
1773  * the fragments, and the frag list. It does NOT handle frag lists within
1774  * the frag list, if such a thing exists. We'd probably need to recurse to
1775  * handle that cleanly.
1776  */
1777 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1778  struct pipe_inode_info *pipe, unsigned int tlen,
1779  unsigned int flags)
1780 {
1781  struct partial_page partial[MAX_SKB_FRAGS];
1782  struct page *pages[MAX_SKB_FRAGS];
1783  struct splice_pipe_desc spd = {
1784  .pages = pages,
1785  .partial = partial,
1786  .nr_pages_max = MAX_SKB_FRAGS,
1787  .flags = flags,
1788  .ops = &sock_pipe_buf_ops,
1789  .spd_release = sock_spd_release,
1790  };
1791  struct sk_buff *frag_iter;
1792  struct sock *sk = skb->sk;
1793  int ret = 0;
1794 
1795  /*
1796  * __skb_splice_bits() only fails if the output has no room left,
1797  * so no point in going over the frag_list for the error case.
1798  */
1799  if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1800  goto done;
1801  else if (!tlen)
1802  goto done;
1803 
1804  /*
1805  * now see if we have a frag_list to map
1806  */
1807  skb_walk_frags(skb, frag_iter) {
1808  if (!tlen)
1809  break;
1810  if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1811  break;
1812  }
1813 
1814 done:
1815  if (spd.nr_pages) {
1816  /*
1817  * Drop the socket lock, otherwise we have reverse
1818  * locking dependencies between sk_lock and i_mutex
1819  * here as compared to sendfile(). We enter here
1820  * with the socket lock held, and splice_to_pipe() will
1821  * grab the pipe inode lock. For sendfile() emulation,
1822  * we call into ->sendpage() with the i_mutex lock held
1823  * and networking will grab the socket lock.
1824  */
1825  release_sock(sk);
1826  ret = splice_to_pipe(pipe, &spd);
1827  lock_sock(sk);
1828  }
1829 
1830  return ret;
1831 }
1832 
1845 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1846 {
1847  int start = skb_headlen(skb);
1848  struct sk_buff *frag_iter;
1849  int i, copy;
1850 
1851  if (offset > (int)skb->len - len)
1852  goto fault;
1853 
1854  if ((copy = start - offset) > 0) {
1855  if (copy > len)
1856  copy = len;
1857  skb_copy_to_linear_data_offset(skb, offset, from, copy);
1858  if ((len -= copy) == 0)
1859  return 0;
1860  offset += copy;
1861  from += copy;
1862  }
1863 
1864  for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1865  skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1866  int end;
1867 
1868  WARN_ON(start > offset + len);
1869 
1870  end = start + skb_frag_size(frag);
1871  if ((copy = end - offset) > 0) {
1872  u8 *vaddr;
1873 
1874  if (copy > len)
1875  copy = len;
1876 
1877  vaddr = kmap_atomic(skb_frag_page(frag));
1878  memcpy(vaddr + frag->page_offset + offset - start,
1879  from, copy);
1880  kunmap_atomic(vaddr);
1881 
1882  if ((len -= copy) == 0)
1883  return 0;
1884  offset += copy;
1885  from += copy;
1886  }
1887  start = end;
1888  }
1889 
1890  skb_walk_frags(skb, frag_iter) {
1891  int end;
1892 
1893  WARN_ON(start > offset + len);
1894 
1895  end = start + frag_iter->len;
1896  if ((copy = end - offset) > 0) {
1897  if (copy > len)
1898  copy = len;
1899  if (skb_store_bits(frag_iter, offset - start,
1900  from, copy))
1901  goto fault;
1902  if ((len -= copy) == 0)
1903  return 0;
1904  offset += copy;
1905  from += copy;
1906  }
1907  start = end;
1908  }
1909  if (!len)
1910  return 0;
1911 
1912 fault:
1913  return -EFAULT;
1914 }
1916 
1917 /* Checksum skb data. */
1918 
1919 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1920  int len, __wsum csum)
1921 {
1922  int start = skb_headlen(skb);
1923  int i, copy = start - offset;
1924  struct sk_buff *frag_iter;
1925  int pos = 0;
1926 
1927  /* Checksum header. */
1928  if (copy > 0) {
1929  if (copy > len)
1930  copy = len;
1931  csum = csum_partial(skb->data + offset, copy, csum);
1932  if ((len -= copy) == 0)
1933  return csum;
1934  offset += copy;
1935  pos = copy;
1936  }
1937 
1938  for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1939  int end;
1940  skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1941 
1942  WARN_ON(start > offset + len);
1943 
1944  end = start + skb_frag_size(frag);
1945  if ((copy = end - offset) > 0) {
1946  __wsum csum2;
1947  u8 *vaddr;
1948 
1949  if (copy > len)
1950  copy = len;
1951  vaddr = kmap_atomic(skb_frag_page(frag));
1952  csum2 = csum_partial(vaddr + frag->page_offset +
1953  offset - start, copy, 0);
1954  kunmap_atomic(vaddr);
1955  csum = csum_block_add(csum, csum2, pos);
1956  if (!(len -= copy))
1957  return csum;
1958  offset += copy;
1959  pos += copy;
1960  }
1961  start = end;
1962  }
1963 
1964  skb_walk_frags(skb, frag_iter) {
1965  int end;
1966 
1967  WARN_ON(start > offset + len);
1968 
1969  end = start + frag_iter->len;
1970  if ((copy = end - offset) > 0) {
1971  __wsum csum2;
1972  if (copy > len)
1973  copy = len;
1974  csum2 = skb_checksum(frag_iter, offset - start,
1975  copy, 0);
1976  csum = csum_block_add(csum, csum2, pos);
1977  if ((len -= copy) == 0)
1978  return csum;
1979  offset += copy;
1980  pos += copy;
1981  }
1982  start = end;
1983  }
1984  BUG_ON(len);
1985 
1986  return csum;
1987 }
1989 
1990 /* Both of above in one bottle. */
1991 
1992 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1993  u8 *to, int len, __wsum csum)
1994 {
1995  int start = skb_headlen(skb);
1996  int i, copy = start - offset;
1997  struct sk_buff *frag_iter;
1998  int pos = 0;
1999 
2000  /* Copy header. */
2001  if (copy > 0) {
2002  if (copy > len)
2003  copy = len;
2004  csum = csum_partial_copy_nocheck(skb->data + offset, to,
2005  copy, csum);
2006  if ((len -= copy) == 0)
2007  return csum;
2008  offset += copy;
2009  to += copy;
2010  pos = copy;
2011  }
2012 
2013  for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2014  int end;
2015 
2016  WARN_ON(start > offset + len);
2017 
2018  end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2019  if ((copy = end - offset) > 0) {
2020  __wsum csum2;
2021  u8 *vaddr;
2022  skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2023 
2024  if (copy > len)
2025  copy = len;
2026  vaddr = kmap_atomic(skb_frag_page(frag));
2027  csum2 = csum_partial_copy_nocheck(vaddr +
2028  frag->page_offset +
2029  offset - start, to,
2030  copy, 0);
2031  kunmap_atomic(vaddr);
2032  csum = csum_block_add(csum, csum2, pos);
2033  if (!(len -= copy))
2034  return csum;
2035  offset += copy;
2036  to += copy;
2037  pos += copy;
2038  }
2039  start = end;
2040  }
2041 
2042  skb_walk_frags(skb, frag_iter) {
2043  __wsum csum2;
2044  int end;
2045 
2046  WARN_ON(start > offset + len);
2047 
2048  end = start + frag_iter->len;
2049  if ((copy = end - offset) > 0) {
2050  if (copy > len)
2051  copy = len;
2052  csum2 = skb_copy_and_csum_bits(frag_iter,
2053  offset - start,
2054  to, copy, 0);
2055  csum = csum_block_add(csum, csum2, pos);
2056  if ((len -= copy) == 0)
2057  return csum;
2058  offset += copy;
2059  to += copy;
2060  pos += copy;
2061  }
2062  start = end;
2063  }
2064  BUG_ON(len);
2065  return csum;
2066 }
2068 
2069 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2070 {
2071  __wsum csum;
2072  long csstart;
2073 
2074  if (skb->ip_summed == CHECKSUM_PARTIAL)
2075  csstart = skb_checksum_start_offset(skb);
2076  else
2077  csstart = skb_headlen(skb);
2078 
2079  BUG_ON(csstart > skb_headlen(skb));
2080 
2081  skb_copy_from_linear_data(skb, to, csstart);
2082 
2083  csum = 0;
2084  if (csstart != skb->len)
2085  csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2086  skb->len - csstart, 0);
2087 
2088  if (skb->ip_summed == CHECKSUM_PARTIAL) {
2089  long csstuff = csstart + skb->csum_offset;
2090 
2091  *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2092  }
2093 }
2095 
2105 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2106 {
2107  unsigned long flags;
2108  struct sk_buff *result;
2109 
2110  spin_lock_irqsave(&list->lock, flags);
2111  result = __skb_dequeue(list);
2112  spin_unlock_irqrestore(&list->lock, flags);
2113  return result;
2114 }
2116 
2126 {
2127  unsigned long flags;
2128  struct sk_buff *result;
2129 
2130  spin_lock_irqsave(&list->lock, flags);
2131  result = __skb_dequeue_tail(list);
2132  spin_unlock_irqrestore(&list->lock, flags);
2133  return result;
2134 }
2136 
2145 void skb_queue_purge(struct sk_buff_head *list)
2146 {
2147  struct sk_buff *skb;
2148  while ((skb = skb_dequeue(list)) != NULL)
2149  kfree_skb(skb);
2150 }
2152 
2164 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2165 {
2166  unsigned long flags;
2167 
2168  spin_lock_irqsave(&list->lock, flags);
2169  __skb_queue_head(list, newsk);
2170  spin_unlock_irqrestore(&list->lock, flags);
2171 }
2173 
2185 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2186 {
2187  unsigned long flags;
2188 
2189  spin_lock_irqsave(&list->lock, flags);
2190  __skb_queue_tail(list, newsk);
2191  spin_unlock_irqrestore(&list->lock, flags);
2192 }
2194 
2205 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2206 {
2207  unsigned long flags;
2208 
2209  spin_lock_irqsave(&list->lock, flags);
2210  __skb_unlink(skb, list);
2211  spin_unlock_irqrestore(&list->lock, flags);
2212 }
2214 
2225 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2226 {
2227  unsigned long flags;
2228 
2229  spin_lock_irqsave(&list->lock, flags);
2230  __skb_queue_after(list, old, newsk);
2231  spin_unlock_irqrestore(&list->lock, flags);
2232 }
2234 
2247 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2248 {
2249  unsigned long flags;
2250 
2251  spin_lock_irqsave(&list->lock, flags);
2252  __skb_insert(newsk, old->prev, old, list);
2253  spin_unlock_irqrestore(&list->lock, flags);
2254 }
2256 
2257 static inline void skb_split_inside_header(struct sk_buff *skb,
2258  struct sk_buff* skb1,
2259  const u32 len, const int pos)
2260 {
2261  int i;
2262 
2263  skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2264  pos - len);
2265  /* And move data appendix as is. */
2266  for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2267  skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2268 
2269  skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2270  skb_shinfo(skb)->nr_frags = 0;
2271  skb1->data_len = skb->data_len;
2272  skb1->len += skb1->data_len;
2273  skb->data_len = 0;
2274  skb->len = len;
2275  skb_set_tail_pointer(skb, len);
2276 }
2277 
2278 static inline void skb_split_no_header(struct sk_buff *skb,
2279  struct sk_buff* skb1,
2280  const u32 len, int pos)
2281 {
2282  int i, k = 0;
2283  const int nfrags = skb_shinfo(skb)->nr_frags;
2284 
2285  skb_shinfo(skb)->nr_frags = 0;
2286  skb1->len = skb1->data_len = skb->len - len;
2287  skb->len = len;
2288  skb->data_len = len - pos;
2289 
2290  for (i = 0; i < nfrags; i++) {
2291  int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2292 
2293  if (pos + size > len) {
2294  skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2295 
2296  if (pos < len) {
2297  /* Split frag.
2298  * We have two variants in this case:
2299  * 1. Move all the frag to the second
2300  * part, if it is possible. F.e.
2301  * this approach is mandatory for TUX,
2302  * where splitting is expensive.
2303  * 2. Split is accurately. We make this.
2304  */
2305  skb_frag_ref(skb, i);
2306  skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2307  skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2308  skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2309  skb_shinfo(skb)->nr_frags++;
2310  }
2311  k++;
2312  } else
2313  skb_shinfo(skb)->nr_frags++;
2314  pos += size;
2315  }
2316  skb_shinfo(skb1)->nr_frags = k;
2317 }
2318 
2325 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2326 {
2327  int pos = skb_headlen(skb);
2328 
2329  if (len < pos) /* Split line is inside header. */
2330  skb_split_inside_header(skb, skb1, len, pos);
2331  else /* Second chunk has no header, nothing to copy. */
2332  skb_split_no_header(skb, skb1, len, pos);
2333 }
2335 
2336 /* Shifting from/to a cloned skb is a no-go.
2337  *
2338  * Caller cannot keep skb_shinfo related pointers past calling here!
2339  */
2340 static int skb_prepare_for_shift(struct sk_buff *skb)
2341 {
2342  return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2343 }
2344 
2363 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2364 {
2365  int from, to, merge, todo;
2366  struct skb_frag_struct *fragfrom, *fragto;
2367 
2368  BUG_ON(shiftlen > skb->len);
2369  BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2370 
2371  todo = shiftlen;
2372  from = 0;
2373  to = skb_shinfo(tgt)->nr_frags;
2374  fragfrom = &skb_shinfo(skb)->frags[from];
2375 
2376  /* Actual merge is delayed until the point when we know we can
2377  * commit all, so that we don't have to undo partial changes
2378  */
2379  if (!to ||
2380  !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2381  fragfrom->page_offset)) {
2382  merge = -1;
2383  } else {
2384  merge = to - 1;
2385 
2386  todo -= skb_frag_size(fragfrom);
2387  if (todo < 0) {
2388  if (skb_prepare_for_shift(skb) ||
2389  skb_prepare_for_shift(tgt))
2390  return 0;
2391 
2392  /* All previous frag pointers might be stale! */
2393  fragfrom = &skb_shinfo(skb)->frags[from];
2394  fragto = &skb_shinfo(tgt)->frags[merge];
2395 
2396  skb_frag_size_add(fragto, shiftlen);
2397  skb_frag_size_sub(fragfrom, shiftlen);
2398  fragfrom->page_offset += shiftlen;
2399 
2400  goto onlymerged;
2401  }
2402 
2403  from++;
2404  }
2405 
2406  /* Skip full, not-fitting skb to avoid expensive operations */
2407  if ((shiftlen == skb->len) &&
2408  (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2409  return 0;
2410 
2411  if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2412  return 0;
2413 
2414  while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2415  if (to == MAX_SKB_FRAGS)
2416  return 0;
2417 
2418  fragfrom = &skb_shinfo(skb)->frags[from];
2419  fragto = &skb_shinfo(tgt)->frags[to];
2420 
2421  if (todo >= skb_frag_size(fragfrom)) {
2422  *fragto = *fragfrom;
2423  todo -= skb_frag_size(fragfrom);
2424  from++;
2425  to++;
2426 
2427  } else {
2428  __skb_frag_ref(fragfrom);
2429  fragto->page = fragfrom->page;
2430  fragto->page_offset = fragfrom->page_offset;
2431  skb_frag_size_set(fragto, todo);
2432 
2433  fragfrom->page_offset += todo;
2434  skb_frag_size_sub(fragfrom, todo);
2435  todo = 0;
2436 
2437  to++;
2438  break;
2439  }
2440  }
2441 
2442  /* Ready to "commit" this state change to tgt */
2443  skb_shinfo(tgt)->nr_frags = to;
2444 
2445  if (merge >= 0) {
2446  fragfrom = &skb_shinfo(skb)->frags[0];
2447  fragto = &skb_shinfo(tgt)->frags[merge];
2448 
2449  skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2450  __skb_frag_unref(fragfrom);
2451  }
2452 
2453  /* Reposition in the original skb */
2454  to = 0;
2455  while (from < skb_shinfo(skb)->nr_frags)
2456  skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2457  skb_shinfo(skb)->nr_frags = to;
2458 
2459  BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2460 
2461 onlymerged:
2462  /* Most likely the tgt won't ever need its checksum anymore, skb on
2463  * the other hand might need it if it needs to be resent
2464  */
2465  tgt->ip_summed = CHECKSUM_PARTIAL;
2466  skb->ip_summed = CHECKSUM_PARTIAL;
2467 
2468  /* Yak, is it really working this way? Some helper please? */
2469  skb->len -= shiftlen;
2470  skb->data_len -= shiftlen;
2471  skb->truesize -= shiftlen;
2472  tgt->len += shiftlen;
2473  tgt->data_len += shiftlen;
2474  tgt->truesize += shiftlen;
2475 
2476  return shiftlen;
2477 }
2478 
2489 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2490  unsigned int to, struct skb_seq_state *st)
2491 {
2492  st->lower_offset = from;
2493  st->upper_offset = to;
2494  st->root_skb = st->cur_skb = skb;
2495  st->frag_idx = st->stepped_offset = 0;
2496  st->frag_data = NULL;
2497 }
2499 
2525 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2526  struct skb_seq_state *st)
2527 {
2528  unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2529  skb_frag_t *frag;
2530 
2531  if (unlikely(abs_offset >= st->upper_offset))
2532  return 0;
2533 
2534 next_skb:
2535  block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2536 
2537  if (abs_offset < block_limit && !st->frag_data) {
2538  *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2539  return block_limit - abs_offset;
2540  }
2541 
2542  if (st->frag_idx == 0 && !st->frag_data)
2543  st->stepped_offset += skb_headlen(st->cur_skb);
2544 
2545  while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2546  frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2547  block_limit = skb_frag_size(frag) + st->stepped_offset;
2548 
2549  if (abs_offset < block_limit) {
2550  if (!st->frag_data)
2551  st->frag_data = kmap_atomic(skb_frag_page(frag));
2552 
2553  *data = (u8 *) st->frag_data + frag->page_offset +
2554  (abs_offset - st->stepped_offset);
2555 
2556  return block_limit - abs_offset;
2557  }
2558 
2559  if (st->frag_data) {
2560  kunmap_atomic(st->frag_data);
2561  st->frag_data = NULL;
2562  }
2563 
2564  st->frag_idx++;
2565  st->stepped_offset += skb_frag_size(frag);
2566  }
2567 
2568  if (st->frag_data) {
2569  kunmap_atomic(st->frag_data);
2570  st->frag_data = NULL;
2571  }
2572 
2573  if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2574  st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2575  st->frag_idx = 0;
2576  goto next_skb;
2577  } else if (st->cur_skb->next) {
2578  st->cur_skb = st->cur_skb->next;
2579  st->frag_idx = 0;
2580  goto next_skb;
2581  }
2582 
2583  return 0;
2584 }
2586 
2594 void skb_abort_seq_read(struct skb_seq_state *st)
2595 {
2596  if (st->frag_data)
2597  kunmap_atomic(st->frag_data);
2598 }
2600 
2601 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2602 
2603 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2604  struct ts_config *conf,
2605  struct ts_state *state)
2606 {
2607  return skb_seq_read(offset, text, TS_SKB_CB(state));
2608 }
2609 
2610 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2611 {
2612  skb_abort_seq_read(TS_SKB_CB(state));
2613 }
2614 
2628 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2629  unsigned int to, struct ts_config *config,
2630  struct ts_state *state)
2631 {
2632  unsigned int ret;
2633 
2634  config->get_next_block = skb_ts_get_next_block;
2635  config->finish = skb_ts_finish;
2636 
2637  skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2638 
2639  ret = textsearch_find(config, state);
2640  return (ret <= to - from ? ret : UINT_MAX);
2641 }
2643 
2655 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2656  int (*getfrag)(void *from, char *to, int offset,
2657  int len, int odd, struct sk_buff *skb),
2658  void *from, int length)
2659 {
2660  int frg_cnt = 0;
2661  skb_frag_t *frag = NULL;
2662  struct page *page = NULL;
2663  int copy, left;
2664  int offset = 0;
2665  int ret;
2666 
2667  do {
2668  /* Return error if we don't have space for new frag */
2669  frg_cnt = skb_shinfo(skb)->nr_frags;
2670  if (frg_cnt >= MAX_SKB_FRAGS)
2671  return -EFAULT;
2672 
2673  /* allocate a new page for next frag */
2674  page = alloc_pages(sk->sk_allocation, 0);
2675 
2676  /* If alloc_page fails just return failure and caller will
2677  * free previous allocated pages by doing kfree_skb()
2678  */
2679  if (page == NULL)
2680  return -ENOMEM;
2681 
2682  /* initialize the next frag */
2683  skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2684  skb->truesize += PAGE_SIZE;
2686 
2687  /* get the new initialized frag */
2688  frg_cnt = skb_shinfo(skb)->nr_frags;
2689  frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2690 
2691  /* copy the user data to page */
2692  left = PAGE_SIZE - frag->page_offset;
2693  copy = (length > left)? left : length;
2694 
2695  ret = getfrag(from, skb_frag_address(frag) + skb_frag_size(frag),
2696  offset, copy, 0, skb);
2697  if (ret < 0)
2698  return -EFAULT;
2699 
2700  /* copy was successful so update the size parameters */
2701  skb_frag_size_add(frag, copy);
2702  skb->len += copy;
2703  skb->data_len += copy;
2704  offset += copy;
2705  length -= copy;
2706 
2707  } while (length > 0);
2708 
2709  return 0;
2710 }
2712 
2724 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2725 {
2726  BUG_ON(len > skb->len);
2727  skb->len -= len;
2728  BUG_ON(skb->len < skb->data_len);
2729  skb_postpull_rcsum(skb, skb->data, len);
2730  return skb->data += len;
2731 }
2733 
2744 {
2745  struct sk_buff *segs = NULL;
2746  struct sk_buff *tail = NULL;
2747  struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2748  unsigned int mss = skb_shinfo(skb)->gso_size;
2749  unsigned int doffset = skb->data - skb_mac_header(skb);
2750  unsigned int offset = doffset;
2751  unsigned int headroom;
2752  unsigned int len;
2753  int sg = !!(features & NETIF_F_SG);
2754  int nfrags = skb_shinfo(skb)->nr_frags;
2755  int err = -ENOMEM;
2756  int i = 0;
2757  int pos;
2758 
2759  __skb_push(skb, doffset);
2760  headroom = skb_headroom(skb);
2761  pos = skb_headlen(skb);
2762 
2763  do {
2764  struct sk_buff *nskb;
2765  skb_frag_t *frag;
2766  int hsize;
2767  int size;
2768 
2769  len = skb->len - offset;
2770  if (len > mss)
2771  len = mss;
2772 
2773  hsize = skb_headlen(skb) - offset;
2774  if (hsize < 0)
2775  hsize = 0;
2776  if (hsize > len || !sg)
2777  hsize = len;
2778 
2779  if (!hsize && i >= nfrags) {
2780  BUG_ON(fskb->len != len);
2781 
2782  pos += len;
2783  nskb = skb_clone(fskb, GFP_ATOMIC);
2784  fskb = fskb->next;
2785 
2786  if (unlikely(!nskb))
2787  goto err;
2788 
2789  hsize = skb_end_offset(nskb);
2790  if (skb_cow_head(nskb, doffset + headroom)) {
2791  kfree_skb(nskb);
2792  goto err;
2793  }
2794 
2795  nskb->truesize += skb_end_offset(nskb) - hsize;
2796  skb_release_head_state(nskb);
2797  __skb_push(nskb, doffset);
2798  } else {
2799  nskb = __alloc_skb(hsize + doffset + headroom,
2800  GFP_ATOMIC, skb_alloc_rx_flag(skb),
2801  NUMA_NO_NODE);
2802 
2803  if (unlikely(!nskb))
2804  goto err;
2805 
2806  skb_reserve(nskb, headroom);
2807  __skb_put(nskb, doffset);
2808  }
2809 
2810  if (segs)
2811  tail->next = nskb;
2812  else
2813  segs = nskb;
2814  tail = nskb;
2815 
2816  __copy_skb_header(nskb, skb);
2817  nskb->mac_len = skb->mac_len;
2818 
2819  /* nskb and skb might have different headroom */
2820  if (nskb->ip_summed == CHECKSUM_PARTIAL)
2821  nskb->csum_start += skb_headroom(nskb) - headroom;
2822 
2823  skb_reset_mac_header(nskb);
2824  skb_set_network_header(nskb, skb->mac_len);
2825  nskb->transport_header = (nskb->network_header +
2826  skb_network_header_len(skb));
2827  skb_copy_from_linear_data(skb, nskb->data, doffset);
2828 
2829  if (fskb != skb_shinfo(skb)->frag_list)
2830  continue;
2831 
2832  if (!sg) {
2833  nskb->ip_summed = CHECKSUM_NONE;
2834  nskb->csum = skb_copy_and_csum_bits(skb, offset,
2835  skb_put(nskb, len),
2836  len, 0);
2837  continue;
2838  }
2839 
2840  frag = skb_shinfo(nskb)->frags;
2841 
2842  skb_copy_from_linear_data_offset(skb, offset,
2843  skb_put(nskb, hsize), hsize);
2844 
2845  while (pos < offset + len && i < nfrags) {
2846  *frag = skb_shinfo(skb)->frags[i];
2847  __skb_frag_ref(frag);
2848  size = skb_frag_size(frag);
2849 
2850  if (pos < offset) {
2851  frag->page_offset += offset - pos;
2852  skb_frag_size_sub(frag, offset - pos);
2853  }
2854 
2855  skb_shinfo(nskb)->nr_frags++;
2856 
2857  if (pos + size <= offset + len) {
2858  i++;
2859  pos += size;
2860  } else {
2861  skb_frag_size_sub(frag, pos + size - (offset + len));
2862  goto skip_fraglist;
2863  }
2864 
2865  frag++;
2866  }
2867 
2868  if (pos < offset + len) {
2869  struct sk_buff *fskb2 = fskb;
2870 
2871  BUG_ON(pos + fskb->len != offset + len);
2872 
2873  pos += fskb->len;
2874  fskb = fskb->next;
2875 
2876  if (fskb2->next) {
2877  fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2878  if (!fskb2)
2879  goto err;
2880  } else
2881  skb_get(fskb2);
2882 
2883  SKB_FRAG_ASSERT(nskb);
2884  skb_shinfo(nskb)->frag_list = fskb2;
2885  }
2886 
2887 skip_fraglist:
2888  nskb->data_len = len - hsize;
2889  nskb->len += nskb->data_len;
2890  nskb->truesize += nskb->data_len;
2891  } while ((offset += len) < skb->len);
2892 
2893  return segs;
2894 
2895 err:
2896  while ((skb = segs)) {
2897  segs = skb->next;
2898  kfree_skb(skb);
2899  }
2900  return ERR_PTR(err);
2901 }
2903 
2904 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2905 {
2906  struct sk_buff *p = *head;
2907  struct sk_buff *nskb;
2908  struct skb_shared_info *skbinfo = skb_shinfo(skb);
2909  struct skb_shared_info *pinfo = skb_shinfo(p);
2910  unsigned int headroom;
2911  unsigned int len = skb_gro_len(skb);
2912  unsigned int offset = skb_gro_offset(skb);
2913  unsigned int headlen = skb_headlen(skb);
2914  unsigned int delta_truesize;
2915 
2916  if (p->len + len >= 65536)
2917  return -E2BIG;
2918 
2919  if (pinfo->frag_list)
2920  goto merge;
2921  else if (headlen <= offset) {
2922  skb_frag_t *frag;
2923  skb_frag_t *frag2;
2924  int i = skbinfo->nr_frags;
2925  int nr_frags = pinfo->nr_frags + i;
2926 
2927  offset -= headlen;
2928 
2929  if (nr_frags > MAX_SKB_FRAGS)
2930  return -E2BIG;
2931 
2932  pinfo->nr_frags = nr_frags;
2933  skbinfo->nr_frags = 0;
2934 
2935  frag = pinfo->frags + nr_frags;
2936  frag2 = skbinfo->frags + i;
2937  do {
2938  *--frag = *--frag2;
2939  } while (--i);
2940 
2941  frag->page_offset += offset;
2942  skb_frag_size_sub(frag, offset);
2943 
2944  /* all fragments truesize : remove (head size + sk_buff) */
2945  delta_truesize = skb->truesize -
2946  SKB_TRUESIZE(skb_end_offset(skb));
2947 
2948  skb->truesize -= skb->data_len;
2949  skb->len -= skb->data_len;
2950  skb->data_len = 0;
2951 
2952  NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
2953  goto done;
2954  } else if (skb->head_frag) {
2955  int nr_frags = pinfo->nr_frags;
2956  skb_frag_t *frag = pinfo->frags + nr_frags;
2957  struct page *page = virt_to_head_page(skb->head);
2958  unsigned int first_size = headlen - offset;
2959  unsigned int first_offset;
2960 
2961  if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
2962  return -E2BIG;
2963 
2964  first_offset = skb->data -
2965  (unsigned char *)page_address(page) +
2966  offset;
2967 
2968  pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
2969 
2970  frag->page.p = page;
2971  frag->page_offset = first_offset;
2972  skb_frag_size_set(frag, first_size);
2973 
2974  memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
2975  /* We dont need to clear skbinfo->nr_frags here */
2976 
2977  delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
2979  goto done;
2980  } else if (skb_gro_len(p) != pinfo->gso_size)
2981  return -E2BIG;
2982 
2983  headroom = skb_headroom(p);
2984  nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2985  if (unlikely(!nskb))
2986  return -ENOMEM;
2987 
2988  __copy_skb_header(nskb, p);
2989  nskb->mac_len = p->mac_len;
2990 
2991  skb_reserve(nskb, headroom);
2992  __skb_put(nskb, skb_gro_offset(p));
2993 
2994  skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2995  skb_set_network_header(nskb, skb_network_offset(p));
2996  skb_set_transport_header(nskb, skb_transport_offset(p));
2997 
2998  __skb_pull(p, skb_gro_offset(p));
2999  memcpy(skb_mac_header(nskb), skb_mac_header(p),
3000  p->data - skb_mac_header(p));
3001 
3002  *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
3003  skb_shinfo(nskb)->frag_list = p;
3004  skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3005  pinfo->gso_size = 0;
3006  skb_header_release(p);
3007  NAPI_GRO_CB(nskb)->last = p;
3008 
3009  nskb->data_len += p->len;
3010  nskb->truesize += p->truesize;
3011  nskb->len += p->len;
3012 
3013  *head = nskb;
3014  nskb->next = p->next;
3015  p->next = NULL;
3016 
3017  p = nskb;
3018 
3019 merge:
3020  delta_truesize = skb->truesize;
3021  if (offset > headlen) {
3022  unsigned int eat = offset - headlen;
3023 
3024  skbinfo->frags[0].page_offset += eat;
3025  skb_frag_size_sub(&skbinfo->frags[0], eat);
3026  skb->data_len -= eat;
3027  skb->len -= eat;
3028  offset = headlen;
3029  }
3030 
3031  __skb_pull(skb, offset);
3032 
3033  NAPI_GRO_CB(p)->last->next = skb;
3034  NAPI_GRO_CB(p)->last = skb;
3035  skb_header_release(skb);
3036 
3037 done:
3038  NAPI_GRO_CB(p)->count++;
3039  p->data_len += len;
3040  p->truesize += delta_truesize;
3041  p->len += len;
3042 
3043  NAPI_GRO_CB(skb)->same_flow = 1;
3044  return 0;
3045 }
3047 
3048 void __init skb_init(void)
3049 {
3050  skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3051  sizeof(struct sk_buff),
3052  0,
3054  NULL);
3055  skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3056  (2*sizeof(struct sk_buff)) +
3057  sizeof(atomic_t),
3058  0,
3060  NULL);
3061 }
3062 
3073 static int
3074 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3075 {
3076  int start = skb_headlen(skb);
3077  int i, copy = start - offset;
3078  struct sk_buff *frag_iter;
3079  int elt = 0;
3080 
3081  if (copy > 0) {
3082  if (copy > len)
3083  copy = len;
3084  sg_set_buf(sg, skb->data + offset, copy);
3085  elt++;
3086  if ((len -= copy) == 0)
3087  return elt;
3088  offset += copy;
3089  }
3090 
3091  for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3092  int end;
3093 
3094  WARN_ON(start > offset + len);
3095 
3096  end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3097  if ((copy = end - offset) > 0) {
3098  skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3099 
3100  if (copy > len)
3101  copy = len;
3102  sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3103  frag->page_offset+offset-start);
3104  elt++;
3105  if (!(len -= copy))
3106  return elt;
3107  offset += copy;
3108  }
3109  start = end;
3110  }
3111 
3112  skb_walk_frags(skb, frag_iter) {
3113  int end;
3114 
3115  WARN_ON(start > offset + len);
3116 
3117  end = start + frag_iter->len;
3118  if ((copy = end - offset) > 0) {
3119  if (copy > len)
3120  copy = len;
3121  elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3122  copy);
3123  if ((len -= copy) == 0)
3124  return elt;
3125  offset += copy;
3126  }
3127  start = end;
3128  }
3129  BUG_ON(len);
3130  return elt;
3131 }
3132 
3133 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3134 {
3135  int nsg = __skb_to_sgvec(skb, sg, offset, len);
3136 
3137  sg_mark_end(&sg[nsg - 1]);
3138 
3139  return nsg;
3140 }
3142 
3160 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3161 {
3162  int copyflag;
3163  int elt;
3164  struct sk_buff *skb1, **skb_p;
3165 
3166  /* If skb is cloned or its head is paged, reallocate
3167  * head pulling out all the pages (pages are considered not writable
3168  * at the moment even if they are anonymous).
3169  */
3170  if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3171  __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3172  return -ENOMEM;
3173 
3174  /* Easy case. Most of packets will go this way. */
3175  if (!skb_has_frag_list(skb)) {
3176  /* A little of trouble, not enough of space for trailer.
3177  * This should not happen, when stack is tuned to generate
3178  * good frames. OK, on miss we reallocate and reserve even more
3179  * space, 128 bytes is fair. */
3180 
3181  if (skb_tailroom(skb) < tailbits &&
3182  pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3183  return -ENOMEM;
3184 
3185  /* Voila! */
3186  *trailer = skb;
3187  return 1;
3188  }
3189 
3190  /* Misery. We are in troubles, going to mincer fragments... */
3191 
3192  elt = 1;
3193  skb_p = &skb_shinfo(skb)->frag_list;
3194  copyflag = 0;
3195 
3196  while ((skb1 = *skb_p) != NULL) {
3197  int ntail = 0;
3198 
3199  /* The fragment is partially pulled by someone,
3200  * this can happen on input. Copy it and everything
3201  * after it. */
3202 
3203  if (skb_shared(skb1))
3204  copyflag = 1;
3205 
3206  /* If the skb is the last, worry about trailer. */
3207 
3208  if (skb1->next == NULL && tailbits) {
3209  if (skb_shinfo(skb1)->nr_frags ||
3210  skb_has_frag_list(skb1) ||
3211  skb_tailroom(skb1) < tailbits)
3212  ntail = tailbits + 128;
3213  }
3214 
3215  if (copyflag ||
3216  skb_cloned(skb1) ||
3217  ntail ||
3218  skb_shinfo(skb1)->nr_frags ||
3219  skb_has_frag_list(skb1)) {
3220  struct sk_buff *skb2;
3221 
3222  /* Fuck, we are miserable poor guys... */
3223  if (ntail == 0)
3224  skb2 = skb_copy(skb1, GFP_ATOMIC);
3225  else
3226  skb2 = skb_copy_expand(skb1,
3227  skb_headroom(skb1),
3228  ntail,
3229  GFP_ATOMIC);
3230  if (unlikely(skb2 == NULL))
3231  return -ENOMEM;
3232 
3233  if (skb1->sk)
3234  skb_set_owner_w(skb2, skb1->sk);
3235 
3236  /* Looking around. Are we still alive?
3237  * OK, link new skb, drop old one */
3238 
3239  skb2->next = skb1->next;
3240  *skb_p = skb2;
3241  kfree_skb(skb1);
3242  skb1 = skb2;
3243  }
3244  elt++;
3245  *trailer = skb1;
3246  skb_p = &skb1->next;
3247  }
3248 
3249  return elt;
3250 }
3252 
3253 static void sock_rmem_free(struct sk_buff *skb)
3254 {
3255  struct sock *sk = skb->sk;
3256 
3257  atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3258 }
3259 
3260 /*
3261  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3262  */
3263 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3264 {
3265  int len = skb->len;
3266 
3267  if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3268  (unsigned int)sk->sk_rcvbuf)
3269  return -ENOMEM;
3270 
3271  skb_orphan(skb);
3272  skb->sk = sk;
3273  skb->destructor = sock_rmem_free;
3274  atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3275 
3276  /* before exiting rcu section, make sure dst is refcounted */
3277  skb_dst_force(skb);
3278 
3279  skb_queue_tail(&sk->sk_error_queue, skb);
3280  if (!sock_flag(sk, SOCK_DEAD))
3281  sk->sk_data_ready(sk, len);
3282  return 0;
3283 }
3285 
3286 void skb_tstamp_tx(struct sk_buff *orig_skb,
3287  struct skb_shared_hwtstamps *hwtstamps)
3288 {
3289  struct sock *sk = orig_skb->sk;
3290  struct sock_exterr_skb *serr;
3291  struct sk_buff *skb;
3292  int err;
3293 
3294  if (!sk)
3295  return;
3296 
3297  skb = skb_clone(orig_skb, GFP_ATOMIC);
3298  if (!skb)
3299  return;
3300 
3301  if (hwtstamps) {
3302  *skb_hwtstamps(skb) =
3303  *hwtstamps;
3304  } else {
3305  /*
3306  * no hardware time stamps available,
3307  * so keep the shared tx_flags and only
3308  * store software time stamp
3309  */
3310  skb->tstamp = ktime_get_real();
3311  }
3312 
3313  serr = SKB_EXT_ERR(skb);
3314  memset(serr, 0, sizeof(*serr));
3315  serr->ee.ee_errno = ENOMSG;
3316  serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3317 
3318  err = sock_queue_err_skb(sk, skb);
3319 
3320  if (err)
3321  kfree_skb(skb);
3322 }
3324 
3325 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3326 {
3327  struct sock *sk = skb->sk;
3328  struct sock_exterr_skb *serr;
3329  int err;
3330 
3331  skb->wifi_acked_valid = 1;
3332  skb->wifi_acked = acked;
3333 
3334  serr = SKB_EXT_ERR(skb);
3335  memset(serr, 0, sizeof(*serr));
3336  serr->ee.ee_errno = ENOMSG;
3337  serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3338 
3339  err = sock_queue_err_skb(sk, skb);
3340  if (err)
3341  kfree_skb(skb);
3342 }
3344 
3345 
3358 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3359 {
3360  if (unlikely(start > skb_headlen(skb)) ||
3361  unlikely((int)start + off > skb_headlen(skb) - 2)) {
3362  net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3363  start, off, skb_headlen(skb));
3364  return false;
3365  }
3366  skb->ip_summed = CHECKSUM_PARTIAL;
3367  skb->csum_start = skb_headroom(skb) + start;
3368  skb->csum_offset = off;
3369  return true;
3370 }
3372 
3373 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3374 {
3375  net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3376  skb->dev->name);
3377 }
3379 
3380 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3381 {
3382  if (head_stolen) {
3383  skb_release_head_state(skb);
3384  kmem_cache_free(skbuff_head_cache, skb);
3385  } else {
3386  __kfree_skb(skb);
3387  }
3388 }
3390 
3398 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3399  bool *fragstolen, int *delta_truesize)
3400 {
3401  int i, delta, len = from->len;
3402 
3403  *fragstolen = false;
3404 
3405  if (skb_cloned(to))
3406  return false;
3407 
3408  if (len <= skb_tailroom(to)) {
3409  BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3410  *delta_truesize = 0;
3411  return true;
3412  }
3413 
3414  if (skb_has_frag_list(to) || skb_has_frag_list(from))
3415  return false;
3416 
3417  if (skb_headlen(from) != 0) {
3418  struct page *page;
3419  unsigned int offset;
3420 
3421  if (skb_shinfo(to)->nr_frags +
3422  skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3423  return false;
3424 
3425  if (skb_head_is_locked(from))
3426  return false;
3427 
3428  delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3429 
3430  page = virt_to_head_page(from->head);
3431  offset = from->data - (unsigned char *)page_address(page);
3432 
3433  skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3434  page, offset, skb_headlen(from));
3435  *fragstolen = true;
3436  } else {
3437  if (skb_shinfo(to)->nr_frags +
3438  skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3439  return false;
3440 
3441  delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3442  }
3443 
3444  WARN_ON_ONCE(delta < len);
3445 
3446  memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3447  skb_shinfo(from)->frags,
3448  skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3449  skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3450 
3451  if (!skb_cloned(from))
3452  skb_shinfo(from)->nr_frags = 0;
3453 
3454  /* if the skb is not cloned this does nothing
3455  * since we set nr_frags to 0.
3456  */
3457  for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3458  skb_frag_ref(from, i);
3459 
3460  to->truesize += delta;
3461  to->len += len;
3462  to->data_len += len;
3463 
3464  *delta_truesize = delta;
3465  return true;
3466 }