14 #include <linux/module.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
25 #include <linux/mempolicy.h>
26 #include <linux/ctype.h>
33 #include <linux/prefetch.h>
115 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
116 SLAB_TRACE | SLAB_DEBUG_FREE)
118 static inline int kmem_cache_debug(
struct kmem_cache *
s)
120 #ifdef CONFIG_SLUB_DEBUG
136 #undef SLUB_RESILIENCY_TEST
139 #undef SLUB_DEBUG_CMPXCHG
145 #define MIN_PARTIAL 5
152 #define MAX_PARTIAL 10
154 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
155 SLAB_POISON | SLAB_STORE_USER)
162 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
167 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
168 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
171 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
172 SLAB_CACHE_DMA | SLAB_NOTRACK)
175 #define OO_MASK ((1 << OO_SHIFT) - 1)
176 #define MAX_OBJS_PER_PAGE 32767
179 #define __OBJECT_POISON 0x80000000UL
180 #define __CMPXCHG_DOUBLE 0x40000000UL
182 static int kmem_size =
sizeof(
struct kmem_cache);
191 #define TRACK_ADDRS_COUNT 16
194 #ifdef CONFIG_STACKTRACE
205 static int sysfs_slab_add(
struct kmem_cache *);
206 static int sysfs_slab_alias(
struct kmem_cache *,
const char *);
207 static void sysfs_slab_remove(
struct kmem_cache *);
210 static inline int sysfs_slab_add(
struct kmem_cache *
s) {
return 0; }
211 static inline int sysfs_slab_alias(
struct kmem_cache *
s,
const char *
p)
213 static inline void sysfs_slab_remove(
struct kmem_cache *
s) { }
219 #ifdef CONFIG_SLUB_STATS
234 static inline int check_valid_pointer(
struct kmem_cache *
s,
235 struct page *
page,
const void *
object)
243 if (object < base || object >= base + page->
objects * s->
size ||
244 (
object - base) % s->
size) {
251 static inline void *get_freepointer(
struct kmem_cache *s,
void *
object)
253 return *(
void **)(
object + s->
offset);
256 static void prefetch_freepointer(
const struct kmem_cache *s,
void *
object)
261 static inline void *get_freepointer_safe(
struct kmem_cache *s,
void *
object)
265 #ifdef CONFIG_DEBUG_PAGEALLOC
268 p = get_freepointer(s,
object);
273 static inline void set_freepointer(
struct kmem_cache *s,
void *
object,
void *
fp)
275 *(
void **)(
object + s->
offset) =
fp;
279 #define for_each_object(__p, __s, __addr, __objects) \
280 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
284 static inline int slab_index(
void *p,
struct kmem_cache *s,
void *
addr)
286 return (p - addr) / s->
size;
289 static inline size_t slab_ksize(
const struct kmem_cache *s)
291 #ifdef CONFIG_SLUB_DEBUG
319 unsigned
long size,
int reserved)
322 (order <<
OO_SHIFT) + order_objects(order, size, reserved)
352 static inline bool __cmpxchg_double_slab(
struct kmem_cache *s,
struct page *page,
353 void *freelist_old,
unsigned long counters_old,
354 void *freelist_new,
unsigned long counters_new,
358 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
359 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
362 freelist_old, counters_old,
363 freelist_new, counters_new))
381 #ifdef SLUB_DEBUG_CMPXCHG
388 static inline bool cmpxchg_double_slab(
struct kmem_cache *s,
struct page *page,
389 void *freelist_old,
unsigned long counters_old,
390 void *freelist_new,
unsigned long counters_new,
393 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
394 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
397 freelist_old, counters_old,
398 freelist_new, counters_new))
421 #ifdef SLUB_DEBUG_CMPXCHG
428 #ifdef CONFIG_SLUB_DEBUG
435 static void get_map(
struct kmem_cache *s,
struct page *page,
unsigned long *
map)
440 for (p = page->
freelist; p; p = get_freepointer(s, p))
441 set_bit(slab_index(p, s, addr), map);
447 #ifdef CONFIG_SLUB_DEBUG_ON
453 static char *slub_debug_slabs;
459 static void print_section(
char *
text,
u8 *addr,
unsigned int length)
471 p =
object + s->
offset +
sizeof(
void *);
473 p =
object + s->
inuse;
478 static void set_track(
struct kmem_cache *s,
void *
object,
481 struct track *p = get_track(s,
object, alloc);
484 #ifdef CONFIG_STACKTRACE
485 struct stack_trace
trace;
488 trace.nr_entries = 0;
490 trace.entries = p->addrs;
495 if (
trace.nr_entries != 0 &&
510 static void init_tracking(
struct kmem_cache *s,
void *
object)
519 static void print_track(
const char *s,
struct track *
t)
526 #ifdef CONFIG_STACKTRACE
538 static void print_tracking(
struct kmem_cache *s,
void *
object)
543 print_track(
"Allocated", get_track(s,
object,
TRACK_ALLOC));
544 print_track(
"Freed", get_track(s,
object,
TRACK_FREE));
547 static void print_page_info(
struct page *page)
549 printk(
KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
563 "=====================================\n");
566 "-------------------------------------\n\n");
571 static void slab_fix(
struct kmem_cache *s,
char *fmt, ...)
582 static void print_trailer(
struct kmem_cache *s,
struct page *page,
u8 *p)
587 print_tracking(s, p);
589 print_page_info(page);
592 p, p - addr, get_freepointer(s, p));
595 print_section(
"Bytes b4 ", p - 16, 16);
604 off = s->
offset +
sizeof(
void *);
609 off += 2 *
sizeof(
struct track);
613 print_section(
"Padding ", p + off, s->
size - off);
618 static void object_err(
struct kmem_cache *s,
struct page *page,
621 slab_bug(s,
"%s", reason);
622 print_trailer(s, page,
object);
625 static void slab_err(
struct kmem_cache *s,
struct page *page,
const char *fmt, ...)
633 slab_bug(s,
"%s", buf);
634 print_page_info(page);
652 void *
from,
void *to)
654 slab_fix(s,
"Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
655 memset(from, data, to - from);
658 static int check_bytes_and_report(
struct kmem_cache *s,
struct page *page,
670 while (end > fault && end[-1] == value)
673 slab_bug(s,
"%s overwritten", what);
674 printk(
KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
675 fault, end - 1, fault[0], value);
676 print_trailer(s, page,
object);
678 restore_bytes(s, what, value, fault, end);
720 static int check_pad_bytes(
struct kmem_cache *s,
struct page *page,
u8 *p)
722 unsigned long off = s->
inuse;
726 off +=
sizeof(
void *);
730 off += 2 *
sizeof(
struct track);
735 return check_bytes_and_report(s, page, p,
"Object padding",
740 static int slab_pad_check(
struct kmem_cache *s,
struct page *page)
753 end = start + length;
754 remainder = length % s->
size;
764 slab_err(s, page,
"Padding overwritten. 0x%p-0x%p", fault, end - 1);
765 print_section(
"Padding ", end - remainder, remainder);
767 restore_bytes(s,
"slab padding",
POISON_INUSE, end - remainder, end);
771 static int check_object(
struct kmem_cache *s,
struct page *page,
772 void *
object,
u8 val)
778 if (!check_bytes_and_report(s, page,
object,
"Redzone",
783 check_bytes_and_report(s, page, p,
"Alignment padding",
790 (!check_bytes_and_report(s, page, p,
"Poison", p,
792 !check_bytes_and_report(s, page, p,
"Poison",
798 check_pad_bytes(s, page, p);
809 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
810 object_err(s, page, p,
"Freepointer corrupt");
816 set_freepointer(s, p,
NULL);
822 static int check_slab(
struct kmem_cache *s,
struct page *page)
828 if (!PageSlab(page)) {
829 slab_err(s, page,
"Not a valid slab page");
833 maxobj = order_objects(compound_order(page), s->
size, s->
reserved);
835 slab_err(s, page,
"objects %u > max %u",
840 slab_err(s, page,
"inuse %u > max %u",
845 slab_pad_check(s, page);
853 static int on_freelist(
struct kmem_cache *s,
struct page *page,
void *
search)
858 unsigned long max_objects;
861 while (fp && nr <= page->objects) {
864 if (!check_valid_pointer(s, page, fp)) {
866 object_err(s, page,
object,
867 "Freechain corrupt");
868 set_freepointer(s,
object,
NULL);
871 slab_err(s, page,
"Freepointer corrupt");
874 slab_fix(s,
"Freelist cleared");
880 fp = get_freepointer(s,
object);
884 max_objects = order_objects(compound_order(page), s->
size, s->
reserved);
888 if (page->
objects != max_objects) {
889 slab_err(s, page,
"Wrong number of objects. Found %d but "
890 "should be %d", page->
objects, max_objects);
892 slab_fix(s,
"Number of objects adjusted.");
895 slab_err(s, page,
"Wrong object count. Counter is %d but "
898 slab_fix(s,
"Object count adjusted.");
900 return search ==
NULL;
903 static void trace(
struct kmem_cache *s,
struct page *page,
void *
object,
909 alloc ?
"alloc" :
"free",
914 print_section(
"Object ", (
void *)
object, s->
object_size);
940 static inline void slab_free_hook(
struct kmem_cache *s,
void *
x)
942 kmemleak_free_recursive(x, s->
flags);
949 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
974 list_add(&page->
lru, &n->full);
980 static void remove_full(
struct kmem_cache *s,
struct page *page)
989 static inline unsigned long slabs_node(
struct kmem_cache *s,
int node)
993 return atomic_long_read(&n->nr_slabs);
998 return atomic_long_read(&n->nr_slabs);
1001 static inline void inc_slabs_node(
struct kmem_cache *s,
int node,
int objects)
1012 atomic_long_inc(&n->nr_slabs);
1013 atomic_long_add(objects, &n->total_objects);
1016 static inline void dec_slabs_node(
struct kmem_cache *s,
int node,
int objects)
1020 atomic_long_dec(&n->nr_slabs);
1021 atomic_long_sub(objects, &n->total_objects);
1025 static void setup_object_debug(
struct kmem_cache *s,
struct page *page,
1032 init_tracking(s,
object);
1036 void *
object,
unsigned long addr)
1038 if (!check_slab(s, page))
1041 if (!check_valid_pointer(s, page,
object)) {
1042 object_err(s, page,
object,
"Freelist Pointer check fails");
1052 trace(s, page,
object, 1);
1057 if (PageSlab(page)) {
1063 slab_fix(s,
"Marking all objects used");
1071 struct kmem_cache *s,
struct page *page,
void *
object,
1072 unsigned long addr,
unsigned long *flags)
1079 if (!check_slab(s, page))
1082 if (!check_valid_pointer(s, page,
object)) {
1083 slab_err(s, page,
"Invalid object pointer 0x%p",
object);
1087 if (on_freelist(s, page,
object)) {
1088 object_err(s, page,
object,
"Object already free");
1096 if (!PageSlab(page)) {
1097 slab_err(s, page,
"Attempt to free object(0x%p) "
1098 "outside of slab",
object);
1099 }
else if (!page->
slab) {
1101 "SLUB <none>: no slab for object 0x%p.\n",
1105 object_err(s, page,
object,
1106 "page slab pointer corrupt.");
1112 trace(s, page,
object, 0);
1124 spin_unlock_irqrestore(&n->
list_lock, *flags);
1125 slab_fix(s,
"Object at 0x%p not freed",
object);
1129 static int __init setup_slub_debug(
char *
str)
1132 if (*str++ !=
'=' || !*str)
1150 disable_higher_order_debug = 1;
1164 for (; *str && *str !=
','; str++) {
1186 "unknown. skipped\n", *str);
1192 slub_debug_slabs = str + 1;
1197 __setup(
"slub_debug", setup_slub_debug);
1199 static unsigned long kmem_cache_flags(
unsigned long object_size,
1200 unsigned long flags,
const char *
name,
1201 void (*ctor)(
void *))
1206 if (slub_debug && (!slub_debug_slabs ||
1207 !
strncmp(slub_debug_slabs, name,
strlen(slub_debug_slabs))))
1213 static inline void setup_object_debug(
struct kmem_cache *s,
1214 struct page *page,
void *
object) {}
1216 static inline int alloc_debug_processing(
struct kmem_cache *s,
1217 struct page *page,
void *
object,
unsigned long addr) {
return 0; }
1220 struct kmem_cache *s,
struct page *page,
void *
object,
1221 unsigned long addr,
unsigned long *flags) {
return NULL; }
1223 static inline int slab_pad_check(
struct kmem_cache *s,
struct page *page)
1225 static inline int check_object(
struct kmem_cache *s,
struct page *page,
1226 void *
object,
u8 val) {
return 1; }
1228 struct page *page) {}
1229 static inline void remove_full(
struct kmem_cache *s,
struct page *page) {}
1230 static inline unsigned long kmem_cache_flags(
unsigned long object_size,
1231 unsigned long flags,
const char *name,
1232 void (*ctor)(
void *))
1236 #define slub_debug 0
1238 #define disable_higher_order_debug 0
1240 static inline unsigned long slabs_node(
struct kmem_cache *s,
int node)
1244 static inline void inc_slabs_node(
struct kmem_cache *s,
int node,
1246 static inline void dec_slabs_node(
struct kmem_cache *s,
int node,
1249 static inline int slab_pre_alloc_hook(
struct kmem_cache *s,
gfp_t flags)
1252 static inline void slab_post_alloc_hook(
struct kmem_cache *s,
gfp_t flags,
1255 static inline void slab_free_hook(
struct kmem_cache *s,
void *x) {}
1262 static inline struct page *alloc_slab_page(
gfp_t flags,
int node,
1265 int order = oo_order(oo);
1272 return alloc_pages_exact_node(node, flags, order);
1275 static struct page *allocate_slab(
struct kmem_cache *s,
gfp_t flags,
int node)
1294 page = alloc_slab_page(alloc_gfp, node, oo);
1301 page = alloc_slab_page(flags, node, oo);
1309 int pages = 1 << oo_order(oo);
1323 if (flags & __GFP_WAIT)
1328 page->
objects = oo_objects(oo);
1337 static void setup_object(
struct kmem_cache *s,
struct page *page,
1340 setup_object_debug(s, page,
object);
1345 static struct page *new_slab(
struct kmem_cache *s,
gfp_t flags,
int node)
1354 page = allocate_slab(s,
1359 inc_slabs_node(s, page_to_nid(page), page->
objects);
1361 __SetPageSlab(page);
1363 SetPageSlabPfmemalloc(page);
1372 setup_object(s, page, last);
1373 set_freepointer(s, last, p);
1376 setup_object(s, page, last);
1377 set_freepointer(s, last,
NULL);
1386 static void __free_slab(
struct kmem_cache *s,
struct page *page)
1388 int order = compound_order(page);
1389 int pages = 1 <<
order;
1391 if (kmem_cache_debug(s)) {
1394 slab_pad_check(s, page);
1407 __ClearPageSlabPfmemalloc(page);
1408 __ClearPageSlab(page);
1409 reset_page_mapcount(page);
1415 #define need_reserve_slab_rcu \
1416 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1418 static void rcu_free_slab(
struct rcu_head *
h)
1423 page = virt_to_head_page(h);
1427 __free_slab(page->
slab, page);
1430 static void free_slab(
struct kmem_cache *s,
struct page *page)
1436 int order = compound_order(page);
1445 head = (
void *)&page->
lru;
1450 __free_slab(s, page);
1453 static void discard_slab(
struct kmem_cache *s,
struct page *page)
1455 dec_slabs_node(s, page_to_nid(page), page->
objects);
1465 struct page *page,
int tail)
1492 static inline void *acquire_slab(
struct kmem_cache *s,
1497 unsigned long counters;
1510 new.freelist =
NULL;
1518 if (!__cmpxchg_double_slab(s, page,
1520 new.freelist,
new.counters,
1524 remove_partial(n, page);
1529 static int put_cpu_partial(
struct kmem_cache *s,
struct page *page,
int drain);
1530 static inline bool pfmemalloc_match(
struct page *page,
gfp_t gfpflags);
1538 struct page *
page, *page2;
1539 void *
object =
NULL;
1555 if (!pfmemalloc_match(page, flags))
1558 t = acquire_slab(s, n, page,
object ==
NULL);
1568 available = put_cpu_partial(s, page, 0);
1571 if (kmem_cache_debug(s) || available > s->
cpu_partial / 2)
1589 enum zone_type high_zoneidx = gfp_zone(flags);
1591 unsigned int cpuset_mems_cookie;
1611 if (!s->remote_node_defrag_ratio ||
1612 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1616 cpuset_mems_cookie = get_mems_allowed();
1617 zonelist = node_zonelist(
slab_node(), flags);
1621 n = get_node(s, zone_to_nid(zone));
1623 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1625 object = get_partial_node(s, n, c, flags);
1635 put_mems_allowed(cpuset_mems_cookie);
1640 }
while (!put_mems_allowed(cpuset_mems_cookie));
1654 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1658 return get_any_partial(s, flags, c);
1661 #ifdef CONFIG_PREEMPT
1667 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1676 static inline unsigned long next_tid(
unsigned long tid)
1681 static inline unsigned int tid_to_cpu(
unsigned long tid)
1686 static inline unsigned long tid_to_event(
unsigned long tid)
1691 static inline unsigned int init_tid(
int cpu)
1696 static inline void note_cmpxchg_failure(
const char *n,
1697 const struct kmem_cache *s,
unsigned long tid)
1699 #ifdef SLUB_DEBUG_CMPXCHG
1704 #ifdef CONFIG_PREEMPT
1705 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1706 printk(
"due to cpu change %d -> %d\n",
1707 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1710 if (tid_to_event(tid) != tid_to_event(actual_tid))
1711 printk(
"due to cpu running other code. Event %ld->%ld\n",
1712 tid_to_event(tid), tid_to_event(actual_tid));
1714 printk(
"for unknown reason: actual=%lx was=%lx target=%lx\n",
1715 actual_tid, tid, next_tid(tid));
1720 static void init_kmem_cache_cpus(
struct kmem_cache *s)
1725 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1733 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1736 enum slab_modes
l = M_NONE,
m = M_NONE;
1742 if (page->freelist) {
1755 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1760 prior = page->freelist;
1761 counters = page->counters;
1762 set_freepointer(s, freelist, prior);
1767 }
while (!__cmpxchg_double_slab(s, page,
1769 freelist,
new.counters,
1770 "drain percpu freelist"));
1772 freelist = nextfree;
1791 old.freelist = page->freelist;
1792 old.counters = page->counters;
1796 new.counters = old.counters;
1799 set_freepointer(s, freelist, old.freelist);
1802 new.freelist = old.freelist;
1808 else if (
new.freelist) {
1821 if (kmem_cache_debug(s) && !lock) {
1836 remove_partial(n, page);
1838 else if (l == M_FULL)
1840 remove_full(s, page);
1842 if (m == M_PARTIAL) {
1844 add_partial(n, page, tail);
1847 }
else if (m == M_FULL) {
1850 add_full(s, n, page);
1856 if (!__cmpxchg_double_slab(s, page,
1857 old.freelist, old.counters,
1858 new.freelist,
new.counters,
1867 discard_slab(s, page);
1877 static void unfreeze_partials(
struct kmem_cache *s)
1881 struct page *
page, *discard_page =
NULL;
1889 n2 = get_node(s, page_to_nid(page));
1904 new.counters = old.counters;
1905 new.freelist = old.freelist;
1909 }
while (!__cmpxchg_double_slab(s, page,
1911 new.freelist,
new.counters,
1912 "unfreezing slab"));
1915 page->
next = discard_page;
1916 discard_page =
page;
1926 while (discard_page) {
1927 page = discard_page;
1928 discard_page = discard_page->
next;
1931 discard_slab(s, page);
1945 static int put_cpu_partial(
struct kmem_cache *s,
struct page *page,
int drain)
1947 struct page *oldpage;
1958 pages = oldpage->
pages;
1960 unsigned long flags;
1966 unfreeze_partials(s);
1980 page->
next = oldpage;
1991 c->
tid = next_tid(c->
tid);
2001 static inline void __flush_cpu_slab(
struct kmem_cache *s,
int cpu)
2009 unfreeze_partials(s);
2013 static void flush_cpu_slab(
void *
d)
2020 static bool has_cpu_slab(
int cpu,
void *
info)
2037 static inline int node_match(
struct page *page,
int node)
2046 static int count_free(
struct page *page)
2052 int (*get_count)(
struct page *))
2054 unsigned long flags;
2055 unsigned long x = 0;
2060 x += get_count(page);
2061 spin_unlock_irqrestore(&n->
list_lock, flags);
2067 #ifdef CONFIG_SLUB_DEBUG
2068 return atomic_long_read(&n->total_objects);
2080 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2084 s->
size, oo_order(s->
oo), oo_order(s->
min));
2088 "slub_debug=O to disable.\n", s->
name);
2092 unsigned long nr_slabs;
2093 unsigned long nr_objs;
2094 unsigned long nr_free;
2099 nr_free = count_partial(n, count_free);
2100 nr_slabs = node_nr_slabs(n);
2101 nr_objs = node_nr_objs(n);
2104 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2105 node, nr_slabs, nr_objs, nr_free);
2109 static inline void *new_slab_objects(
struct kmem_cache *s,
gfp_t flags,
2116 freelist = get_partial(s, flags, node, c);
2121 page = new_slab(s, flags, node);
2143 static inline bool pfmemalloc_match(
struct page *page,
gfp_t gfpflags)
2145 if (
unlikely(PageSlabPfmemalloc(page)))
2161 static inline void *get_freelist(
struct kmem_cache *s,
struct page *page)
2175 new.frozen = freelist !=
NULL;
2177 }
while (!__cmpxchg_double_slab(s, page,
2201 static void *__slab_alloc(
struct kmem_cache *s,
gfp_t gfpflags,
int node,
2206 unsigned long flags;
2209 #ifdef CONFIG_PREEMPT
2223 if (
unlikely(!node_match(page, node))) {
2225 deactivate_slab(s, page, c->
freelist);
2236 if (
unlikely(!pfmemalloc_match(page, gfpflags))) {
2237 deactivate_slab(s, page, c->
freelist);
2250 freelist = get_freelist(s, page);
2267 c->
freelist = get_freepointer(s, freelist);
2268 c->
tid = next_tid(c->
tid);
2282 freelist = new_slab_objects(s, gfpflags, node, &c);
2286 slab_out_of_memory(s, gfpflags, node);
2293 if (
likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2297 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
2300 deactivate_slab(s, page, get_freepointer(s, freelist));
2318 gfp_t gfpflags,
int node,
unsigned long addr)
2325 if (slab_pre_alloc_hook(s, gfpflags))
2349 if (
unlikely(!
object || !node_match(page, node)))
2350 object = __slab_alloc(s, gfpflags, node, addr, c);
2353 void *next_object = get_freepointer_safe(s,
object);
2370 next_object, next_tid(tid)))) {
2372 note_cmpxchg_failure(
"slab_alloc", s, tid);
2375 prefetch_freepointer(s, next_object);
2382 slab_post_alloc_hook(s, gfpflags,
object);
2388 gfp_t gfpflags,
unsigned long addr)
2390 return slab_alloc_node(s, gfpflags,
NUMA_NO_NODE, addr);
2403 #ifdef CONFIG_TRACING
2404 void *kmem_cache_alloc_trace(
struct kmem_cache *s,
gfp_t gfpflags,
size_t size)
2412 void *kmalloc_order_trace(
size_t size,
gfp_t flags,
unsigned int order)
2414 void *
ret = kmalloc_order(size, flags, order);
2424 void *
ret = slab_alloc_node(s, gfpflags, node,
_RET_IP_);
2426 trace_kmem_cache_alloc_node(
_RET_IP_, ret,
2433 #ifdef CONFIG_TRACING
2434 void *kmem_cache_alloc_node_trace(
struct kmem_cache *s,
2436 int node,
size_t size)
2438 void *
ret = slab_alloc_node(s, gfpflags, node,
_RET_IP_);
2441 size, s->
size, gfpflags, node);
2456 static void __slab_free(
struct kmem_cache *s,
struct page *page,
2457 void *x,
unsigned long addr)
2460 void **
object = (
void *)x;
2470 if (kmem_cache_debug(s) &&
2471 !(n = free_debug_processing(s, page, x, addr, &flags)))
2477 set_freepointer(s,
object, prior);
2478 new.counters = counters;
2479 was_frozen =
new.frozen;
2481 if ((!
new.inuse || !prior) && !was_frozen && !n) {
2483 if (!kmem_cache_debug(s) && !prior)
2493 n = get_node(s, page_to_nid(page));
2508 }
while (!cmpxchg_double_slab(s, page,
2510 object,
new.counters,
2519 if (
new.frozen && !was_frozen) {
2520 put_cpu_partial(s, page, 1);
2547 remove_full(s, page);
2552 spin_unlock_irqrestore(&n->
list_lock, flags);
2560 remove_partial(n, page);
2564 remove_full(s, page);
2566 spin_unlock_irqrestore(&n->
list_lock, flags);
2568 discard_slab(s, page);
2583 struct page *page,
void *x,
unsigned long addr)
2585 void **
object = (
void *)x;
2589 slab_free_hook(s, x);
2604 set_freepointer(s,
object, c->
freelist);
2609 object, next_tid(tid)))) {
2611 note_cmpxchg_failure(
"slab_free", s, tid);
2616 __slab_free(s, page, x, addr);
2624 page = virt_to_head_page(x);
2626 if (kmem_cache_debug(s) && page->
slab != s) {
2627 pr_err(
"kmem_cache_free: Wrong slab cache. %s but object"
2628 " is from %s\n", page->
slab->name, s->
name);
2635 trace_kmem_cache_free(
_RET_IP_, x);
2658 static int slub_min_order;
2660 static int slub_min_objects;
2666 static int slub_nomerge;
2693 static inline int slab_order(
int size,
int min_objects,
2694 int max_order,
int fract_leftover,
int reserved)
2698 int min_order = slub_min_order;
2703 for (order =
max(min_order,
2705 order <= max_order; order++) {
2709 if (slab_size < min_objects * size + reserved)
2712 rem = (slab_size -
reserved) % size;
2714 if (rem <= slab_size / fract_leftover)
2722 static inline int calculate_order(
int size,
int reserved)
2737 min_objects = slub_min_objects;
2739 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2740 max_objects = order_objects(slub_max_order, size, reserved);
2741 min_objects =
min(min_objects, max_objects);
2743 while (min_objects > 1) {
2745 while (fraction >= 4) {
2746 order = slab_order(size, min_objects,
2747 slub_max_order, fraction, reserved);
2748 if (order <= slub_max_order)
2759 order = slab_order(size, 1, slub_max_order, 1, reserved);
2760 if (order <= slub_max_order)
2766 order = slab_order(size, 1,
MAX_ORDER, 1, reserved);
2775 static unsigned long calculate_alignment(
unsigned long flags,
2776 unsigned long align,
unsigned long size)
2787 while (size <= ralign / 2)
2789 align =
max(align, ralign);
2795 return ALIGN(align,
sizeof(
void *));
2804 #ifdef CONFIG_SLUB_DEBUG
2805 atomic_long_set(&n->nr_slabs, 0);
2806 atomic_long_set(&n->total_objects, 0);
2807 INIT_LIST_HEAD(&n->full);
2811 static inline int alloc_kmem_cache_cpus(
struct kmem_cache *s)
2821 2 *
sizeof(
void *));
2826 init_kmem_cache_cpus(s);
2842 static void early_kmem_cache_node_alloc(
int node)
2845 struct kmem_cache_node *
n;
2847 BUG_ON(kmem_cache_node->
size <
sizeof(
struct kmem_cache_node));
2849 page = new_slab(kmem_cache_node,
GFP_NOWAIT, node);
2852 if (page_to_nid(page) != node) {
2856 "in order to be able to continue\n");
2861 page->
freelist = get_freepointer(kmem_cache_node, n);
2865 #ifdef CONFIG_SLUB_DEBUG
2867 init_tracking(kmem_cache_node, n);
2869 init_kmem_cache_node(n);
2870 inc_slabs_node(kmem_cache_node, node, page->
objects);
2875 static void free_kmem_cache_nodes(
struct kmem_cache *s)
2880 struct kmem_cache_node *n = s->
node[
node];
2889 static int init_kmem_cache_nodes(
struct kmem_cache *s)
2894 struct kmem_cache_node *
n;
2897 early_kmem_cache_node_alloc(node);
2904 free_kmem_cache_nodes(s);
2909 init_kmem_cache_node(n);
2914 static void set_min_partial(
struct kmem_cache *s,
unsigned long min)
2927 static int calculate_sizes(
struct kmem_cache *s,
int forced_order)
2929 unsigned long flags = s->
flags;
2931 unsigned long align = s->
align;
2939 size =
ALIGN(size,
sizeof(
void *));
2941 #ifdef CONFIG_SLUB_DEBUG
2960 size +=
sizeof(
void *);
2969 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2980 size +=
sizeof(
void *);
2983 #ifdef CONFIG_SLUB_DEBUG
2989 size += 2 *
sizeof(
struct track);
2991 if (flags & SLAB_RED_ZONE)
2999 size +=
sizeof(
void *);
3007 align = calculate_alignment(flags, align, s->
object_size);
3015 size =
ALIGN(size, align);
3017 if (forced_order >= 0)
3018 order = forced_order;
3020 order = calculate_order(size, s->
reserved);
3040 if (oo_objects(s->
oo) > oo_objects(s->
max))
3043 return !!oo_objects(s->
oo);
3047 static int kmem_cache_open(
struct kmem_cache *s,
unsigned long flags)
3055 if (!calculate_sizes(s, -1))
3057 if (disable_higher_order_debug) {
3065 if (!calculate_sizes(s, -1))
3070 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3071 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3100 if (kmem_cache_debug(s))
3104 else if (s->
size >= 1024)
3106 else if (s->
size >= 256)
3112 s->remote_node_defrag_ratio = 1000;
3114 if (!init_kmem_cache_nodes(s))
3117 if (alloc_kmem_cache_cpus(s))
3120 free_kmem_cache_nodes(s);
3123 panic(
"Cannot create slab %s size=%lu realsize=%u "
3124 "order=%u offset=%u flags=%lx\n",
3139 static void list_slab_objects(
struct kmem_cache *s,
struct page *page,
3142 #ifdef CONFIG_SLUB_DEBUG
3149 slab_err(s, page, text, s->
name);
3152 get_map(s, page, map);
3155 if (!
test_bit(slab_index(p, s, addr), map)) {
3158 print_tracking(s, p);
3171 static void free_partial(
struct kmem_cache *s,
struct kmem_cache_node *n)
3173 struct page *
page, *
h;
3177 remove_partial(n, page);
3178 discard_slab(s, page);
3180 list_slab_objects(s, page,
3181 "Objects remaining in %s on kmem_cache_close()");
3189 static inline int kmem_cache_close(
struct kmem_cache *s)
3196 struct kmem_cache_node *n = get_node(s, node);
3203 free_kmem_cache_nodes(s);
3209 int rc = kmem_cache_close(s);
3212 sysfs_slab_remove(s);
3224 #ifdef CONFIG_ZONE_DMA
3228 static int __init setup_slub_min_order(
char *str)
3235 __setup(
"slub_min_order=", setup_slub_min_order);
3237 static int __init setup_slub_max_order(
char *str)
3245 __setup(
"slub_max_order=", setup_slub_max_order);
3247 static int __init setup_slub_min_objects(
char *str)
3254 __setup(
"slub_min_objects=", setup_slub_min_objects);
3256 static int __init setup_slub_nomerge(
char *str)
3262 __setup(
"slub_nomerge", setup_slub_nomerge);
3265 int size,
unsigned int flags)
3279 if (kmem_cache_open(s, flags))
3282 list_add(&s->
list, &slab_caches);
3286 panic(
"Creation of kmalloc slab %s size=%d failed.\n", name, size);
3296 static s8 size_index[24] = {
3323 static inline int size_index_elem(
size_t bytes)
3325 return (bytes - 1) / 8;
3336 index = size_index[size_index_elem(size)];
3338 index = fls(size - 1);
3340 #ifdef CONFIG_ZONE_DMA
3342 return kmalloc_dma_caches[
index];
3345 return kmalloc_caches[
index];
3354 return kmalloc_large(size, flags);
3356 s = get_slab(size, flags);
3361 ret = slab_alloc(s, flags,
_RET_IP_);
3370 static void *kmalloc_large_node(
size_t size,
gfp_t flags,
int node)
3376 page = alloc_pages_node(node, flags,
get_order(size));
3390 ret = kmalloc_large_node(size, flags, node);
3399 s = get_slab(size, flags);
3404 ret = slab_alloc_node(s, flags, node,
_RET_IP_);
3406 trace_kmalloc_node(
_RET_IP_, ret, size, s->
size, flags, node);
3420 page = virt_to_head_page(
object);
3424 return PAGE_SIZE << compound_order(page);
3427 return slab_ksize(page->
slab);
3431 #ifdef CONFIG_SLUB_DEBUG
3432 bool verify_mem_not_deleted(
const void *x)
3435 void *
object = (
void *)x;
3436 unsigned long flags;
3444 page = virt_to_head_page(x);
3452 if (on_freelist(page->
slab, page,
object)) {
3453 object_err(page->
slab, page,
object,
"Object is on free-list");
3470 void *
object = (
void *)x;
3477 page = virt_to_head_page(x);
3479 BUG_ON(!PageCompound(page));
3502 struct kmem_cache_node *
n;
3505 int objects = oo_objects(s->
max);
3508 unsigned long flags;
3510 if (!slabs_by_inuse)
3515 n = get_node(s, node);
3520 for (i = 0; i < objects; i++)
3521 INIT_LIST_HEAD(slabs_by_inuse + i);
3532 list_move(&page->
lru, slabs_by_inuse + page->
inuse);
3541 for (i = objects - 1; i > 0; i--)
3542 list_splice(slabs_by_inuse + i, n->
partial.prev);
3544 spin_unlock_irqrestore(&n->
list_lock, flags);
3548 discard_slab(s, page);
3551 kfree(slabs_by_inuse);
3556 #if defined(CONFIG_MEMORY_HOTPLUG)
3557 static int slab_mem_going_offline_callback(
void *
arg)
3569 static
void slab_mem_offline_callback(
void *arg)
3571 struct kmem_cache_node *
n;
3582 if (offline_node < 0)
3587 n = get_node(s, offline_node);
3595 BUG_ON(slabs_node(s, offline_node));
3604 static int slab_mem_going_online_callback(
void *arg)
3606 struct kmem_cache_node *
n;
3636 init_kmem_cache_node(n);
3645 unsigned long action,
void *arg)
3651 ret = slab_mem_going_online_callback(arg);
3654 ret = slab_mem_going_offline_callback(arg);
3658 slab_mem_offline_callback(arg);
3665 ret = notifier_from_errno(ret);
3686 list_add(&s->
list, &slab_caches);
3690 struct kmem_cache_node *n = get_node(s, node);
3697 #ifdef CONFIG_SLUB_DEBUG
3712 unsigned long kmalloc_size;
3714 if (debug_guardpage_minorder())
3730 kmem_cache_node = (
void *)
kmem_cache + kmalloc_size;
3732 kmem_cache_node->
name =
"kmem_cache_node";
3734 sizeof(
struct kmem_cache_node);
3735 kmem_cache_open(kmem_cache_node, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
3745 kmem_cache_open(
kmem_cache, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
3755 temp_kmem_cache_node = kmem_cache_node;
3758 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3760 kmem_cache_bootstrap_fixup(kmem_cache_node);
3766 free_pages((
unsigned long)temp_kmem_cache, order);
3785 int elem = size_index_elem(i);
3791 if (KMALLOC_MIN_SIZE == 64) {
3796 for (i = 64 + 8; i <= 96; i += 8)
3797 size_index[size_index_elem(i)] = 7;
3798 }
else if (KMALLOC_MIN_SIZE == 128) {
3804 for (i = 128 + 8; i <= 192; i += 8)
3805 size_index[size_index_elem(i)] = 8;
3809 if (KMALLOC_MIN_SIZE <= 32) {
3810 kmalloc_caches[1] = create_kmalloc_cache(
"kmalloc-96", 96, 0);
3814 if (KMALLOC_MIN_SIZE <= 64) {
3815 kmalloc_caches[2] = create_kmalloc_cache(
"kmalloc-192", 192, 0);
3820 kmalloc_caches[
i] = create_kmalloc_cache(
"kmalloc", 1 << i, 0);
3827 if (KMALLOC_MIN_SIZE <= 32) {
3829 BUG_ON(!kmalloc_caches[1]->name);
3832 if (KMALLOC_MIN_SIZE <= 64) {
3834 BUG_ON(!kmalloc_caches[2]->name);
3841 kmalloc_caches[
i]->
name =
s;
3845 register_cpu_notifier(&slab_notifier);
3848 #ifdef CONFIG_ZONE_DMA
3857 kmalloc_dma_caches[
i] = create_kmalloc_cache(name,
3863 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3864 " CPUs=%d, Nodes=%d\n",
3866 slub_min_order, slub_max_order, slub_min_objects,
3877 static int slab_unmergeable(
struct kmem_cache *s)
3894 static struct kmem_cache *find_mergeable(
size_t size,
3895 size_t align,
unsigned long flags,
const char *name,
3896 void (*
ctor)(
void *))
3906 size =
ALIGN(size,
sizeof(
void *));
3907 align = calculate_alignment(flags, align, size);
3908 size =
ALIGN(size, align);
3909 flags = kmem_cache_flags(size, flags, name,
NULL);
3912 if (slab_unmergeable(s))
3924 if ((s->
size & ~(align - 1)) != s->
size)
3927 if (s->
size - size >=
sizeof(
void *))
3936 size_t align,
unsigned long flags,
void (*
ctor)(
void *))
3940 s = find_mergeable(size, align, flags, name,
ctor);
3950 if (sysfs_slab_alias(s, name)) {
3963 err = kmem_cache_open(s, flags);
3968 err = sysfs_slab_add(s);
3972 kmem_cache_close(s);
3983 unsigned long action,
void *hcpu)
3985 long cpu = (
long)hcpu;
3987 unsigned long flags;
3997 __flush_cpu_slab(s, cpu);
4009 .notifier_call = slab_cpuup_callback
4020 return kmalloc_large(size, gfpflags);
4022 s = get_slab(size, gfpflags);
4027 ret = slab_alloc(s, gfpflags, caller);
4030 trace_kmalloc(caller, ret, size, s->
size, gfpflags);
4036 void *__kmalloc_node_track_caller(
size_t size,
gfp_t gfpflags,
4037 int node,
unsigned long caller)
4043 ret = kmalloc_large_node(size, gfpflags, node);
4045 trace_kmalloc_node(caller, ret,
4052 s = get_slab(size, gfpflags);
4057 ret = slab_alloc_node(s, gfpflags, node, caller);
4060 trace_kmalloc_node(caller, ret, size, s->
size, gfpflags, node);
4067 static int count_inuse(
struct page *page)
4072 static int count_total(
struct page *page)
4078 #ifdef CONFIG_SLUB_DEBUG
4079 static int validate_slab(
struct kmem_cache *s,
struct page *page,
4085 if (!check_slab(s, page) ||
4086 !on_freelist(s, page,
NULL))
4090 bitmap_zero(map, page->
objects);
4092 get_map(s, page, map);
4094 if (
test_bit(slab_index(p, s, addr), map))
4095 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4110 validate_slab(s, page, map);
4114 static int validate_slab_node(
struct kmem_cache *s,
4115 struct kmem_cache_node *n,
unsigned long *map)
4117 unsigned long count = 0;
4119 unsigned long flags;
4124 validate_slab_slab(s, page, map);
4131 if (!(s->
flags & SLAB_STORE_USER))
4135 validate_slab_slab(s, page, map);
4138 if (count != atomic_long_read(&n->nr_slabs))
4140 "counter=%ld\n", s->
name, count,
4141 atomic_long_read(&n->nr_slabs));
4144 spin_unlock_irqrestore(&n->
list_lock, flags);
4148 static long validate_slab_cache(
struct kmem_cache *s)
4151 unsigned long count = 0;
4160 struct kmem_cache_node *n = get_node(s, node);
4162 count += validate_slab_node(s, n, map);
4173 unsigned long count;
4186 unsigned long count;
4190 static void free_loc_track(
struct loc_track *t)
4197 static int alloc_loc_track(
struct loc_track *t,
unsigned long max,
gfp_t flags)
4217 static int add_location(
struct loc_track *t,
struct kmem_cache *s,
4222 unsigned long caddr;
4229 pos = start + (end - start + 1) / 2;
4238 caddr = t->loc[
pos].addr;
4239 if (track->
addr == caddr) {
4245 if (age < l->min_time)
4247 if (age > l->max_time)
4250 if (track->
pid < l->min_pid)
4251 l->min_pid = track->
pid;
4252 if (track->
pid > l->max_pid)
4253 l->max_pid = track->
pid;
4255 cpumask_set_cpu(track->
cpu,
4262 if (track->
addr < caddr)
4271 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max,
GFP_ATOMIC))
4277 (t->count - pos) *
sizeof(
struct location));
4280 l->addr = track->
addr;
4284 l->min_pid = track->
pid;
4285 l->max_pid = track->
pid;
4293 static void process_slab(
struct loc_track *t,
struct kmem_cache *s,
4300 bitmap_zero(map, page->
objects);
4301 get_map(s, page, map);
4305 add_location(t, s, get_track(s, p, alloc));
4313 struct loc_track t = { 0, 0,
NULL };
4321 return sprintf(buf,
"Out of memory\n");
4327 struct kmem_cache_node *n = get_node(s, node);
4328 unsigned long flags;
4331 if (!atomic_long_read(&n->nr_slabs))
4336 process_slab(&t, s, page, alloc, map);
4338 process_slab(&t, s, page, alloc, map);
4339 spin_unlock_irqrestore(&n->
list_lock, flags);
4342 for (i = 0; i < t.count; i++) {
4347 len +=
sprintf(buf + len,
"%7ld ", l->count);
4350 len +=
sprintf(buf + len,
"%pS", (
void *)l->addr);
4352 len +=
sprintf(buf + len,
"<not-available>");
4354 if (l->sum_time != l->min_time) {
4355 len +=
sprintf(buf + len,
" age=%ld/%ld/%ld",
4357 (
long)div_u64(l->sum_time, l->count),
4360 len +=
sprintf(buf + len,
" age=%ld",
4363 if (l->min_pid != l->max_pid)
4364 len +=
sprintf(buf + len,
" pid=%ld-%ld",
4365 l->min_pid, l->max_pid);
4367 len +=
sprintf(buf + len,
" pid=%ld",
4373 len +=
sprintf(buf + len,
" cpus=");
4374 len += cpulist_scnprintf(buf + len,
PAGE_SIZE - len - 50,
4380 len +=
sprintf(buf + len,
" nodes=");
4385 len +=
sprintf(buf + len,
"\n");
4391 len +=
sprintf(buf,
"No data\n");
4396 #ifdef SLUB_RESILIENCY_TEST
4397 static void resiliency_test(
void)
4410 " 0x12->0x%p\n\n", p + 16);
4412 validate_slab_cache(kmalloc_caches[4]);
4416 p[32 +
sizeof(
void *)] = 0x34;
4417 printk(
KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4418 " 0x34 -> -0x%p\n", p);
4420 "If allocated object is overwritten then not detectable\n\n");
4422 validate_slab_cache(kmalloc_caches[5]);
4424 p += 64 + (
get_cycles() & 0xff) *
sizeof(
void *);
4426 printk(
KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4429 "If allocated object is overwritten then not detectable\n\n");
4430 validate_slab_cache(kmalloc_caches[6]);
4436 printk(
KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4437 validate_slab_cache(kmalloc_caches[7]);
4442 printk(
KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4444 validate_slab_cache(kmalloc_caches[8]);
4449 printk(
KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4450 validate_slab_cache(kmalloc_caches[9]);
4454 static void resiliency_test(
void) {};
4459 enum slab_stat_type {
4467 #define SO_ALL (1 << SL_ALL)
4468 #define SO_PARTIAL (1 << SL_PARTIAL)
4469 #define SO_CPU (1 << SL_CPU)
4470 #define SO_OBJECTS (1 << SL_OBJECTS)
4471 #define SO_TOTAL (1 << SL_TOTAL)
4474 char *buf,
unsigned long flags)
4476 unsigned long total = 0;
4479 unsigned long *nodes;
4487 if (flags & SO_CPU) {
4499 node = page_to_nid(page);
4500 if (flags & SO_TOTAL)
4502 else if (flags & SO_OBJECTS)
4522 #ifdef CONFIG_SLUB_DEBUG
4523 if (flags & SO_ALL) {
4525 struct kmem_cache_node *n = get_node(s, node);
4527 if (flags & SO_TOTAL)
4528 x = atomic_long_read(&n->total_objects);
4529 else if (flags & SO_OBJECTS)
4530 x = atomic_long_read(&n->total_objects) -
4531 count_partial(n, count_free);
4534 x = atomic_long_read(&n->nr_slabs);
4541 if (flags & SO_PARTIAL) {
4543 struct kmem_cache_node *n = get_node(s, node);
4545 if (flags & SO_TOTAL)
4546 x = count_partial(n, count_total);
4547 else if (flags & SO_OBJECTS)
4548 x = count_partial(n, count_inuse);
4555 x =
sprintf(buf,
"%lu", total);
4564 return x +
sprintf(buf + x,
"\n");
4567 #ifdef CONFIG_SLUB_DEBUG
4568 static int any_slab_objects(
struct kmem_cache *s)
4573 struct kmem_cache_node *n = get_node(s, node);
4578 if (atomic_long_read(&n->total_objects))
4585 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4586 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4588 struct slab_attribute {
4594 #define SLAB_ATTR_RO(_name) \
4595 static struct slab_attribute _name##_attr = \
4596 __ATTR(_name, 0400, _name##_show, NULL)
4598 #define SLAB_ATTR(_name) \
4599 static struct slab_attribute _name##_attr = \
4600 __ATTR(_name, 0600, _name##_show, _name##_store)
4606 SLAB_ATTR_RO(slab_size);
4612 SLAB_ATTR_RO(align);
4618 SLAB_ATTR_RO(object_size);
4622 return sprintf(buf,
"%d\n", oo_objects(s->
oo));
4624 SLAB_ATTR_RO(objs_per_slab);
4627 const char *buf,
size_t length)
4629 unsigned long order;
4636 if (order > slub_max_order || order < slub_min_order)
4639 calculate_sizes(s, order);
4645 return sprintf(buf,
"%d\n", oo_order(s->
oo));
4664 set_min_partial(s, min);
4677 unsigned long objects;
4683 if (objects && kmem_cache_debug(s))
4708 return show_slab_objects(s, buf, SO_PARTIAL);
4710 SLAB_ATTR_RO(partial);
4714 return show_slab_objects(s, buf, SO_CPU);
4716 SLAB_ATTR_RO(cpu_slabs);
4720 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4722 SLAB_ATTR_RO(objects);
4726 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4728 SLAB_ATTR_RO(objects_partial);
4741 pages += page->
pages;
4746 len =
sprintf(buf,
"%d(%d)", objects, pages);
4753 len +=
sprintf(buf + len,
" C%d=%d(%d)", cpu,
4757 return len +
sprintf(buf + len,
"\n");
4759 SLAB_ATTR_RO(slabs_cpu_partial);
4767 const char *buf,
size_t length)
4774 SLAB_ATTR(reclaim_account);
4778 return sprintf(buf,
"%d\n", !!(s->
flags & SLAB_HWCACHE_ALIGN));
4780 SLAB_ATTR_RO(hwcache_align);
4782 #ifdef CONFIG_ZONE_DMA
4787 SLAB_ATTR_RO(cache_dma);
4792 return sprintf(buf,
"%d\n", !!(s->
flags & SLAB_DESTROY_BY_RCU));
4794 SLAB_ATTR_RO(destroy_by_rcu);
4800 SLAB_ATTR_RO(reserved);
4802 #ifdef CONFIG_SLUB_DEBUG
4805 return show_slab_objects(s, buf, SO_ALL);
4807 SLAB_ATTR_RO(
slabs);
4811 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4813 SLAB_ATTR_RO(total_objects);
4821 const char *buf,
size_t length)
4824 if (buf[0] ==
'1') {
4830 SLAB_ATTR(sanity_checks);
4841 if (buf[0] ==
'1') {
4851 return sprintf(buf,
"%d\n", !!(s->
flags & SLAB_RED_ZONE));
4855 const char *buf,
size_t length)
4857 if (any_slab_objects(s))
4860 s->
flags &= ~SLAB_RED_ZONE;
4861 if (buf[0] ==
'1') {
4865 calculate_sizes(s, -1);
4868 SLAB_ATTR(red_zone);
4872 return sprintf(buf,
"%d\n", !!(s->
flags & SLAB_POISON));
4876 const char *buf,
size_t length)
4878 if (any_slab_objects(s))
4881 s->
flags &= ~SLAB_POISON;
4882 if (buf[0] ==
'1') {
4886 calculate_sizes(s, -1);
4893 return sprintf(buf,
"%d\n", !!(s->
flags & SLAB_STORE_USER));
4897 const char *buf,
size_t length)
4899 if (any_slab_objects(s))
4902 s->
flags &= ~SLAB_STORE_USER;
4903 if (buf[0] ==
'1') {
4907 calculate_sizes(s, -1);
4910 SLAB_ATTR(store_user);
4918 const char *buf,
size_t length)
4922 if (buf[0] ==
'1') {
4923 ret = validate_slab_cache(s);
4933 if (!(s->
flags & SLAB_STORE_USER))
4937 SLAB_ATTR_RO(alloc_calls);
4941 if (!(s->
flags & SLAB_STORE_USER))
4945 SLAB_ATTR_RO(free_calls);
4948 #ifdef CONFIG_FAILSLAB
4962 SLAB_ATTR(failslab);
4971 const char *buf,
size_t length)
4973 if (buf[0] ==
'1') {
4987 return sprintf(buf,
"%d\n", s->remote_node_defrag_ratio / 10);
4991 const char *buf,
size_t length)
4993 unsigned long ratio;
5001 s->remote_node_defrag_ratio = ratio * 10;
5005 SLAB_ATTR(remote_node_defrag_ratio);
5008 #ifdef CONFIG_SLUB_STATS
5011 unsigned long sum = 0;
5026 len =
sprintf(buf,
"%lu", sum);
5031 len +=
sprintf(buf + len,
" C%d=%u", cpu, data[cpu]);
5035 return len +
sprintf(buf + len,
"\n");
5046 #define STAT_ATTR(si, text) \
5047 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5049 return show_stat(s, buf, si); \
5051 static ssize_t text##_store(struct kmem_cache *s, \
5052 const char *buf, size_t length) \
5054 if (buf[0] != '0') \
5056 clear_stat(s, si); \
5089 static struct attribute *slab_attrs[] = {
5090 &slab_size_attr.attr,
5091 &object_size_attr.attr,
5092 &objs_per_slab_attr.attr,
5094 &min_partial_attr.attr,
5095 &cpu_partial_attr.attr,
5097 &objects_partial_attr.attr,
5099 &cpu_slabs_attr.attr,
5103 &hwcache_align_attr.attr,
5104 &reclaim_account_attr.attr,
5105 &destroy_by_rcu_attr.attr,
5107 &reserved_attr.attr,
5108 &slabs_cpu_partial_attr.attr,
5109 #ifdef CONFIG_SLUB_DEBUG
5110 &total_objects_attr.attr,
5112 &sanity_checks_attr.attr,
5114 &red_zone_attr.attr,
5116 &store_user_attr.attr,
5117 &validate_attr.attr,
5118 &alloc_calls_attr.attr,
5119 &free_calls_attr.attr,
5121 #ifdef CONFIG_ZONE_DMA
5122 &cache_dma_attr.attr,
5125 &remote_node_defrag_ratio_attr.attr,
5127 #ifdef CONFIG_SLUB_STATS
5128 &alloc_fastpath_attr.attr,
5129 &alloc_slowpath_attr.attr,
5130 &free_fastpath_attr.attr,
5131 &free_slowpath_attr.attr,
5132 &free_frozen_attr.attr,
5133 &free_add_partial_attr.attr,
5134 &free_remove_partial_attr.attr,
5135 &alloc_from_partial_attr.attr,
5136 &alloc_slab_attr.attr,
5137 &alloc_refill_attr.attr,
5138 &alloc_node_mismatch_attr.attr,
5139 &free_slab_attr.attr,
5140 &cpuslab_flush_attr.attr,
5141 &deactivate_full_attr.attr,
5142 &deactivate_empty_attr.attr,
5143 &deactivate_to_head_attr.attr,
5144 &deactivate_to_tail_attr.attr,
5145 &deactivate_remote_frees_attr.attr,
5146 &deactivate_bypass_attr.attr,
5147 &order_fallback_attr.attr,
5148 &cmpxchg_double_fail_attr.attr,
5149 &cmpxchg_double_cpu_fail_attr.attr,
5150 &cpu_partial_alloc_attr.attr,
5151 &cpu_partial_free_attr.attr,
5152 &cpu_partial_node_attr.attr,
5153 &cpu_partial_drain_attr.attr,
5155 #ifdef CONFIG_FAILSLAB
5156 &failslab_attr.attr,
5163 .
attrs = slab_attrs,
5174 attribute = to_slab_attr(attr);
5177 if (!attribute->show)
5180 err = attribute->show(s, buf);
5186 struct attribute *attr,
5187 const char *buf,
size_t len)
5193 attribute = to_slab_attr(attr);
5196 if (!attribute->store)
5199 err = attribute->store(s, buf, len);
5204 static const struct sysfs_ops slab_sysfs_ops = {
5205 .
show = slab_attr_show,
5206 .store = slab_attr_store,
5217 if (ktype == &slab_ktype)
5226 static struct kset *slab_kset;
5228 #define ID_STR_LENGTH 64
5234 static char *create_unique_id(
struct kmem_cache *s)
5260 BUG_ON(p > name + ID_STR_LENGTH - 1);
5264 static int sysfs_slab_add(
struct kmem_cache *s)
5274 unmergeable = slab_unmergeable(s);
5288 name = create_unique_id(s);
5291 s->kobj.kset = slab_kset;
5307 sysfs_slab_alias(s, s->
name);
5313 static void sysfs_slab_remove(
struct kmem_cache *s)
5331 struct saved_alias {
5334 struct saved_alias *
next;
5337 static struct saved_alias *alias_list;
5339 static int sysfs_slab_alias(
struct kmem_cache *s,
const char *name)
5341 struct saved_alias *al;
5357 al->next = alias_list;
5362 static int __init slab_sysfs_init(
void)
5379 err = sysfs_slab_add(s);
5382 " to sysfs\n", s->
name);
5385 while (alias_list) {
5386 struct saved_alias *al = alias_list;
5388 alias_list = alias_list->next;
5389 err = sysfs_slab_alias(al->s, al->name);
5392 " %s to sysfs\n", al->name);
5407 #ifdef CONFIG_SLABINFO
5408 static void print_slabinfo_header(
struct seq_file *m)
5410 seq_puts(m,
"slabinfo - version: 2.1\n");
5411 seq_puts(m,
"# name <active_objs> <num_objs> <object_size> "
5412 "<objperslab> <pagesperslab>");
5413 seq_puts(m,
" : tunables <limit> <batchcount> <sharedfactor>");
5414 seq_puts(m,
" : slabdata <active_slabs> <num_slabs> <sharedavail>");
5418 static void *s_start(
struct seq_file *m, loff_t *pos)
5424 print_slabinfo_header(m);
5429 static void *s_next(
struct seq_file *m,
void *p, loff_t *pos)
5434 static void s_stop(
struct seq_file *m,
void *p)
5439 static int s_show(
struct seq_file *m,
void *p)
5441 unsigned long nr_partials = 0;
5442 unsigned long nr_slabs = 0;
5443 unsigned long nr_inuse = 0;
5444 unsigned long nr_objs = 0;
5445 unsigned long nr_free = 0;
5452 struct kmem_cache_node *n = get_node(s, node);
5458 nr_slabs += atomic_long_read(&n->nr_slabs);
5459 nr_objs += atomic_long_read(&n->total_objects);
5460 nr_free += count_partial(n, count_free);
5463 nr_inuse = nr_objs - nr_free;
5466 nr_objs, s->
size, oo_objects(s->
oo),
5467 (1 << oo_order(s->
oo)));
5468 seq_printf(m,
" : tunables %4u %4u %4u", 0, 0, 0);
5469 seq_printf(m,
" : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5484 return seq_open(file, &slabinfo_op);
5488 .
open = slabinfo_open,
5494 static int __init slab_proc_init(
void)
5496 proc_create(
"slabinfo",
S_IRUSR,
NULL, &proc_slabinfo_operations);