Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
init_64.c
Go to the documentation of this file.
1 /*
2  * arch/sparc64/mm/init.c
3  *
4  * Copyright (C) 1996-1999 David S. Miller ([email protected])
5  * Copyright (C) 1997-1999 Jakub Jelinek ([email protected])
6  */
7 
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/percpu.h>
26 #include <linux/memblock.h>
27 #include <linux/mmzone.h>
28 #include <linux/gfp.h>
29 
30 #include <asm/head.h>
31 #include <asm/page.h>
32 #include <asm/pgalloc.h>
33 #include <asm/pgtable.h>
34 #include <asm/oplib.h>
35 #include <asm/iommu.h>
36 #include <asm/io.h>
37 #include <asm/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/dma.h>
41 #include <asm/starfire.h>
42 #include <asm/tlb.h>
43 #include <asm/spitfire.h>
44 #include <asm/sections.h>
45 #include <asm/tsb.h>
46 #include <asm/hypervisor.h>
47 #include <asm/prom.h>
48 #include <asm/mdesc.h>
49 #include <asm/cpudata.h>
50 #include <asm/irq.h>
51 
52 #include "init_64.h"
53 
55 
56 /* A bitmap, two bits for every 256MB of physical memory. These two
57  * bits determine what page size we use for kernel linear
58  * translations. They form an index into kern_linear_pte_xor[]. The
59  * value in the indexed slot is XOR'd with the TLB miss virtual
60  * address to form the resulting TTE. The mapping is:
61  *
62  * 0 ==> 4MB
63  * 1 ==> 256MB
64  * 2 ==> 2GB
65  * 3 ==> 16GB
66  *
67  * All sun4v chips support 256MB pages. Only SPARC-T4 and later
68  * support 2GB pages, and hopefully future cpus will support the 16GB
69  * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
70  * if these larger page sizes are not supported by the cpu.
71  *
72  * It would be nice to determine this from the machine description
73  * 'cpu' properties, but we need to have this table setup before the
74  * MDESC is initialized.
75  */
76 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
77 
78 #ifndef CONFIG_DEBUG_PAGEALLOC
79 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
80  * Space is allocated for this right after the trap table in
81  * arch/sparc64/kernel/head.S
82  */
84 #endif
85 
86 static unsigned long cpu_pgsz_mask;
87 
88 #define MAX_BANKS 32
89 
90 static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
91 static int pavail_ents __devinitdata;
92 
93 static int cmp_p64(const void *a, const void *b)
94 {
95  const struct linux_prom64_registers *x = a, *y = b;
96 
97  if (x->phys_addr > y->phys_addr)
98  return 1;
99  if (x->phys_addr < y->phys_addr)
100  return -1;
101  return 0;
102 }
103 
104 static void __init read_obp_memory(const char *property,
106  int *num_ents)
107 {
108  phandle node = prom_finddevice("/memory");
109  int prop_size = prom_getproplen(node, property);
110  int ents, ret, i;
111 
112  ents = prop_size / sizeof(struct linux_prom64_registers);
113  if (ents > MAX_BANKS) {
114  prom_printf("The machine has more %s property entries than "
115  "this kernel can support (%d).\n",
116  property, MAX_BANKS);
117  prom_halt();
118  }
119 
120  ret = prom_getproperty(node, property, (char *) regs, prop_size);
121  if (ret == -1) {
122  prom_printf("Couldn't get %s property from /memory.\n",
123  property);
124  prom_halt();
125  }
126 
127  /* Sanitize what we got from the firmware, by page aligning
128  * everything.
129  */
130  for (i = 0; i < ents; i++) {
131  unsigned long base, size;
132 
133  base = regs[i].phys_addr;
134  size = regs[i].reg_size;
135 
136  size &= PAGE_MASK;
137  if (base & ~PAGE_MASK) {
138  unsigned long new_base = PAGE_ALIGN(base);
139 
140  size -= new_base - base;
141  if ((long) size < 0L)
142  size = 0UL;
143  base = new_base;
144  }
145  if (size == 0UL) {
146  /* If it is empty, simply get rid of it.
147  * This simplifies the logic of the other
148  * functions that process these arrays.
149  */
150  memmove(&regs[i], &regs[i + 1],
151  (ents - i - 1) * sizeof(regs[0]));
152  i--;
153  ents--;
154  continue;
155  }
156  regs[i].phys_addr = base;
157  regs[i].reg_size = size;
158  }
159 
160  *num_ents = ents;
161 
162  sort(regs, ents, sizeof(struct linux_prom64_registers),
163  cmp_p64, NULL);
164 }
165 
167  sizeof(unsigned long)];
169 
170 /* Kernel physical address base and size in bytes. */
171 unsigned long kern_base __read_mostly;
172 unsigned long kern_size __read_mostly;
173 
174 /* Initial ramdisk setup */
175 extern unsigned long sparc_ramdisk_image64;
176 extern unsigned int sparc_ramdisk_image;
177 extern unsigned int sparc_ramdisk_size;
178 
180 EXPORT_SYMBOL(mem_map_zero);
181 
183 
187 
189 
190 #ifdef CONFIG_DEBUG_DCFLUSH
191 atomic_t dcpage_flushes = ATOMIC_INIT(0);
192 #ifdef CONFIG_SMP
193 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
194 #endif
195 #endif
196 
197 inline void flush_dcache_page_impl(struct page *page)
198 {
199  BUG_ON(tlb_type == hypervisor);
200 #ifdef CONFIG_DEBUG_DCFLUSH
201  atomic_inc(&dcpage_flushes);
202 #endif
203 
204 #ifdef DCACHE_ALIASING_POSSIBLE
206  ((tlb_type == spitfire) &&
207  page_mapping(page) != NULL));
208 #else
209  if (page_mapping(page) != NULL &&
210  tlb_type == spitfire)
212 #endif
213 }
214 
215 #define PG_dcache_dirty PG_arch_1
216 #define PG_dcache_cpu_shift 32UL
217 #define PG_dcache_cpu_mask \
218  ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
219 
220 #define dcache_dirty_cpu(page) \
221  (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
222 
223 static inline void set_dcache_dirty(struct page *page, int this_cpu)
224 {
225  unsigned long mask = this_cpu;
226  unsigned long non_cpu_bits;
227 
228  non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
229  mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
230 
231  __asm__ __volatile__("1:\n\t"
232  "ldx [%2], %%g7\n\t"
233  "and %%g7, %1, %%g1\n\t"
234  "or %%g1, %0, %%g1\n\t"
235  "casx [%2], %%g7, %%g1\n\t"
236  "cmp %%g7, %%g1\n\t"
237  "bne,pn %%xcc, 1b\n\t"
238  " nop"
239  : /* no outputs */
240  : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
241  : "g1", "g7");
242 }
243 
244 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
245 {
246  unsigned long mask = (1UL << PG_dcache_dirty);
247 
248  __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
249  "1:\n\t"
250  "ldx [%2], %%g7\n\t"
251  "srlx %%g7, %4, %%g1\n\t"
252  "and %%g1, %3, %%g1\n\t"
253  "cmp %%g1, %0\n\t"
254  "bne,pn %%icc, 2f\n\t"
255  " andn %%g7, %1, %%g1\n\t"
256  "casx [%2], %%g7, %%g1\n\t"
257  "cmp %%g7, %%g1\n\t"
258  "bne,pn %%xcc, 1b\n\t"
259  " nop\n"
260  "2:"
261  : /* no outputs */
262  : "r" (cpu), "r" (mask), "r" (&page->flags),
263  "i" (PG_dcache_cpu_mask),
264  "i" (PG_dcache_cpu_shift)
265  : "g1", "g7");
266 }
267 
268 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
269 {
270  unsigned long tsb_addr = (unsigned long) ent;
271 
272  if (tlb_type == cheetah_plus || tlb_type == hypervisor)
273  tsb_addr = __pa(tsb_addr);
274 
275  __tsb_insert(tsb_addr, tag, pte);
276 }
277 
278 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
279 
280 static void flush_dcache(unsigned long pfn)
281 {
282  struct page *page;
283 
284  page = pfn_to_page(pfn);
285  if (page) {
286  unsigned long pg_flags;
287 
288  pg_flags = page->flags;
289  if (pg_flags & (1UL << PG_dcache_dirty)) {
290  int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292  int this_cpu = get_cpu();
293 
294  /* This is just to optimize away some function calls
295  * in the SMP case.
296  */
297  if (cpu == this_cpu)
299  else
300  smp_flush_dcache_page_impl(page, cpu);
301 
302  clear_dcache_dirty_cpu(page, cpu);
303 
304  put_cpu();
305  }
306  }
307 }
308 
309 /* mm->context.lock must be held */
310 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
311  unsigned long tsb_hash_shift, unsigned long address,
312  unsigned long tte)
313 {
314  struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
315  unsigned long tag;
316 
317  tsb += ((address >> tsb_hash_shift) &
318  (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
319  tag = (address >> 22UL);
320  tsb_insert(tsb, tag, tte);
321 }
322 
323 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
324 {
325  unsigned long tsb_index, tsb_hash_shift, flags;
326  struct mm_struct *mm;
327  pte_t pte = *ptep;
328 
329  if (tlb_type != hypervisor) {
330  unsigned long pfn = pte_pfn(pte);
331 
332  if (pfn_valid(pfn))
333  flush_dcache(pfn);
334  }
335 
336  mm = vma->vm_mm;
337 
338  tsb_index = MM_TSB_BASE;
339  tsb_hash_shift = PAGE_SHIFT;
340 
341  spin_lock_irqsave(&mm->context.lock, flags);
342 
343 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
344  if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
345  if ((tlb_type == hypervisor &&
346  (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
347  (tlb_type != hypervisor &&
348  (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
349  tsb_index = MM_TSB_HUGE;
350  tsb_hash_shift = HPAGE_SHIFT;
351  }
352  }
353 #endif
354 
355  __update_mmu_tsb_insert(mm, tsb_index, tsb_hash_shift,
356  address, pte_val(pte));
357 
358  spin_unlock_irqrestore(&mm->context.lock, flags);
359 }
360 
361 void flush_dcache_page(struct page *page)
362 {
363  struct address_space *mapping;
364  int this_cpu;
365 
366  if (tlb_type == hypervisor)
367  return;
368 
369  /* Do not bother with the expensive D-cache flush if it
370  * is merely the zero page. The 'bigcore' testcase in GDB
371  * causes this case to run millions of times.
372  */
373  if (page == ZERO_PAGE(0))
374  return;
375 
376  this_cpu = get_cpu();
377 
378  mapping = page_mapping(page);
379  if (mapping && !mapping_mapped(mapping)) {
380  int dirty = test_bit(PG_dcache_dirty, &page->flags);
381  if (dirty) {
382  int dirty_cpu = dcache_dirty_cpu(page);
383 
384  if (dirty_cpu == this_cpu)
385  goto out;
386  smp_flush_dcache_page_impl(page, dirty_cpu);
387  }
388  set_dcache_dirty(page, this_cpu);
389  } else {
390  /* We could delay the flush for the !page_mapping
391  * case too. But that case is for exec env/arg
392  * pages and those are %99 certainly going to get
393  * faulted into the tlb (and thus flushed) anyways.
394  */
396  }
397 
398 out:
399  put_cpu();
400 }
402 
403 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
404 {
405  /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
406  if (tlb_type == spitfire) {
407  unsigned long kaddr;
408 
409  /* This code only runs on Spitfire cpus so this is
410  * why we can assume _PAGE_PADDR_4U.
411  */
412  for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
413  unsigned long paddr, mask = _PAGE_PADDR_4U;
414 
415  if (kaddr >= PAGE_OFFSET)
416  paddr = kaddr & mask;
417  else {
418  pgd_t *pgdp = pgd_offset_k(kaddr);
419  pud_t *pudp = pud_offset(pgdp, kaddr);
420  pmd_t *pmdp = pmd_offset(pudp, kaddr);
421  pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
422 
423  paddr = pte_val(*ptep) & mask;
424  }
425  __flush_icache_page(paddr);
426  }
427  }
428 }
430 
431 void mmu_info(struct seq_file *m)
432 {
433  static const char *pgsz_strings[] = {
434  "8K", "64K", "512K", "4MB", "32MB",
435  "256MB", "2GB", "16GB",
436  };
437  int i, printed;
438 
439  if (tlb_type == cheetah)
440  seq_printf(m, "MMU Type\t: Cheetah\n");
441  else if (tlb_type == cheetah_plus)
442  seq_printf(m, "MMU Type\t: Cheetah+\n");
443  else if (tlb_type == spitfire)
444  seq_printf(m, "MMU Type\t: Spitfire\n");
445  else if (tlb_type == hypervisor)
446  seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
447  else
448  seq_printf(m, "MMU Type\t: ???\n");
449 
450  seq_printf(m, "MMU PGSZs\t: ");
451  printed = 0;
452  for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
453  if (cpu_pgsz_mask & (1UL << i)) {
454  seq_printf(m, "%s%s",
455  printed ? "," : "", pgsz_strings[i]);
456  printed++;
457  }
458  }
459  seq_putc(m, '\n');
460 
461 #ifdef CONFIG_DEBUG_DCFLUSH
462  seq_printf(m, "DCPageFlushes\t: %d\n",
463  atomic_read(&dcpage_flushes));
464 #ifdef CONFIG_SMP
465  seq_printf(m, "DCPageFlushesXC\t: %d\n",
466  atomic_read(&dcpage_flushes_xcall));
467 #endif /* CONFIG_SMP */
468 #endif /* CONFIG_DEBUG_DCFLUSH */
469 }
470 
471 struct linux_prom_translation prom_trans[512] __read_mostly;
472 unsigned int prom_trans_ents __read_mostly;
473 
474 unsigned long kern_locked_tte_data;
475 
476 /* The obp translations are saved based on 8k pagesize, since obp can
477  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
478  * HI_OBP_ADDRESS range are handled in ktlb.S.
479  */
480 static inline int in_obp_range(unsigned long vaddr)
481 {
482  return (vaddr >= LOW_OBP_ADDRESS &&
483  vaddr < HI_OBP_ADDRESS);
484 }
485 
486 static int cmp_ptrans(const void *a, const void *b)
487 {
488  const struct linux_prom_translation *x = a, *y = b;
489 
490  if (x->virt > y->virt)
491  return 1;
492  if (x->virt < y->virt)
493  return -1;
494  return 0;
495 }
496 
497 /* Read OBP translations property into 'prom_trans[]'. */
498 static void __init read_obp_translations(void)
499 {
500  int n, node, ents, first, last, i;
501 
502  node = prom_finddevice("/virtual-memory");
503  n = prom_getproplen(node, "translations");
504  if (unlikely(n == 0 || n == -1)) {
505  prom_printf("prom_mappings: Couldn't get size.\n");
506  prom_halt();
507  }
508  if (unlikely(n > sizeof(prom_trans))) {
509  prom_printf("prom_mappings: Size %d is too big.\n", n);
510  prom_halt();
511  }
512 
513  if ((n = prom_getproperty(node, "translations",
514  (char *)&prom_trans[0],
515  sizeof(prom_trans))) == -1) {
516  prom_printf("prom_mappings: Couldn't get property.\n");
517  prom_halt();
518  }
519 
520  n = n / sizeof(struct linux_prom_translation);
521 
522  ents = n;
523 
524  sort(prom_trans, ents, sizeof(struct linux_prom_translation),
525  cmp_ptrans, NULL);
526 
527  /* Now kick out all the non-OBP entries. */
528  for (i = 0; i < ents; i++) {
529  if (in_obp_range(prom_trans[i].virt))
530  break;
531  }
532  first = i;
533  for (; i < ents; i++) {
534  if (!in_obp_range(prom_trans[i].virt))
535  break;
536  }
537  last = i;
538 
539  for (i = 0; i < (last - first); i++) {
540  struct linux_prom_translation *src = &prom_trans[i + first];
542 
543  *dest = *src;
544  }
545  for (; i < ents; i++) {
547  dest->virt = dest->size = dest->data = 0x0UL;
548  }
549 
550  prom_trans_ents = last - first;
551 
552  if (tlb_type == spitfire) {
553  /* Clear diag TTE bits. */
554  for (i = 0; i < prom_trans_ents; i++)
555  prom_trans[i].data &= ~0x0003fe0000000000UL;
556  }
557 
558  /* Force execute bit on. */
559  for (i = 0; i < prom_trans_ents; i++)
560  prom_trans[i].data |= (tlb_type == hypervisor ?
562 }
563 
564 static void __init hypervisor_tlb_lock(unsigned long vaddr,
565  unsigned long pte,
566  unsigned long mmu)
567 {
568  unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
569 
570  if (ret != 0) {
571  prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
572  "errors with %lx\n", vaddr, 0, pte, mmu, ret);
573  prom_halt();
574  }
575 }
576 
577 static unsigned long kern_large_tte(unsigned long paddr);
578 
579 static void __init remap_kernel(void)
580 {
581  unsigned long phys_page, tte_vaddr, tte_data;
582  int i, tlb_ent = sparc64_highest_locked_tlbent();
583 
584  tte_vaddr = (unsigned long) KERNBASE;
585  phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
586  tte_data = kern_large_tte(phys_page);
587 
588  kern_locked_tte_data = tte_data;
589 
590  /* Now lock us into the TLBs via Hypervisor or OBP. */
591  if (tlb_type == hypervisor) {
592  for (i = 0; i < num_kernel_image_mappings; i++) {
593  hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
594  hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
595  tte_vaddr += 0x400000;
596  tte_data += 0x400000;
597  }
598  } else {
599  for (i = 0; i < num_kernel_image_mappings; i++) {
600  prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
601  prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
602  tte_vaddr += 0x400000;
603  tte_data += 0x400000;
604  }
606  }
607  if (tlb_type == cheetah_plus) {
612  }
613 }
614 
615 
616 static void __init inherit_prom_mappings(void)
617 {
618  /* Now fixup OBP's idea about where we really are mapped. */
619  printk("Remapping the kernel... ");
620  remap_kernel();
621  printk("done.\n");
622 }
623 
624 void prom_world(int enter)
625 {
626  if (!enter)
627  set_fs((mm_segment_t) { get_thread_current_ds() });
628 
629  __asm__ __volatile__("flushw");
630 }
631 
632 void __flush_dcache_range(unsigned long start, unsigned long end)
633 {
634  unsigned long va;
635 
636  if (tlb_type == spitfire) {
637  int n = 0;
638 
639  for (va = start; va < end; va += 32) {
640  spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
641  if (++n >= 512)
642  break;
643  }
644  } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
645  start = __pa(start);
646  end = __pa(end);
647  for (va = start; va < end; va += 32)
648  __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
649  "membar #Sync"
650  : /* no outputs */
651  : "r" (va),
652  "i" (ASI_DCACHE_INVALIDATE));
653  }
654 }
656 
657 /* get_new_mmu_context() uses "cache + 1". */
658 DEFINE_SPINLOCK(ctx_alloc_lock);
660 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
661 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
662 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
663 
664 /* Caller does TLB context flushing on local CPU if necessary.
665  * The caller also ensures that CTX_VALID(mm->context) is false.
666  *
667  * We must be careful about boundary cases so that we never
668  * let the user have CTX 0 (nucleus) or we ever use a CTX
669  * version of zero (and thus NO_CONTEXT would not be caught
670  * by version mis-match tests in mmu_context.h).
671  *
672  * Always invoked with interrupts disabled.
673  */
675 {
676  unsigned long ctx, new_ctx;
677  unsigned long orig_pgsz_bits;
678  unsigned long flags;
679  int new_version;
680 
682  orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
683  ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
684  new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
685  new_version = 0;
686  if (new_ctx >= (1 << CTX_NR_BITS)) {
687  new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
688  if (new_ctx >= ctx) {
689  int i;
690  new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
692  if (new_ctx == 1)
693  new_ctx = CTX_FIRST_VERSION;
694 
695  /* Don't call memset, for 16 entries that's just
696  * plain silly...
697  */
698  mmu_context_bmap[0] = 3;
699  mmu_context_bmap[1] = 0;
700  mmu_context_bmap[2] = 0;
701  mmu_context_bmap[3] = 0;
702  for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
703  mmu_context_bmap[i + 0] = 0;
704  mmu_context_bmap[i + 1] = 0;
705  mmu_context_bmap[i + 2] = 0;
706  mmu_context_bmap[i + 3] = 0;
707  }
708  new_version = 1;
709  goto out;
710  }
711  }
712  mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
713  new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
714 out:
715  tlb_context_cache = new_ctx;
716  mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
717  spin_unlock_irqrestore(&ctx_alloc_lock, flags);
718 
719  if (unlikely(new_version))
721 }
722 
723 static int numa_enabled = 1;
724 static int numa_debug;
725 
726 static int __init early_numa(char *p)
727 {
728  if (!p)
729  return 0;
730 
731  if (strstr(p, "off"))
732  numa_enabled = 0;
733 
734  if (strstr(p, "debug"))
735  numa_debug = 1;
736 
737  return 0;
738 }
739 early_param("numa", early_numa);
740 
741 #define numadbg(f, a...) \
742 do { if (numa_debug) \
743  printk(KERN_INFO f, ## a); \
744 } while (0)
745 
746 static void __init find_ramdisk(unsigned long phys_base)
747 {
748 #ifdef CONFIG_BLK_DEV_INITRD
749  if (sparc_ramdisk_image || sparc_ramdisk_image64) {
750  unsigned long ramdisk_image;
751 
752  /* Older versions of the bootloader only supported a
753  * 32-bit physical address for the ramdisk image
754  * location, stored at sparc_ramdisk_image. Newer
755  * SILO versions set sparc_ramdisk_image to zero and
756  * provide a full 64-bit physical address at
757  * sparc_ramdisk_image64.
758  */
759  ramdisk_image = sparc_ramdisk_image;
760  if (!ramdisk_image)
761  ramdisk_image = sparc_ramdisk_image64;
762 
763  /* Another bootloader quirk. The bootloader normalizes
764  * the physical address to KERNBASE, so we have to
765  * factor that back out and add in the lowest valid
766  * physical page address to get the true physical address.
767  */
768  ramdisk_image -= KERNBASE;
769  ramdisk_image += phys_base;
770 
771  numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
772  ramdisk_image, sparc_ramdisk_size);
773 
775  initrd_end = ramdisk_image + sparc_ramdisk_size;
776 
777  memblock_reserve(initrd_start, sparc_ramdisk_size);
778 
781  }
782 #endif
783 }
784 
786  unsigned long mask;
787  unsigned long val;
788 };
789 static struct node_mem_mask node_masks[MAX_NUMNODES];
790 static int num_node_masks;
791 
794 
795 #ifdef CONFIG_NEED_MULTIPLE_NODES
796 
797 struct mdesc_mblock {
798  u64 base;
799  u64 size;
800  u64 offset; /* RA-to-PA */
801 };
802 static struct mdesc_mblock *mblocks;
803 static int num_mblocks;
804 
805 static unsigned long ra_to_pa(unsigned long addr)
806 {
807  int i;
808 
809  for (i = 0; i < num_mblocks; i++) {
810  struct mdesc_mblock *m = &mblocks[i];
811 
812  if (addr >= m->base &&
813  addr < (m->base + m->size)) {
814  addr += m->offset;
815  break;
816  }
817  }
818  return addr;
819 }
820 
821 static int find_node(unsigned long addr)
822 {
823  int i;
824 
825  addr = ra_to_pa(addr);
826  for (i = 0; i < num_node_masks; i++) {
827  struct node_mem_mask *p = &node_masks[i];
828 
829  if ((addr & p->mask) == p->val)
830  return i;
831  }
832  return -1;
833 }
834 
835 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
836 {
837  *nid = find_node(start);
838  start += PAGE_SIZE;
839  while (start < end) {
840  int n = find_node(start);
841 
842  if (n != *nid)
843  break;
844  start += PAGE_SIZE;
845  }
846 
847  if (start > end)
848  start = end;
849 
850  return start;
851 }
852 #endif
853 
854 /* This must be invoked after performing all of the necessary
855  * memblock_set_node() calls for 'nid'. We need to be able to get
856  * correct data from get_pfn_range_for_nid().
857  */
858 static void __init allocate_node_data(int nid)
859 {
860  struct pglist_data *p;
861  unsigned long start_pfn, end_pfn;
862 #ifdef CONFIG_NEED_MULTIPLE_NODES
863  unsigned long paddr;
864 
865  paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
866  if (!paddr) {
867  prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
868  prom_halt();
869  }
870  NODE_DATA(nid) = __va(paddr);
871  memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
872 
873  NODE_DATA(nid)->node_id = nid;
874 #endif
875 
876  p = NODE_DATA(nid);
877 
878  get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
879  p->node_start_pfn = start_pfn;
880  p->node_spanned_pages = end_pfn - start_pfn;
881 }
882 
883 static void init_node_masks_nonnuma(void)
884 {
885  int i;
886 
887  numadbg("Initializing tables for non-numa.\n");
888 
889  node_masks[0].mask = node_masks[0].val = 0;
890  num_node_masks = 1;
891 
892  for (i = 0; i < NR_CPUS; i++)
893  numa_cpu_lookup_table[i] = 0;
894 
895  cpumask_setall(&numa_cpumask_lookup_table[0]);
896 }
897 
898 #ifdef CONFIG_NEED_MULTIPLE_NODES
900 
901 EXPORT_SYMBOL(numa_cpu_lookup_table);
902 EXPORT_SYMBOL(numa_cpumask_lookup_table);
903 EXPORT_SYMBOL(node_data);
904 
905 struct mdesc_mlgroup {
906  u64 node;
907  u64 latency;
908  u64 match;
909  u64 mask;
910 };
911 static struct mdesc_mlgroup *mlgroups;
912 static int num_mlgroups;
913 
914 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
915  u32 cfg_handle)
916 {
917  u64 arc;
918 
919  mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
920  u64 target = mdesc_arc_target(md, arc);
921  const u64 *val;
922 
923  val = mdesc_get_property(md, target,
924  "cfg-handle", NULL);
925  if (val && *val == cfg_handle)
926  return 0;
927  }
928  return -ENODEV;
929 }
930 
931 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
932  u32 cfg_handle)
933 {
934  u64 arc, candidate, best_latency = ~(u64)0;
935 
936  candidate = MDESC_NODE_NULL;
937  mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
938  u64 target = mdesc_arc_target(md, arc);
939  const char *name = mdesc_node_name(md, target);
940  const u64 *val;
941 
942  if (strcmp(name, "pio-latency-group"))
943  continue;
944 
945  val = mdesc_get_property(md, target, "latency", NULL);
946  if (!val)
947  continue;
948 
949  if (*val < best_latency) {
950  candidate = target;
951  best_latency = *val;
952  }
953  }
954 
955  if (candidate == MDESC_NODE_NULL)
956  return -ENODEV;
957 
958  return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
959 }
960 
961 int of_node_to_nid(struct device_node *dp)
962 {
963  const struct linux_prom64_registers *regs;
964  struct mdesc_handle *md;
965  u32 cfg_handle;
966  int count, nid;
967  u64 grp;
968 
969  /* This is the right thing to do on currently supported
970  * SUN4U NUMA platforms as well, as the PCI controller does
971  * not sit behind any particular memory controller.
972  */
973  if (!mlgroups)
974  return -1;
975 
976  regs = of_get_property(dp, "reg", NULL);
977  if (!regs)
978  return -1;
979 
980  cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
981 
982  md = mdesc_grab();
983 
984  count = 0;
985  nid = -1;
986  mdesc_for_each_node_by_name(md, grp, "group") {
987  if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
988  nid = count;
989  break;
990  }
991  count++;
992  }
993 
994  mdesc_release(md);
995 
996  return nid;
997 }
998 
999 static void __init add_node_ranges(void)
1000 {
1001  struct memblock_region *reg;
1002 
1003  for_each_memblock(memory, reg) {
1004  unsigned long size = reg->size;
1005  unsigned long start, end;
1006 
1007  start = reg->base;
1008  end = start + size;
1009  while (start < end) {
1010  unsigned long this_end;
1011  int nid;
1012 
1013  this_end = memblock_nid_range(start, end, &nid);
1014 
1015  numadbg("Setting memblock NUMA node nid[%d] "
1016  "start[%lx] end[%lx]\n",
1017  nid, start, this_end);
1018 
1019  memblock_set_node(start, this_end - start, nid);
1020  start = this_end;
1021  }
1022  }
1023 }
1024 
1025 static int __init grab_mlgroups(struct mdesc_handle *md)
1026 {
1027  unsigned long paddr;
1028  int count = 0;
1029  u64 node;
1030 
1031  mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1032  count++;
1033  if (!count)
1034  return -ENOENT;
1035 
1036  paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1037  SMP_CACHE_BYTES);
1038  if (!paddr)
1039  return -ENOMEM;
1040 
1041  mlgroups = __va(paddr);
1042  num_mlgroups = count;
1043 
1044  count = 0;
1046  struct mdesc_mlgroup *m = &mlgroups[count++];
1047  const u64 *val;
1048 
1049  m->node = node;
1050 
1051  val = mdesc_get_property(md, node, "latency", NULL);
1052  m->latency = *val;
1053  val = mdesc_get_property(md, node, "address-match", NULL);
1054  m->match = *val;
1055  val = mdesc_get_property(md, node, "address-mask", NULL);
1056  m->mask = *val;
1057 
1058  numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1059  "match[%llx] mask[%llx]\n",
1060  count - 1, m->node, m->latency, m->match, m->mask);
1061  }
1062 
1063  return 0;
1064 }
1065 
1066 static int __init grab_mblocks(struct mdesc_handle *md)
1067 {
1068  unsigned long paddr;
1069  int count = 0;
1070  u64 node;
1071 
1072  mdesc_for_each_node_by_name(md, node, "mblock")
1073  count++;
1074  if (!count)
1075  return -ENOENT;
1076 
1077  paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1078  SMP_CACHE_BYTES);
1079  if (!paddr)
1080  return -ENOMEM;
1081 
1082  mblocks = __va(paddr);
1083  num_mblocks = count;
1084 
1085  count = 0;
1086  mdesc_for_each_node_by_name(md, node, "mblock") {
1087  struct mdesc_mblock *m = &mblocks[count++];
1088  const u64 *val;
1089 
1090  val = mdesc_get_property(md, node, "base", NULL);
1091  m->base = *val;
1092  val = mdesc_get_property(md, node, "size", NULL);
1093  m->size = *val;
1094  val = mdesc_get_property(md, node,
1095  "address-congruence-offset", NULL);
1096  m->offset = *val;
1097 
1098  numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1099  count - 1, m->base, m->size, m->offset);
1100  }
1101 
1102  return 0;
1103 }
1104 
1105 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1106  u64 grp, cpumask_t *mask)
1107 {
1108  u64 arc;
1109 
1110  cpumask_clear(mask);
1111 
1112  mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1113  u64 target = mdesc_arc_target(md, arc);
1114  const char *name = mdesc_node_name(md, target);
1115  const u64 *id;
1116 
1117  if (strcmp(name, "cpu"))
1118  continue;
1119  id = mdesc_get_property(md, target, "id", NULL);
1120  if (*id < nr_cpu_ids)
1121  cpumask_set_cpu(*id, mask);
1122  }
1123 }
1124 
1125 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1126 {
1127  int i;
1128 
1129  for (i = 0; i < num_mlgroups; i++) {
1130  struct mdesc_mlgroup *m = &mlgroups[i];
1131  if (m->node == node)
1132  return m;
1133  }
1134  return NULL;
1135 }
1136 
1137 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1138  int index)
1139 {
1140  struct mdesc_mlgroup *candidate = NULL;
1141  u64 arc, best_latency = ~(u64)0;
1142  struct node_mem_mask *n;
1143 
1144  mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1145  u64 target = mdesc_arc_target(md, arc);
1146  struct mdesc_mlgroup *m = find_mlgroup(target);
1147  if (!m)
1148  continue;
1149  if (m->latency < best_latency) {
1150  candidate = m;
1151  best_latency = m->latency;
1152  }
1153  }
1154  if (!candidate)
1155  return -ENOENT;
1156 
1157  if (num_node_masks != index) {
1158  printk(KERN_ERR "Inconsistent NUMA state, "
1159  "index[%d] != num_node_masks[%d]\n",
1160  index, num_node_masks);
1161  return -EINVAL;
1162  }
1163 
1164  n = &node_masks[num_node_masks++];
1165 
1166  n->mask = candidate->mask;
1167  n->val = candidate->match;
1168 
1169  numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1170  index, n->mask, n->val, candidate->latency);
1171 
1172  return 0;
1173 }
1174 
1175 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1176  int index)
1177 {
1178  cpumask_t mask;
1179  int cpu;
1180 
1181  numa_parse_mdesc_group_cpus(md, grp, &mask);
1182 
1183  for_each_cpu(cpu, &mask)
1184  numa_cpu_lookup_table[cpu] = index;
1185  cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1186 
1187  if (numa_debug) {
1188  printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1189  for_each_cpu(cpu, &mask)
1190  printk("%d ", cpu);
1191  printk("]\n");
1192  }
1193 
1194  return numa_attach_mlgroup(md, grp, index);
1195 }
1196 
1197 static int __init numa_parse_mdesc(void)
1198 {
1199  struct mdesc_handle *md = mdesc_grab();
1200  int i, err, count;
1201  u64 node;
1202 
1203  node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1204  if (node == MDESC_NODE_NULL) {
1205  mdesc_release(md);
1206  return -ENOENT;
1207  }
1208 
1209  err = grab_mblocks(md);
1210  if (err < 0)
1211  goto out;
1212 
1213  err = grab_mlgroups(md);
1214  if (err < 0)
1215  goto out;
1216 
1217  count = 0;
1218  mdesc_for_each_node_by_name(md, node, "group") {
1219  err = numa_parse_mdesc_group(md, node, count);
1220  if (err < 0)
1221  break;
1222  count++;
1223  }
1224 
1225  add_node_ranges();
1226 
1227  for (i = 0; i < num_node_masks; i++) {
1228  allocate_node_data(i);
1229  node_set_online(i);
1230  }
1231 
1232  err = 0;
1233 out:
1234  mdesc_release(md);
1235  return err;
1236 }
1237 
1238 static int __init numa_parse_jbus(void)
1239 {
1240  unsigned long cpu, index;
1241 
1242  /* NUMA node id is encoded in bits 36 and higher, and there is
1243  * a 1-to-1 mapping from CPU ID to NUMA node ID.
1244  */
1245  index = 0;
1246  for_each_present_cpu(cpu) {
1247  numa_cpu_lookup_table[cpu] = index;
1248  cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1249  node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1250  node_masks[index].val = cpu << 36UL;
1251 
1252  index++;
1253  }
1254  num_node_masks = index;
1255 
1256  add_node_ranges();
1257 
1258  for (index = 0; index < num_node_masks; index++) {
1259  allocate_node_data(index);
1260  node_set_online(index);
1261  }
1262 
1263  return 0;
1264 }
1265 
1266 static int __init numa_parse_sun4u(void)
1267 {
1268  if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1269  unsigned long ver;
1270 
1271  __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1272  if ((ver >> 32UL) == __JALAPENO_ID ||
1273  (ver >> 32UL) == __SERRANO_ID)
1274  return numa_parse_jbus();
1275  }
1276  return -1;
1277 }
1278 
1279 static int __init bootmem_init_numa(void)
1280 {
1281  int err = -1;
1282 
1283  numadbg("bootmem_init_numa()\n");
1284 
1285  if (numa_enabled) {
1286  if (tlb_type == hypervisor)
1287  err = numa_parse_mdesc();
1288  else
1289  err = numa_parse_sun4u();
1290  }
1291  return err;
1292 }
1293 
1294 #else
1295 
1296 static int bootmem_init_numa(void)
1297 {
1298  return -1;
1299 }
1300 
1301 #endif
1302 
1303 static void __init bootmem_init_nonnuma(void)
1304 {
1305  unsigned long top_of_ram = memblock_end_of_DRAM();
1306  unsigned long total_ram = memblock_phys_mem_size();
1307 
1308  numadbg("bootmem_init_nonnuma()\n");
1309 
1310  printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1311  top_of_ram, total_ram);
1312  printk(KERN_INFO "Memory hole size: %ldMB\n",
1313  (top_of_ram - total_ram) >> 20);
1314 
1315  init_node_masks_nonnuma();
1316  memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
1317  allocate_node_data(0);
1318  node_set_online(0);
1319 }
1320 
1321 static unsigned long __init bootmem_init(unsigned long phys_base)
1322 {
1323  unsigned long end_pfn;
1324 
1325  end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1326  max_pfn = max_low_pfn = end_pfn;
1327  min_low_pfn = (phys_base >> PAGE_SHIFT);
1328 
1329  if (bootmem_init_numa() < 0)
1330  bootmem_init_nonnuma();
1331 
1332  /* Dump memblock with node info. */
1333  memblock_dump_all();
1334 
1335  /* XXX cpu notifier XXX */
1336 
1337  sparse_memory_present_with_active_regions(MAX_NUMNODES);
1338  sparse_init();
1339 
1340  return end_pfn;
1341 }
1342 
1343 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1344 static int pall_ents __initdata;
1345 
1346 #ifdef CONFIG_DEBUG_PAGEALLOC
1347 static unsigned long __ref kernel_map_range(unsigned long pstart,
1348  unsigned long pend, pgprot_t prot)
1349 {
1350  unsigned long vstart = PAGE_OFFSET + pstart;
1351  unsigned long vend = PAGE_OFFSET + pend;
1352  unsigned long alloc_bytes = 0UL;
1353 
1354  if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1355  prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1356  vstart, vend);
1357  prom_halt();
1358  }
1359 
1360  while (vstart < vend) {
1361  unsigned long this_end, paddr = __pa(vstart);
1362  pgd_t *pgd = pgd_offset_k(vstart);
1363  pud_t *pud;
1364  pmd_t *pmd;
1365  pte_t *pte;
1366 
1367  pud = pud_offset(pgd, vstart);
1368  if (pud_none(*pud)) {
1369  pmd_t *new;
1370 
1372  alloc_bytes += PAGE_SIZE;
1373  pud_populate(&init_mm, pud, new);
1374  }
1375 
1376  pmd = pmd_offset(pud, vstart);
1377  if (!pmd_present(*pmd)) {
1378  pte_t *new;
1379 
1381  alloc_bytes += PAGE_SIZE;
1382  pmd_populate_kernel(&init_mm, pmd, new);
1383  }
1384 
1385  pte = pte_offset_kernel(pmd, vstart);
1386  this_end = (vstart + PMD_SIZE) & PMD_MASK;
1387  if (this_end > vend)
1388  this_end = vend;
1389 
1390  while (vstart < this_end) {
1391  pte_val(*pte) = (paddr | pgprot_val(prot));
1392 
1393  vstart += PAGE_SIZE;
1394  paddr += PAGE_SIZE;
1395  pte++;
1396  }
1397  }
1398 
1399  return alloc_bytes;
1400 }
1401 
1402 extern unsigned int kvmap_linear_patch[1];
1403 #endif /* CONFIG_DEBUG_PAGEALLOC */
1404 
1405 static void __init kpte_set_val(unsigned long index, unsigned long val)
1406 {
1407  unsigned long *ptr = kpte_linear_bitmap;
1408 
1409  val <<= ((index % (BITS_PER_LONG / 2)) * 2);
1410  ptr += (index / (BITS_PER_LONG / 2));
1411 
1412  *ptr |= val;
1413 }
1414 
1415 static const unsigned long kpte_shift_min = 28; /* 256MB */
1416 static const unsigned long kpte_shift_max = 34; /* 16GB */
1417 static const unsigned long kpte_shift_incr = 3;
1418 
1419 static unsigned long kpte_mark_using_shift(unsigned long start, unsigned long end,
1420  unsigned long shift)
1421 {
1422  unsigned long size = (1UL << shift);
1423  unsigned long mask = (size - 1UL);
1424  unsigned long remains = end - start;
1425  unsigned long val;
1426 
1427  if (remains < size || (start & mask))
1428  return start;
1429 
1430  /* VAL maps:
1431  *
1432  * shift 28 --> kern_linear_pte_xor index 1
1433  * shift 31 --> kern_linear_pte_xor index 2
1434  * shift 34 --> kern_linear_pte_xor index 3
1435  */
1436  val = ((shift - kpte_shift_min) / kpte_shift_incr) + 1;
1437 
1438  remains &= ~mask;
1439  if (shift != kpte_shift_max)
1440  remains = size;
1441 
1442  while (remains) {
1443  unsigned long index = start >> kpte_shift_min;
1444 
1445  kpte_set_val(index, val);
1446 
1447  start += 1UL << kpte_shift_min;
1448  remains -= 1UL << kpte_shift_min;
1449  }
1450 
1451  return start;
1452 }
1453 
1454 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1455 {
1456  unsigned long smallest_size, smallest_mask;
1457  unsigned long s;
1458 
1459  smallest_size = (1UL << kpte_shift_min);
1460  smallest_mask = (smallest_size - 1UL);
1461 
1462  while (start < end) {
1463  unsigned long orig_start = start;
1464 
1465  for (s = kpte_shift_max; s >= kpte_shift_min; s -= kpte_shift_incr) {
1466  start = kpte_mark_using_shift(start, end, s);
1467 
1468  if (start != orig_start)
1469  break;
1470  }
1471 
1472  if (start == orig_start)
1473  start = (start + smallest_size) & ~smallest_mask;
1474  }
1475 }
1476 
1477 static void __init init_kpte_bitmap(void)
1478 {
1479  unsigned long i;
1480 
1481  for (i = 0; i < pall_ents; i++) {
1482  unsigned long phys_start, phys_end;
1483 
1484  phys_start = pall[i].phys_addr;
1485  phys_end = phys_start + pall[i].reg_size;
1486 
1487  mark_kpte_bitmap(phys_start, phys_end);
1488  }
1489 }
1490 
1491 static void __init kernel_physical_mapping_init(void)
1492 {
1493 #ifdef CONFIG_DEBUG_PAGEALLOC
1494  unsigned long i, mem_alloced = 0UL;
1495 
1496  for (i = 0; i < pall_ents; i++) {
1497  unsigned long phys_start, phys_end;
1498 
1499  phys_start = pall[i].phys_addr;
1500  phys_end = phys_start + pall[i].reg_size;
1501 
1502  mem_alloced += kernel_map_range(phys_start, phys_end,
1503  PAGE_KERNEL);
1504  }
1505 
1506  printk("Allocated %ld bytes for kernel page tables.\n",
1507  mem_alloced);
1508 
1509  kvmap_linear_patch[0] = 0x01000000; /* nop */
1510  flushi(&kvmap_linear_patch[0]);
1511 
1512  __flush_tlb_all();
1513 #endif
1514 }
1515 
1516 #ifdef CONFIG_DEBUG_PAGEALLOC
1517 void kernel_map_pages(struct page *page, int numpages, int enable)
1518 {
1519  unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1520  unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1521 
1522  kernel_map_range(phys_start, phys_end,
1523  (enable ? PAGE_KERNEL : __pgprot(0)));
1524 
1525  flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1526  PAGE_OFFSET + phys_end);
1527 
1528  /* we should perform an IPI and flush all tlbs,
1529  * but that can deadlock->flush only current cpu.
1530  */
1532  PAGE_OFFSET + phys_end);
1533 }
1534 #endif
1535 
1536 unsigned long __init find_ecache_flush_span(unsigned long size)
1537 {
1538  int i;
1539 
1540  for (i = 0; i < pavail_ents; i++) {
1541  if (pavail[i].reg_size >= size)
1542  return pavail[i].phys_addr;
1543  }
1544 
1545  return ~0UL;
1546 }
1547 
1548 static void __init tsb_phys_patch(void)
1549 {
1550  struct tsb_ldquad_phys_patch_entry *pquad;
1551  struct tsb_phys_patch_entry *p;
1552 
1553  pquad = &__tsb_ldquad_phys_patch;
1554  while (pquad < &__tsb_ldquad_phys_patch_end) {
1555  unsigned long addr = pquad->addr;
1556 
1557  if (tlb_type == hypervisor)
1558  *(unsigned int *) addr = pquad->sun4v_insn;
1559  else
1560  *(unsigned int *) addr = pquad->sun4u_insn;
1561  wmb();
1562  __asm__ __volatile__("flush %0"
1563  : /* no outputs */
1564  : "r" (addr));
1565 
1566  pquad++;
1567  }
1568 
1569  p = &__tsb_phys_patch;
1570  while (p < &__tsb_phys_patch_end) {
1571  unsigned long addr = p->addr;
1572 
1573  *(unsigned int *) addr = p->insn;
1574  wmb();
1575  __asm__ __volatile__("flush %0"
1576  : /* no outputs */
1577  : "r" (addr));
1578 
1579  p++;
1580  }
1581 }
1582 
1583 /* Don't mark as init, we give this to the Hypervisor. */
1584 #ifndef CONFIG_DEBUG_PAGEALLOC
1585 #define NUM_KTSB_DESCR 2
1586 #else
1587 #define NUM_KTSB_DESCR 1
1588 #endif
1589 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1590 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1591 
1592 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1593 {
1594  pa >>= KTSB_PHYS_SHIFT;
1595 
1596  while (start < end) {
1597  unsigned int *ia = (unsigned int *)(unsigned long)*start;
1598 
1599  ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1600  __asm__ __volatile__("flush %0" : : "r" (ia));
1601 
1602  ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1603  __asm__ __volatile__("flush %0" : : "r" (ia + 1));
1604 
1605  start++;
1606  }
1607 }
1608 
1609 static void ktsb_phys_patch(void)
1610 {
1611  extern unsigned int __swapper_tsb_phys_patch;
1612  extern unsigned int __swapper_tsb_phys_patch_end;
1613  unsigned long ktsb_pa;
1614 
1615  ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1616  patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1617  &__swapper_tsb_phys_patch_end, ktsb_pa);
1618 #ifndef CONFIG_DEBUG_PAGEALLOC
1619  {
1620  extern unsigned int __swapper_4m_tsb_phys_patch;
1621  extern unsigned int __swapper_4m_tsb_phys_patch_end;
1622  ktsb_pa = (kern_base +
1623  ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1624  patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1625  &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1626  }
1627 #endif
1628 }
1629 
1630 static void __init sun4v_ktsb_init(void)
1631 {
1632  unsigned long ktsb_pa;
1633 
1634  /* First KTSB for PAGE_SIZE mappings. */
1635  ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1636 
1637  switch (PAGE_SIZE) {
1638  case 8 * 1024:
1639  default:
1640  ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1641  ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1642  break;
1643 
1644  case 64 * 1024:
1645  ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1646  ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1647  break;
1648 
1649  case 512 * 1024:
1650  ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1651  ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1652  break;
1653 
1654  case 4 * 1024 * 1024:
1655  ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1656  ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1657  break;
1658  }
1659 
1660  ktsb_descr[0].assoc = 1;
1661  ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1662  ktsb_descr[0].ctx_idx = 0;
1663  ktsb_descr[0].tsb_base = ktsb_pa;
1664  ktsb_descr[0].resv = 0;
1665 
1666 #ifndef CONFIG_DEBUG_PAGEALLOC
1667  /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
1668  ktsb_pa = (kern_base +
1669  ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1670 
1671  ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1672  ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1676  cpu_pgsz_mask);
1677  ktsb_descr[1].assoc = 1;
1678  ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1679  ktsb_descr[1].ctx_idx = 0;
1680  ktsb_descr[1].tsb_base = ktsb_pa;
1681  ktsb_descr[1].resv = 0;
1682 #endif
1683 }
1684 
1686 {
1687  unsigned long pa, ret;
1688 
1689  pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1690 
1692  if (ret != 0) {
1693  prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1694  "errors with %lx\n", pa, ret);
1695  prom_halt();
1696  }
1697 }
1698 
1699 static void __init sun4u_linear_pte_xor_finalize(void)
1700 {
1701 #ifndef CONFIG_DEBUG_PAGEALLOC
1702  /* This is where we would add Panther support for
1703  * 32MB and 256MB pages.
1704  */
1705 #endif
1706 }
1707 
1708 static void __init sun4v_linear_pte_xor_finalize(void)
1709 {
1710 #ifndef CONFIG_DEBUG_PAGEALLOC
1711  if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1713  0xfffff80000000000UL;
1716  } else {
1718  }
1719 
1720  if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1722  0xfffff80000000000UL;
1725  } else {
1727  }
1728 
1729  if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
1731  0xfffff80000000000UL;
1734  } else {
1736  }
1737 #endif
1738 }
1739 
1740 /* paging_init() sets up the page tables */
1741 
1742 static unsigned long last_valid_pfn;
1744 
1745 static void sun4u_pgprot_init(void);
1746 static void sun4v_pgprot_init(void);
1747 
1749 {
1750  unsigned long end_pfn, shift, phys_base;
1751  unsigned long real_end, i;
1752  int node;
1753 
1754  /* These build time checkes make sure that the dcache_dirty_cpu()
1755  * page->flags usage will work.
1756  *
1757  * When a page gets marked as dcache-dirty, we store the
1758  * cpu number starting at bit 32 in the page->flags. Also,
1759  * functions like clear_dcache_dirty_cpu use the cpu mask
1760  * in 13-bit signed-immediate instruction fields.
1761  */
1762 
1763  /*
1764  * Page flags must not reach into upper 32 bits that are used
1765  * for the cpu number
1766  */
1767  BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1768 
1769  /*
1770  * The bit fields placed in the high range must not reach below
1771  * the 32 bit boundary. Otherwise we cannot place the cpu field
1772  * at the 32 bit boundary.
1773  */
1774  BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1776 
1777  BUILD_BUG_ON(NR_CPUS > 4096);
1778 
1779  kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1780  kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1781 
1782  /* Invalidate both kernel TSBs. */
1783  memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1784 #ifndef CONFIG_DEBUG_PAGEALLOC
1785  memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1786 #endif
1787 
1788  if (tlb_type == hypervisor)
1789  sun4v_pgprot_init();
1790  else
1791  sun4u_pgprot_init();
1792 
1793  if (tlb_type == cheetah_plus ||
1794  tlb_type == hypervisor) {
1795  tsb_phys_patch();
1796  ktsb_phys_patch();
1797  }
1798 
1799  if (tlb_type == hypervisor)
1801 
1802  /* Find available physical memory...
1803  *
1804  * Read it twice in order to work around a bug in openfirmware.
1805  * The call to grab this table itself can cause openfirmware to
1806  * allocate memory, which in turn can take away some space from
1807  * the list of available memory. Reading it twice makes sure
1808  * we really do get the final value.
1809  */
1810  read_obp_translations();
1811  read_obp_memory("reg", &pall[0], &pall_ents);
1812  read_obp_memory("available", &pavail[0], &pavail_ents);
1813  read_obp_memory("available", &pavail[0], &pavail_ents);
1814 
1815  phys_base = 0xffffffffffffffffUL;
1816  for (i = 0; i < pavail_ents; i++) {
1817  phys_base = min(phys_base, pavail[i].phys_addr);
1818  memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1819  }
1820 
1822 
1823  find_ramdisk(phys_base);
1824 
1826 
1828  memblock_dump_all();
1829 
1831 
1832  shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1833 
1834  real_end = (unsigned long)_end;
1835  num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1836  printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1837  num_kernel_image_mappings);
1838 
1839  /* Set kernel pgd to upper alias so physical page computations
1840  * work.
1841  */
1842  init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1843 
1845 
1846  /* Now can init the kernel/bad page tables. */
1847  pud_set(pud_offset(&swapper_pg_dir[0], 0),
1848  swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1849 
1850  inherit_prom_mappings();
1851 
1852  init_kpte_bitmap();
1853 
1854  /* Ok, we can use our TLB miss and window trap handlers safely. */
1855  setup_tba();
1856 
1857  __flush_tlb_all();
1858 
1861 #ifndef CONFIG_SMP
1863 #endif
1864 
1865  if (tlb_type == hypervisor) {
1866  sun4v_mdesc_init();
1868 #ifndef CONFIG_SMP
1870 #endif
1871  mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
1872 
1873  sun4v_linear_pte_xor_finalize();
1874 
1875  sun4v_ktsb_init();
1877  } else {
1878  unsigned long impl, ver;
1879 
1880  cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
1882 
1883  __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
1884  impl = ((ver >> 32) & 0xffff);
1885  if (impl == PANTHER_IMPL)
1886  cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
1888 
1889  sun4u_linear_pte_xor_finalize();
1890  }
1891 
1892  /* Flush the TLBs and the 4M TSB so that the updated linear
1893  * pte XOR settings are realized for all mappings.
1894  */
1895  __flush_tlb_all();
1896 #ifndef CONFIG_DEBUG_PAGEALLOC
1897  memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1898 #endif
1899  __flush_tlb_all();
1900 
1901  /* Setup bootmem... */
1902  last_valid_pfn = end_pfn = bootmem_init(phys_base);
1903 
1904  /* Once the OF device tree and MDESC have been setup, we know
1905  * the list of possible cpus. Therefore we can allocate the
1906  * IRQ stacks.
1907  */
1909  node = cpu_to_node(i);
1910 
1912  THREAD_SIZE,
1913  THREAD_SIZE, 0);
1915  THREAD_SIZE,
1916  THREAD_SIZE, 0);
1917  }
1918 
1919  kernel_physical_mapping_init();
1920 
1921  {
1922  unsigned long max_zone_pfns[MAX_NR_ZONES];
1923 
1924  memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1925 
1926  max_zone_pfns[ZONE_NORMAL] = end_pfn;
1927 
1928  free_area_init_nodes(max_zone_pfns);
1929  }
1930 
1931  printk("Booting Linux...\n");
1932 }
1933 
1934 int __devinit page_in_phys_avail(unsigned long paddr)
1935 {
1936  int i;
1937 
1938  paddr &= PAGE_MASK;
1939 
1940  for (i = 0; i < pavail_ents; i++) {
1941  unsigned long start, end;
1942 
1943  start = pavail[i].phys_addr;
1944  end = start + pavail[i].reg_size;
1945 
1946  if (paddr >= start && paddr < end)
1947  return 1;
1948  }
1949  if (paddr >= kern_base && paddr < (kern_base + kern_size))
1950  return 1;
1951 #ifdef CONFIG_BLK_DEV_INITRD
1952  if (paddr >= __pa(initrd_start) &&
1953  paddr < __pa(PAGE_ALIGN(initrd_end)))
1954  return 1;
1955 #endif
1956 
1957  return 0;
1958 }
1959 
1960 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1961 static int pavail_rescan_ents __initdata;
1962 
1963 /* Certain OBP calls, such as fetching "available" properties, can
1964  * claim physical memory. So, along with initializing the valid
1965  * address bitmap, what we do here is refetch the physical available
1966  * memory list again, and make sure it provides at least as much
1967  * memory as 'pavail' does.
1968  */
1969 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1970 {
1971  int i;
1972 
1973  read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1974 
1975  for (i = 0; i < pavail_ents; i++) {
1976  unsigned long old_start, old_end;
1977 
1978  old_start = pavail[i].phys_addr;
1979  old_end = old_start + pavail[i].reg_size;
1980  while (old_start < old_end) {
1981  int n;
1982 
1983  for (n = 0; n < pavail_rescan_ents; n++) {
1984  unsigned long new_start, new_end;
1985 
1986  new_start = pavail_rescan[n].phys_addr;
1987  new_end = new_start +
1988  pavail_rescan[n].reg_size;
1989 
1990  if (new_start <= old_start &&
1991  new_end >= (old_start + PAGE_SIZE)) {
1992  set_bit(old_start >> 22, bitmap);
1993  goto do_next_page;
1994  }
1995  }
1996 
1997  prom_printf("mem_init: Lost memory in pavail\n");
1998  prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1999  pavail[i].phys_addr,
2000  pavail[i].reg_size);
2001  prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
2002  pavail_rescan[i].phys_addr,
2003  pavail_rescan[i].reg_size);
2004  prom_printf("mem_init: Cannot continue, aborting.\n");
2005  prom_halt();
2006 
2007  do_next_page:
2008  old_start += PAGE_SIZE;
2009  }
2010  }
2011 }
2012 
2013 static void __init patch_tlb_miss_handler_bitmap(void)
2014 {
2015  extern unsigned int valid_addr_bitmap_insn[];
2016  extern unsigned int valid_addr_bitmap_patch[];
2017 
2018  valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
2019  mb();
2020  valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
2021  flushi(&valid_addr_bitmap_insn[0]);
2022 }
2023 
2024 void __init mem_init(void)
2025 {
2026  unsigned long codepages, datapages, initpages;
2027  unsigned long addr, last;
2028 
2029  addr = PAGE_OFFSET + kern_base;
2030  last = PAGE_ALIGN(kern_size) + addr;
2031  while (addr < last) {
2032  set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
2033  addr += PAGE_SIZE;
2034  }
2035 
2036  setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
2037  patch_tlb_miss_handler_bitmap();
2038 
2039  high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2040 
2041 #ifdef CONFIG_NEED_MULTIPLE_NODES
2042  {
2043  int i;
2045  if (NODE_DATA(i)->node_spanned_pages != 0) {
2046  totalram_pages +=
2048  }
2049  }
2050  totalram_pages += free_low_memory_core_early(MAX_NUMNODES);
2051  }
2052 #else
2053  totalram_pages = free_all_bootmem();
2054 #endif
2055 
2056  /* We subtract one to account for the mem_map_zero page
2057  * allocated below.
2058  */
2059  totalram_pages -= 1;
2060  num_physpages = totalram_pages;
2061 
2062  /*
2063  * Set up the zero page, mark it reserved, so that page count
2064  * is not manipulated when freeing the page from user ptes.
2065  */
2067  if (mem_map_zero == NULL) {
2068  prom_printf("paging_init: Cannot alloc zero page.\n");
2069  prom_halt();
2070  }
2071  SetPageReserved(mem_map_zero);
2072 
2073  codepages = (((unsigned long) _etext) - ((unsigned long) _start));
2074  codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
2075  datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
2076  datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
2077  initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
2078  initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
2079 
2080  printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
2081  nr_free_pages() << (PAGE_SHIFT-10),
2082  codepages << (PAGE_SHIFT-10),
2083  datapages << (PAGE_SHIFT-10),
2084  initpages << (PAGE_SHIFT-10),
2085  PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
2086 
2087  if (tlb_type == cheetah || tlb_type == cheetah_plus)
2089 }
2090 
2091 void free_initmem(void)
2092 {
2093  unsigned long addr, initend;
2094  int do_free = 1;
2095 
2096  /* If the physical memory maps were trimmed by kernel command
2097  * line options, don't even try freeing this initmem stuff up.
2098  * The kernel image could have been in the trimmed out region
2099  * and if so the freeing below will free invalid page structs.
2100  */
2101  if (cmdline_memory_size)
2102  do_free = 0;
2103 
2104  /*
2105  * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2106  */
2107  addr = PAGE_ALIGN((unsigned long)(__init_begin));
2108  initend = (unsigned long)(__init_end) & PAGE_MASK;
2109  for (; addr < initend; addr += PAGE_SIZE) {
2110  unsigned long page;
2111  struct page *p;
2112 
2113  page = (addr +
2114  ((unsigned long) __va(kern_base)) -
2115  ((unsigned long) KERNBASE));
2116  memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2117 
2118  if (do_free) {
2119  p = virt_to_page(page);
2120 
2121  ClearPageReserved(p);
2122  init_page_count(p);
2123  __free_page(p);
2124  num_physpages++;
2125  totalram_pages++;
2126  }
2127  }
2128 }
2129 
2130 #ifdef CONFIG_BLK_DEV_INITRD
2131 void free_initrd_mem(unsigned long start, unsigned long end)
2132 {
2133  if (start < end)
2134  printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2135  for (; start < end; start += PAGE_SIZE) {
2136  struct page *p = virt_to_page(start);
2137 
2138  ClearPageReserved(p);
2139  init_page_count(p);
2140  __free_page(p);
2141  num_physpages++;
2142  totalram_pages++;
2143  }
2144 }
2145 #endif
2146 
2147 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2148 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2149 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2150 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2151 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2152 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2153 
2155 EXPORT_SYMBOL(PAGE_KERNEL);
2156 
2159 
2161 EXPORT_SYMBOL(PAGE_SHARED);
2162 
2163 unsigned long pg_iobits __read_mostly;
2164 
2165 unsigned long _PAGE_IE __read_mostly;
2166 EXPORT_SYMBOL(_PAGE_IE);
2167 
2168 unsigned long _PAGE_E __read_mostly;
2169 EXPORT_SYMBOL(_PAGE_E);
2170 
2171 unsigned long _PAGE_CACHE __read_mostly;
2172 EXPORT_SYMBOL(_PAGE_CACHE);
2173 
2174 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2175 unsigned long vmemmap_table[VMEMMAP_SIZE];
2176 
2177 static long __meminitdata addr_start, addr_end;
2178 static int __meminitdata node_start;
2179 
2180 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2181 {
2182  unsigned long vstart = (unsigned long) start;
2183  unsigned long vend = (unsigned long) (start + nr);
2184  unsigned long phys_start = (vstart - VMEMMAP_BASE);
2185  unsigned long phys_end = (vend - VMEMMAP_BASE);
2186  unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2187  unsigned long end = VMEMMAP_ALIGN(phys_end);
2188  unsigned long pte_base;
2189 
2190  pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2193  if (tlb_type == hypervisor)
2194  pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2197 
2198  for (; addr < end; addr += VMEMMAP_CHUNK) {
2199  unsigned long *vmem_pp =
2200  vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2201  void *block;
2202 
2203  if (!(*vmem_pp & _PAGE_VALID)) {
2204  block = vmemmap_alloc_block(1UL << 22, node);
2205  if (!block)
2206  return -ENOMEM;
2207 
2208  *vmem_pp = pte_base | __pa(block);
2209 
2210  /* check to see if we have contiguous blocks */
2211  if (addr_end != addr || node_start != node) {
2212  if (addr_start)
2213  printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2214  addr_start, addr_end-1, node_start);
2215  addr_start = addr;
2216  node_start = node;
2217  }
2218  addr_end = addr + VMEMMAP_CHUNK;
2219  }
2220  }
2221  return 0;
2222 }
2223 
2224 void __meminit vmemmap_populate_print_last(void)
2225 {
2226  if (addr_start) {
2227  printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2228  addr_start, addr_end-1, node_start);
2229  addr_start = 0;
2230  addr_end = 0;
2231  node_start = 0;
2232  }
2233 }
2234 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2235 
2236 static void prot_init_common(unsigned long page_none,
2237  unsigned long page_shared,
2238  unsigned long page_copy,
2239  unsigned long page_readonly,
2240  unsigned long page_exec_bit)
2241 {
2242  PAGE_COPY = __pgprot(page_copy);
2243  PAGE_SHARED = __pgprot(page_shared);
2244 
2245  protection_map[0x0] = __pgprot(page_none);
2246  protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2247  protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2248  protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2249  protection_map[0x4] = __pgprot(page_readonly);
2250  protection_map[0x5] = __pgprot(page_readonly);
2251  protection_map[0x6] = __pgprot(page_copy);
2252  protection_map[0x7] = __pgprot(page_copy);
2253  protection_map[0x8] = __pgprot(page_none);
2254  protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2255  protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2256  protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2257  protection_map[0xc] = __pgprot(page_readonly);
2258  protection_map[0xd] = __pgprot(page_readonly);
2259  protection_map[0xe] = __pgprot(page_shared);
2260  protection_map[0xf] = __pgprot(page_shared);
2261 }
2262 
2263 static void __init sun4u_pgprot_init(void)
2264 {
2265  unsigned long page_none, page_shared, page_copy, page_readonly;
2266  unsigned long page_exec_bit;
2267  int i;
2268 
2269  PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2272  _PAGE_EXEC_4U);
2273  PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2277 
2279  _PAGE_E = _PAGE_E_4U;
2281 
2282  pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2284 
2285 #ifdef CONFIG_DEBUG_PAGEALLOC
2286  kern_linear_pte_xor[0] = _PAGE_VALID ^ 0xfffff80000000000UL;
2287 #else
2288  kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2289  0xfffff80000000000UL;
2290 #endif
2293 
2294  for (i = 1; i < 4; i++)
2295  kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2296 
2300 
2301 
2303  page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2305  page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2307  page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2309 
2310  page_exec_bit = _PAGE_EXEC_4U;
2311 
2312  prot_init_common(page_none, page_shared, page_copy, page_readonly,
2313  page_exec_bit);
2314 }
2315 
2316 static void __init sun4v_pgprot_init(void)
2317 {
2318  unsigned long page_none, page_shared, page_copy, page_readonly;
2319  unsigned long page_exec_bit;
2320  int i;
2321 
2322  PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2325  _PAGE_EXEC_4V);
2327 
2329  _PAGE_E = _PAGE_E_4V;
2331 
2332 #ifdef CONFIG_DEBUG_PAGEALLOC
2333  kern_linear_pte_xor[0] = _PAGE_VALID ^ 0xfffff80000000000UL;
2334 #else
2335  kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2336  0xfffff80000000000UL;
2337 #endif
2340 
2341  for (i = 1; i < 4; i++)
2342  kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2343 
2344  pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2346 
2351 
2353  page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2355  page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2357  page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2359 
2360  page_exec_bit = _PAGE_EXEC_4V;
2361 
2362  prot_init_common(page_none, page_shared, page_copy, page_readonly,
2363  page_exec_bit);
2364 }
2365 
2366 unsigned long pte_sz_bits(unsigned long sz)
2367 {
2368  if (tlb_type == hypervisor) {
2369  switch (sz) {
2370  case 8 * 1024:
2371  default:
2372  return _PAGE_SZ8K_4V;
2373  case 64 * 1024:
2374  return _PAGE_SZ64K_4V;
2375  case 512 * 1024:
2376  return _PAGE_SZ512K_4V;
2377  case 4 * 1024 * 1024:
2378  return _PAGE_SZ4MB_4V;
2379  }
2380  } else {
2381  switch (sz) {
2382  case 8 * 1024:
2383  default:
2384  return _PAGE_SZ8K_4U;
2385  case 64 * 1024:
2386  return _PAGE_SZ64K_4U;
2387  case 512 * 1024:
2388  return _PAGE_SZ512K_4U;
2389  case 4 * 1024 * 1024:
2390  return _PAGE_SZ4MB_4U;
2391  }
2392  }
2393 }
2394 
2395 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2396 {
2397  pte_t pte;
2398 
2399  pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2400  pte_val(pte) |= (((unsigned long)space) << 32);
2401  pte_val(pte) |= pte_sz_bits(page_size);
2402 
2403  return pte;
2404 }
2405 
2406 static unsigned long kern_large_tte(unsigned long paddr)
2407 {
2408  unsigned long val;
2409 
2410  val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2413  if (tlb_type == hypervisor)
2414  val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2417 
2418  return val | paddr;
2419 }
2420 
2421 /* If not locked, zap it. */
2423 {
2424  unsigned long pstate;
2425  int i;
2426 
2427  __asm__ __volatile__("flushw\n\t"
2428  "rdpr %%pstate, %0\n\t"
2429  "wrpr %0, %1, %%pstate"
2430  : "=r" (pstate)
2431  : "i" (PSTATE_IE));
2432  if (tlb_type == hypervisor) {
2434  } else if (tlb_type == spitfire) {
2435  for (i = 0; i < 64; i++) {
2436  /* Spitfire Errata #32 workaround */
2437  /* NOTE: Always runs on spitfire, so no
2438  * cheetah+ page size encodings.
2439  */
2440  __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2441  "flush %%g6"
2442  : /* No outputs */
2443  : "r" (0),
2444  "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2445 
2446  if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2447  __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2448  "membar #Sync"
2449  : /* no outputs */
2450  : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2451  spitfire_put_dtlb_data(i, 0x0UL);
2452  }
2453 
2454  /* Spitfire Errata #32 workaround */
2455  /* NOTE: Always runs on spitfire, so no
2456  * cheetah+ page size encodings.
2457  */
2458  __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2459  "flush %%g6"
2460  : /* No outputs */
2461  : "r" (0),
2462  "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2463 
2464  if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2465  __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2466  "membar #Sync"
2467  : /* no outputs */
2468  : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2469  spitfire_put_itlb_data(i, 0x0UL);
2470  }
2471  }
2472  } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2473  cheetah_flush_dtlb_all();
2474  cheetah_flush_itlb_all();
2475  }
2476  __asm__ __volatile__("wrpr %0, 0, %%pstate"
2477  : : "r" (pstate));
2478 }
2479 
2480 static pte_t *get_from_cache(struct mm_struct *mm)
2481 {
2482  struct page *page;
2483  pte_t *ret;
2484 
2485  spin_lock(&mm->page_table_lock);
2486  page = mm->context.pgtable_page;
2487  ret = NULL;
2488  if (page) {
2489  void *p = page_address(page);
2490 
2491  mm->context.pgtable_page = NULL;
2492 
2493  ret = (pte_t *) (p + (PAGE_SIZE / 2));
2494  }
2495  spin_unlock(&mm->page_table_lock);
2496 
2497  return ret;
2498 }
2499 
2500 static struct page *__alloc_for_cache(struct mm_struct *mm)
2501 {
2502  struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2504 
2505  if (page) {
2506  spin_lock(&mm->page_table_lock);
2507  if (!mm->context.pgtable_page) {
2508  atomic_set(&page->_count, 2);
2509  mm->context.pgtable_page = page;
2510  }
2511  spin_unlock(&mm->page_table_lock);
2512  }
2513  return page;
2514 }
2515 
2517  unsigned long address)
2518 {
2519  struct page *page;
2520  pte_t *pte;
2521 
2522  pte = get_from_cache(mm);
2523  if (pte)
2524  return pte;
2525 
2526  page = __alloc_for_cache(mm);
2527  if (page)
2528  pte = (pte_t *) page_address(page);
2529 
2530  return pte;
2531 }
2532 
2534  unsigned long address)
2535 {
2536  struct page *page;
2537  pte_t *pte;
2538 
2539  pte = get_from_cache(mm);
2540  if (pte)
2541  return pte;
2542 
2543  page = __alloc_for_cache(mm);
2544  if (page) {
2545  pgtable_page_ctor(page);
2546  pte = (pte_t *) page_address(page);
2547  }
2548 
2549  return pte;
2550 }
2551 
2552 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2553 {
2554  struct page *page = virt_to_page(pte);
2555  if (put_page_testzero(page))
2556  free_hot_cold_page(page, 0);
2557 }
2558 
2559 static void __pte_free(pgtable_t pte)
2560 {
2561  struct page *page = virt_to_page(pte);
2562  if (put_page_testzero(page)) {
2563  pgtable_page_dtor(page);
2564  free_hot_cold_page(page, 0);
2565  }
2566 }
2567 
2568 void pte_free(struct mm_struct *mm, pgtable_t pte)
2569 {
2570  __pte_free(pte);
2571 }
2572 
2573 void pgtable_free(void *table, bool is_page)
2574 {
2575  if (is_page)
2576  __pte_free(table);
2577  else
2579 }
2580 
2581 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2582 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot, bool for_modify)
2583 {
2584  if (pgprot_val(pgprot) & _PAGE_VALID)
2585  pmd_val(pmd) |= PMD_HUGE_PRESENT;
2586  if (tlb_type == hypervisor) {
2587  if (pgprot_val(pgprot) & _PAGE_WRITE_4V)
2588  pmd_val(pmd) |= PMD_HUGE_WRITE;
2589  if (pgprot_val(pgprot) & _PAGE_EXEC_4V)
2590  pmd_val(pmd) |= PMD_HUGE_EXEC;
2591 
2592  if (!for_modify) {
2593  if (pgprot_val(pgprot) & _PAGE_ACCESSED_4V)
2594  pmd_val(pmd) |= PMD_HUGE_ACCESSED;
2595  if (pgprot_val(pgprot) & _PAGE_MODIFIED_4V)
2596  pmd_val(pmd) |= PMD_HUGE_DIRTY;
2597  }
2598  } else {
2599  if (pgprot_val(pgprot) & _PAGE_WRITE_4U)
2600  pmd_val(pmd) |= PMD_HUGE_WRITE;
2601  if (pgprot_val(pgprot) & _PAGE_EXEC_4U)
2602  pmd_val(pmd) |= PMD_HUGE_EXEC;
2603 
2604  if (!for_modify) {
2605  if (pgprot_val(pgprot) & _PAGE_ACCESSED_4U)
2606  pmd_val(pmd) |= PMD_HUGE_ACCESSED;
2607  if (pgprot_val(pgprot) & _PAGE_MODIFIED_4U)
2608  pmd_val(pmd) |= PMD_HUGE_DIRTY;
2609  }
2610  }
2611 
2612  return pmd;
2613 }
2614 
2615 pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
2616 {
2617  pmd_t pmd;
2618 
2619  pmd_val(pmd) = (page_nr << ((PAGE_SHIFT - PMD_PADDR_SHIFT)));
2620  pmd_val(pmd) |= PMD_ISHUGE;
2621  pmd = pmd_set_protbits(pmd, pgprot, false);
2622  return pmd;
2623 }
2624 
2625 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
2626 {
2627  pmd_val(pmd) &= ~(PMD_HUGE_PRESENT |
2628  PMD_HUGE_WRITE |
2629  PMD_HUGE_EXEC);
2630  pmd = pmd_set_protbits(pmd, newprot, true);
2631  return pmd;
2632 }
2633 
2634 pgprot_t pmd_pgprot(pmd_t entry)
2635 {
2636  unsigned long pte = 0;
2637 
2638  if (pmd_val(entry) & PMD_HUGE_PRESENT)
2639  pte |= _PAGE_VALID;
2640 
2641  if (tlb_type == hypervisor) {
2642  if (pmd_val(entry) & PMD_HUGE_PRESENT)
2643  pte |= _PAGE_PRESENT_4V;
2644  if (pmd_val(entry) & PMD_HUGE_EXEC)
2645  pte |= _PAGE_EXEC_4V;
2646  if (pmd_val(entry) & PMD_HUGE_WRITE)
2647  pte |= _PAGE_W_4V;
2648  if (pmd_val(entry) & PMD_HUGE_ACCESSED)
2649  pte |= _PAGE_ACCESSED_4V;
2650  if (pmd_val(entry) & PMD_HUGE_DIRTY)
2651  pte |= _PAGE_MODIFIED_4V;
2652  pte |= _PAGE_CP_4V|_PAGE_CV_4V;
2653  } else {
2654  if (pmd_val(entry) & PMD_HUGE_PRESENT)
2655  pte |= _PAGE_PRESENT_4U;
2656  if (pmd_val(entry) & PMD_HUGE_EXEC)
2657  pte |= _PAGE_EXEC_4U;
2658  if (pmd_val(entry) & PMD_HUGE_WRITE)
2659  pte |= _PAGE_W_4U;
2660  if (pmd_val(entry) & PMD_HUGE_ACCESSED)
2661  pte |= _PAGE_ACCESSED_4U;
2662  if (pmd_val(entry) & PMD_HUGE_DIRTY)
2663  pte |= _PAGE_MODIFIED_4U;
2664  pte |= _PAGE_CP_4U|_PAGE_CV_4U;
2665  }
2666 
2667  return __pgprot(pte);
2668 }
2669 
2670 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2671  pmd_t *pmd)
2672 {
2673  unsigned long pte, flags;
2674  struct mm_struct *mm;
2675  pmd_t entry = *pmd;
2676  pgprot_t prot;
2677 
2678  if (!pmd_large(entry) || !pmd_young(entry))
2679  return;
2680 
2681  pte = (pmd_val(entry) & ~PMD_HUGE_PROTBITS);
2682  pte <<= PMD_PADDR_SHIFT;
2683  pte |= _PAGE_VALID;
2684 
2685  prot = pmd_pgprot(entry);
2686 
2687  if (tlb_type == hypervisor)
2688  pgprot_val(prot) |= _PAGE_SZHUGE_4V;
2689  else
2690  pgprot_val(prot) |= _PAGE_SZHUGE_4U;
2691 
2692  pte |= pgprot_val(prot);
2693 
2694  mm = vma->vm_mm;
2695 
2696  spin_lock_irqsave(&mm->context.lock, flags);
2697 
2698  if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2699  __update_mmu_tsb_insert(mm, MM_TSB_HUGE, HPAGE_SHIFT,
2700  addr, pte);
2701 
2702  spin_unlock_irqrestore(&mm->context.lock, flags);
2703 }
2704 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2705 
2706 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2707 static void context_reload(void *__data)
2708 {
2709  struct mm_struct *mm = __data;
2710 
2711  if (mm == current->mm)
2713 }
2714 
2715 void hugetlb_setup(struct mm_struct *mm)
2716 {
2717  struct tsb_config *tp = &mm->context.tsb_block[MM_TSB_HUGE];
2718 
2719  if (likely(tp->tsb != NULL))
2720  return;
2721 
2722  tsb_grow(mm, MM_TSB_HUGE, 0);
2723  tsb_context_switch(mm);
2724  smp_tsb_sync(mm);
2725 
2726  /* On UltraSPARC-III+ and later, configure the second half of
2727  * the Data-TLB for huge pages.
2728  */
2729  if (tlb_type == cheetah_plus) {
2730  unsigned long ctx;
2731 
2732  spin_lock(&ctx_alloc_lock);
2733  ctx = mm->context.sparc64_ctx_val;
2734  ctx &= ~CTX_PGSZ_MASK;
2735  ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2736  ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2737 
2738  if (ctx != mm->context.sparc64_ctx_val) {
2739  /* When changing the page size fields, we
2740  * must perform a context flush so that no
2741  * stale entries match. This flush must
2742  * occur with the original context register
2743  * settings.
2744  */
2745  do_flush_tlb_mm(mm);
2746 
2747  /* Reload the context register of all processors
2748  * also executing in this address space.
2749  */
2750  mm->context.sparc64_ctx_val = ctx;
2751  on_each_cpu(context_reload, mm, 0);
2752  }
2753  spin_unlock(&ctx_alloc_lock);
2754  }
2755 }
2756 #endif