Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
spi-pxa2xx.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  */
18 
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/ioport.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/spi/pxa2xx_spi.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/spi/spi.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/gpio.h>
32 #include <linux/slab.h>
33 
34 #include <asm/io.h>
35 #include <asm/irq.h>
36 #include <asm/delay.h>
37 
38 
39 MODULE_AUTHOR("Stephen Street");
40 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
41 MODULE_LICENSE("GPL");
42 MODULE_ALIAS("platform:pxa2xx-spi");
43 
44 #define MAX_BUSES 3
45 
46 #define TIMOUT_DFLT 1000
47 
48 #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
49 #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
50 #define IS_DMA_ALIGNED(x) ((((u32)(x)) & 0x07) == 0)
51 #define MAX_DMA_LEN 8191
52 #define DMA_ALIGNMENT 8
53 
54 /*
55  * for testing SSCR1 changes that require SSP restart, basically
56  * everything except the service and interrupt enables, the pxa270 developer
57  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
58  * list, but the PXA255 dev man says all bits without really meaning the
59  * service and interrupt enables
60  */
61 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
62  | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
63  | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
64  | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
65  | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
66  | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
67 
68 #define DEFINE_SSP_REG(reg, off) \
69 static inline u32 read_##reg(void const __iomem *p) \
70 { return __raw_readl(p + (off)); } \
71 \
72 static inline void write_##reg(u32 v, void __iomem *p) \
73 { __raw_writel(v, p + (off)); }
74 
75 DEFINE_SSP_REG(SSCR0, 0x00)
76 DEFINE_SSP_REG(SSCR1, 0x04)
77 DEFINE_SSP_REG(SSSR, 0x08)
78 DEFINE_SSP_REG(SSITR, 0x0c)
79 DEFINE_SSP_REG(SSDR, 0x10)
80 DEFINE_SSP_REG(SSTO, 0x28)
81 DEFINE_SSP_REG(SSPSP, 0x2c)
82 
83 #define START_STATE ((void*)0)
84 #define RUNNING_STATE ((void*)1)
85 #define DONE_STATE ((void*)2)
86 #define ERROR_STATE ((void*)-1)
87 
88 #define QUEUE_RUNNING 0
89 #define QUEUE_STOPPED 1
90 
91 struct driver_data {
92  /* Driver model hookup */
94 
95  /* SSP Info */
96  struct ssp_device *ssp;
97 
98  /* SPI framework hookup */
101 
102  /* PXA hookup */
104 
105  /* DMA setup stuff */
109 
110  /* SSP register addresses */
113 
114  /* SSP masks*/
119 
120  /* Driver message queue */
124  struct list_head queue;
125  int busy;
126  int run;
127 
128  /* Message Transfer pump */
130 
131  /* Current message transfer state info */
134  struct chip_data *cur_chip;
135  size_t len;
136  void *tx;
137  void *tx_end;
138  void *rx;
139  void *rx_end;
143  size_t rx_map_len;
144  size_t tx_map_len;
151 };
152 
153 struct chip_data {
154  u32 cr0;
155  u32 cr1;
156  u32 psp;
157  u32 timeout;
158  u8 n_bytes;
159  u32 dma_width;
160  u32 dma_burst_size;
161  u32 threshold;
162  u32 dma_threshold;
163  u8 enable_dma;
164  u8 bits_per_word;
165  u32 speed_hz;
166  union {
167  int gpio_cs;
168  unsigned int frm;
169  };
170  int gpio_cs_inverted;
171  int (*write)(struct driver_data *drv_data);
172  int (*read)(struct driver_data *drv_data);
174 };
175 
176 static void pump_messages(struct work_struct *work);
177 
178 static void cs_assert(struct driver_data *drv_data)
179 {
180  struct chip_data *chip = drv_data->cur_chip;
181 
182  if (drv_data->ssp_type == CE4100_SSP) {
183  write_SSSR(drv_data->cur_chip->frm, drv_data->ioaddr);
184  return;
185  }
186 
187  if (chip->cs_control) {
188  chip->cs_control(PXA2XX_CS_ASSERT);
189  return;
190  }
191 
192  if (gpio_is_valid(chip->gpio_cs))
193  gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
194 }
195 
196 static void cs_deassert(struct driver_data *drv_data)
197 {
198  struct chip_data *chip = drv_data->cur_chip;
199 
200  if (drv_data->ssp_type == CE4100_SSP)
201  return;
202 
203  if (chip->cs_control) {
204  chip->cs_control(PXA2XX_CS_DEASSERT);
205  return;
206  }
207 
208  if (gpio_is_valid(chip->gpio_cs))
209  gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
210 }
211 
212 static void write_SSSR_CS(struct driver_data *drv_data, u32 val)
213 {
214  void __iomem *reg = drv_data->ioaddr;
215 
216  if (drv_data->ssp_type == CE4100_SSP)
217  val |= read_SSSR(reg) & SSSR_ALT_FRM_MASK;
218 
219  write_SSSR(val, reg);
220 }
221 
222 static int pxa25x_ssp_comp(struct driver_data *drv_data)
223 {
224  if (drv_data->ssp_type == PXA25x_SSP)
225  return 1;
226  if (drv_data->ssp_type == CE4100_SSP)
227  return 1;
228  return 0;
229 }
230 
231 static int flush(struct driver_data *drv_data)
232 {
233  unsigned long limit = loops_per_jiffy << 1;
234 
235  void __iomem *reg = drv_data->ioaddr;
236 
237  do {
238  while (read_SSSR(reg) & SSSR_RNE) {
239  read_SSDR(reg);
240  }
241  } while ((read_SSSR(reg) & SSSR_BSY) && --limit);
242  write_SSSR_CS(drv_data, SSSR_ROR);
243 
244  return limit;
245 }
246 
247 static int null_writer(struct driver_data *drv_data)
248 {
249  void __iomem *reg = drv_data->ioaddr;
250  u8 n_bytes = drv_data->n_bytes;
251 
252  if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
253  || (drv_data->tx == drv_data->tx_end))
254  return 0;
255 
256  write_SSDR(0, reg);
257  drv_data->tx += n_bytes;
258 
259  return 1;
260 }
261 
262 static int null_reader(struct driver_data *drv_data)
263 {
264  void __iomem *reg = drv_data->ioaddr;
265  u8 n_bytes = drv_data->n_bytes;
266 
267  while ((read_SSSR(reg) & SSSR_RNE)
268  && (drv_data->rx < drv_data->rx_end)) {
269  read_SSDR(reg);
270  drv_data->rx += n_bytes;
271  }
272 
273  return drv_data->rx == drv_data->rx_end;
274 }
275 
276 static int u8_writer(struct driver_data *drv_data)
277 {
278  void __iomem *reg = drv_data->ioaddr;
279 
280  if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
281  || (drv_data->tx == drv_data->tx_end))
282  return 0;
283 
284  write_SSDR(*(u8 *)(drv_data->tx), reg);
285  ++drv_data->tx;
286 
287  return 1;
288 }
289 
290 static int u8_reader(struct driver_data *drv_data)
291 {
292  void __iomem *reg = drv_data->ioaddr;
293 
294  while ((read_SSSR(reg) & SSSR_RNE)
295  && (drv_data->rx < drv_data->rx_end)) {
296  *(u8 *)(drv_data->rx) = read_SSDR(reg);
297  ++drv_data->rx;
298  }
299 
300  return drv_data->rx == drv_data->rx_end;
301 }
302 
303 static int u16_writer(struct driver_data *drv_data)
304 {
305  void __iomem *reg = drv_data->ioaddr;
306 
307  if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
308  || (drv_data->tx == drv_data->tx_end))
309  return 0;
310 
311  write_SSDR(*(u16 *)(drv_data->tx), reg);
312  drv_data->tx += 2;
313 
314  return 1;
315 }
316 
317 static int u16_reader(struct driver_data *drv_data)
318 {
319  void __iomem *reg = drv_data->ioaddr;
320 
321  while ((read_SSSR(reg) & SSSR_RNE)
322  && (drv_data->rx < drv_data->rx_end)) {
323  *(u16 *)(drv_data->rx) = read_SSDR(reg);
324  drv_data->rx += 2;
325  }
326 
327  return drv_data->rx == drv_data->rx_end;
328 }
329 
330 static int u32_writer(struct driver_data *drv_data)
331 {
332  void __iomem *reg = drv_data->ioaddr;
333 
334  if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
335  || (drv_data->tx == drv_data->tx_end))
336  return 0;
337 
338  write_SSDR(*(u32 *)(drv_data->tx), reg);
339  drv_data->tx += 4;
340 
341  return 1;
342 }
343 
344 static int u32_reader(struct driver_data *drv_data)
345 {
346  void __iomem *reg = drv_data->ioaddr;
347 
348  while ((read_SSSR(reg) & SSSR_RNE)
349  && (drv_data->rx < drv_data->rx_end)) {
350  *(u32 *)(drv_data->rx) = read_SSDR(reg);
351  drv_data->rx += 4;
352  }
353 
354  return drv_data->rx == drv_data->rx_end;
355 }
356 
357 static void *next_transfer(struct driver_data *drv_data)
358 {
359  struct spi_message *msg = drv_data->cur_msg;
360  struct spi_transfer *trans = drv_data->cur_transfer;
361 
362  /* Move to next transfer */
363  if (trans->transfer_list.next != &msg->transfers) {
364  drv_data->cur_transfer =
365  list_entry(trans->transfer_list.next,
366  struct spi_transfer,
367  transfer_list);
368  return RUNNING_STATE;
369  } else
370  return DONE_STATE;
371 }
372 
373 static int map_dma_buffers(struct driver_data *drv_data)
374 {
375  struct spi_message *msg = drv_data->cur_msg;
376  struct device *dev = &msg->spi->dev;
377 
378  if (!drv_data->cur_chip->enable_dma)
379  return 0;
380 
381  if (msg->is_dma_mapped)
382  return drv_data->rx_dma && drv_data->tx_dma;
383 
384  if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
385  return 0;
386 
387  /* Modify setup if rx buffer is null */
388  if (drv_data->rx == NULL) {
389  *drv_data->null_dma_buf = 0;
390  drv_data->rx = drv_data->null_dma_buf;
391  drv_data->rx_map_len = 4;
392  } else
393  drv_data->rx_map_len = drv_data->len;
394 
395 
396  /* Modify setup if tx buffer is null */
397  if (drv_data->tx == NULL) {
398  *drv_data->null_dma_buf = 0;
399  drv_data->tx = drv_data->null_dma_buf;
400  drv_data->tx_map_len = 4;
401  } else
402  drv_data->tx_map_len = drv_data->len;
403 
404  /* Stream map the tx buffer. Always do DMA_TO_DEVICE first
405  * so we flush the cache *before* invalidating it, in case
406  * the tx and rx buffers overlap.
407  */
408  drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
409  drv_data->tx_map_len, DMA_TO_DEVICE);
410  if (dma_mapping_error(dev, drv_data->tx_dma))
411  return 0;
412 
413  /* Stream map the rx buffer */
414  drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
415  drv_data->rx_map_len, DMA_FROM_DEVICE);
416  if (dma_mapping_error(dev, drv_data->rx_dma)) {
417  dma_unmap_single(dev, drv_data->tx_dma,
418  drv_data->tx_map_len, DMA_TO_DEVICE);
419  return 0;
420  }
421 
422  return 1;
423 }
424 
425 static void unmap_dma_buffers(struct driver_data *drv_data)
426 {
427  struct device *dev;
428 
429  if (!drv_data->dma_mapped)
430  return;
431 
432  if (!drv_data->cur_msg->is_dma_mapped) {
433  dev = &drv_data->cur_msg->spi->dev;
434  dma_unmap_single(dev, drv_data->rx_dma,
435  drv_data->rx_map_len, DMA_FROM_DEVICE);
436  dma_unmap_single(dev, drv_data->tx_dma,
437  drv_data->tx_map_len, DMA_TO_DEVICE);
438  }
439 
440  drv_data->dma_mapped = 0;
441 }
442 
443 /* caller already set message->status; dma and pio irqs are blocked */
444 static void giveback(struct driver_data *drv_data)
445 {
446  struct spi_transfer* last_transfer;
447  unsigned long flags;
448  struct spi_message *msg;
449 
450  spin_lock_irqsave(&drv_data->lock, flags);
451  msg = drv_data->cur_msg;
452  drv_data->cur_msg = NULL;
453  drv_data->cur_transfer = NULL;
454  queue_work(drv_data->workqueue, &drv_data->pump_messages);
455  spin_unlock_irqrestore(&drv_data->lock, flags);
456 
457  last_transfer = list_entry(msg->transfers.prev,
458  struct spi_transfer,
459  transfer_list);
460 
461  /* Delay if requested before any change in chip select */
462  if (last_transfer->delay_usecs)
463  udelay(last_transfer->delay_usecs);
464 
465  /* Drop chip select UNLESS cs_change is true or we are returning
466  * a message with an error, or next message is for another chip
467  */
468  if (!last_transfer->cs_change)
469  cs_deassert(drv_data);
470  else {
471  struct spi_message *next_msg;
472 
473  /* Holding of cs was hinted, but we need to make sure
474  * the next message is for the same chip. Don't waste
475  * time with the following tests unless this was hinted.
476  *
477  * We cannot postpone this until pump_messages, because
478  * after calling msg->complete (below) the driver that
479  * sent the current message could be unloaded, which
480  * could invalidate the cs_control() callback...
481  */
482 
483  /* get a pointer to the next message, if any */
484  spin_lock_irqsave(&drv_data->lock, flags);
485  if (list_empty(&drv_data->queue))
486  next_msg = NULL;
487  else
488  next_msg = list_entry(drv_data->queue.next,
489  struct spi_message, queue);
490  spin_unlock_irqrestore(&drv_data->lock, flags);
491 
492  /* see if the next and current messages point
493  * to the same chip
494  */
495  if (next_msg && next_msg->spi != msg->spi)
496  next_msg = NULL;
497  if (!next_msg || msg->state == ERROR_STATE)
498  cs_deassert(drv_data);
499  }
500 
501  msg->state = NULL;
502  if (msg->complete)
503  msg->complete(msg->context);
504 
505  drv_data->cur_chip = NULL;
506 }
507 
508 static int wait_ssp_rx_stall(void const __iomem *ioaddr)
509 {
510  unsigned long limit = loops_per_jiffy << 1;
511 
512  while ((read_SSSR(ioaddr) & SSSR_BSY) && --limit)
513  cpu_relax();
514 
515  return limit;
516 }
517 
518 static int wait_dma_channel_stop(int channel)
519 {
520  unsigned long limit = loops_per_jiffy << 1;
521 
522  while (!(DCSR(channel) & DCSR_STOPSTATE) && --limit)
523  cpu_relax();
524 
525  return limit;
526 }
527 
528 static void dma_error_stop(struct driver_data *drv_data, const char *msg)
529 {
530  void __iomem *reg = drv_data->ioaddr;
531 
532  /* Stop and reset */
533  DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
534  DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
535  write_SSSR_CS(drv_data, drv_data->clear_sr);
536  write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
537  if (!pxa25x_ssp_comp(drv_data))
538  write_SSTO(0, reg);
539  flush(drv_data);
540  write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
541 
542  unmap_dma_buffers(drv_data);
543 
544  dev_err(&drv_data->pdev->dev, "%s\n", msg);
545 
546  drv_data->cur_msg->state = ERROR_STATE;
547  tasklet_schedule(&drv_data->pump_transfers);
548 }
549 
550 static void dma_transfer_complete(struct driver_data *drv_data)
551 {
552  void __iomem *reg = drv_data->ioaddr;
553  struct spi_message *msg = drv_data->cur_msg;
554 
555  /* Clear and disable interrupts on SSP and DMA channels*/
556  write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
557  write_SSSR_CS(drv_data, drv_data->clear_sr);
558  DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
559  DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
560 
561  if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
562  dev_err(&drv_data->pdev->dev,
563  "dma_handler: dma rx channel stop failed\n");
564 
565  if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
566  dev_err(&drv_data->pdev->dev,
567  "dma_transfer: ssp rx stall failed\n");
568 
569  unmap_dma_buffers(drv_data);
570 
571  /* update the buffer pointer for the amount completed in dma */
572  drv_data->rx += drv_data->len -
573  (DCMD(drv_data->rx_channel) & DCMD_LENGTH);
574 
575  /* read trailing data from fifo, it does not matter how many
576  * bytes are in the fifo just read until buffer is full
577  * or fifo is empty, which ever occurs first */
578  drv_data->read(drv_data);
579 
580  /* return count of what was actually read */
581  msg->actual_length += drv_data->len -
582  (drv_data->rx_end - drv_data->rx);
583 
584  /* Transfer delays and chip select release are
585  * handled in pump_transfers or giveback
586  */
587 
588  /* Move to next transfer */
589  msg->state = next_transfer(drv_data);
590 
591  /* Schedule transfer tasklet */
592  tasklet_schedule(&drv_data->pump_transfers);
593 }
594 
595 static void dma_handler(int channel, void *data)
596 {
597  struct driver_data *drv_data = data;
598  u32 irq_status = DCSR(channel) & DMA_INT_MASK;
599 
600  if (irq_status & DCSR_BUSERR) {
601 
602  if (channel == drv_data->tx_channel)
603  dma_error_stop(drv_data,
604  "dma_handler: "
605  "bad bus address on tx channel");
606  else
607  dma_error_stop(drv_data,
608  "dma_handler: "
609  "bad bus address on rx channel");
610  return;
611  }
612 
613  /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
614  if ((channel == drv_data->tx_channel)
615  && (irq_status & DCSR_ENDINTR)
616  && (drv_data->ssp_type == PXA25x_SSP)) {
617 
618  /* Wait for rx to stall */
619  if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
620  dev_err(&drv_data->pdev->dev,
621  "dma_handler: ssp rx stall failed\n");
622 
623  /* finish this transfer, start the next */
624  dma_transfer_complete(drv_data);
625  }
626 }
627 
628 static irqreturn_t dma_transfer(struct driver_data *drv_data)
629 {
630  u32 irq_status;
631  void __iomem *reg = drv_data->ioaddr;
632 
633  irq_status = read_SSSR(reg) & drv_data->mask_sr;
634  if (irq_status & SSSR_ROR) {
635  dma_error_stop(drv_data, "dma_transfer: fifo overrun");
636  return IRQ_HANDLED;
637  }
638 
639  /* Check for false positive timeout */
640  if ((irq_status & SSSR_TINT)
641  && (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
642  write_SSSR(SSSR_TINT, reg);
643  return IRQ_HANDLED;
644  }
645 
646  if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
647 
648  /* Clear and disable timeout interrupt, do the rest in
649  * dma_transfer_complete */
650  if (!pxa25x_ssp_comp(drv_data))
651  write_SSTO(0, reg);
652 
653  /* finish this transfer, start the next */
654  dma_transfer_complete(drv_data);
655 
656  return IRQ_HANDLED;
657  }
658 
659  /* Opps problem detected */
660  return IRQ_NONE;
661 }
662 
663 static void reset_sccr1(struct driver_data *drv_data)
664 {
665  void __iomem *reg = drv_data->ioaddr;
666  struct chip_data *chip = drv_data->cur_chip;
667  u32 sccr1_reg;
668 
669  sccr1_reg = read_SSCR1(reg) & ~drv_data->int_cr1;
670  sccr1_reg &= ~SSCR1_RFT;
671  sccr1_reg |= chip->threshold;
672  write_SSCR1(sccr1_reg, reg);
673 }
674 
675 static void int_error_stop(struct driver_data *drv_data, const char* msg)
676 {
677  void __iomem *reg = drv_data->ioaddr;
678 
679  /* Stop and reset SSP */
680  write_SSSR_CS(drv_data, drv_data->clear_sr);
681  reset_sccr1(drv_data);
682  if (!pxa25x_ssp_comp(drv_data))
683  write_SSTO(0, reg);
684  flush(drv_data);
685  write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
686 
687  dev_err(&drv_data->pdev->dev, "%s\n", msg);
688 
689  drv_data->cur_msg->state = ERROR_STATE;
690  tasklet_schedule(&drv_data->pump_transfers);
691 }
692 
693 static void int_transfer_complete(struct driver_data *drv_data)
694 {
695  void __iomem *reg = drv_data->ioaddr;
696 
697  /* Stop SSP */
698  write_SSSR_CS(drv_data, drv_data->clear_sr);
699  reset_sccr1(drv_data);
700  if (!pxa25x_ssp_comp(drv_data))
701  write_SSTO(0, reg);
702 
703  /* Update total byte transferred return count actual bytes read */
704  drv_data->cur_msg->actual_length += drv_data->len -
705  (drv_data->rx_end - drv_data->rx);
706 
707  /* Transfer delays and chip select release are
708  * handled in pump_transfers or giveback
709  */
710 
711  /* Move to next transfer */
712  drv_data->cur_msg->state = next_transfer(drv_data);
713 
714  /* Schedule transfer tasklet */
715  tasklet_schedule(&drv_data->pump_transfers);
716 }
717 
718 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
719 {
720  void __iomem *reg = drv_data->ioaddr;
721 
722  u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
723  drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
724 
725  u32 irq_status = read_SSSR(reg) & irq_mask;
726 
727  if (irq_status & SSSR_ROR) {
728  int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
729  return IRQ_HANDLED;
730  }
731 
732  if (irq_status & SSSR_TINT) {
733  write_SSSR(SSSR_TINT, reg);
734  if (drv_data->read(drv_data)) {
735  int_transfer_complete(drv_data);
736  return IRQ_HANDLED;
737  }
738  }
739 
740  /* Drain rx fifo, Fill tx fifo and prevent overruns */
741  do {
742  if (drv_data->read(drv_data)) {
743  int_transfer_complete(drv_data);
744  return IRQ_HANDLED;
745  }
746  } while (drv_data->write(drv_data));
747 
748  if (drv_data->read(drv_data)) {
749  int_transfer_complete(drv_data);
750  return IRQ_HANDLED;
751  }
752 
753  if (drv_data->tx == drv_data->tx_end) {
754  u32 bytes_left;
755  u32 sccr1_reg;
756 
757  sccr1_reg = read_SSCR1(reg);
758  sccr1_reg &= ~SSCR1_TIE;
759 
760  /*
761  * PXA25x_SSP has no timeout, set up rx threshould for the
762  * remaining RX bytes.
763  */
764  if (pxa25x_ssp_comp(drv_data)) {
765 
766  sccr1_reg &= ~SSCR1_RFT;
767 
768  bytes_left = drv_data->rx_end - drv_data->rx;
769  switch (drv_data->n_bytes) {
770  case 4:
771  bytes_left >>= 1;
772  case 2:
773  bytes_left >>= 1;
774  }
775 
776  if (bytes_left > RX_THRESH_DFLT)
777  bytes_left = RX_THRESH_DFLT;
778 
779  sccr1_reg |= SSCR1_RxTresh(bytes_left);
780  }
781  write_SSCR1(sccr1_reg, reg);
782  }
783 
784  /* We did something */
785  return IRQ_HANDLED;
786 }
787 
788 static irqreturn_t ssp_int(int irq, void *dev_id)
789 {
790  struct driver_data *drv_data = dev_id;
791  void __iomem *reg = drv_data->ioaddr;
792  u32 sccr1_reg = read_SSCR1(reg);
793  u32 mask = drv_data->mask_sr;
794  u32 status;
795 
796  status = read_SSSR(reg);
797 
798  /* Ignore possible writes if we don't need to write */
799  if (!(sccr1_reg & SSCR1_TIE))
800  mask &= ~SSSR_TFS;
801 
802  if (!(status & mask))
803  return IRQ_NONE;
804 
805  if (!drv_data->cur_msg) {
806 
807  write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
808  write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
809  if (!pxa25x_ssp_comp(drv_data))
810  write_SSTO(0, reg);
811  write_SSSR_CS(drv_data, drv_data->clear_sr);
812 
813  dev_err(&drv_data->pdev->dev, "bad message state "
814  "in interrupt handler\n");
815 
816  /* Never fail */
817  return IRQ_HANDLED;
818  }
819 
820  return drv_data->transfer_handler(drv_data);
821 }
822 
823 static int set_dma_burst_and_threshold(struct chip_data *chip,
824  struct spi_device *spi,
825  u8 bits_per_word, u32 *burst_code,
826  u32 *threshold)
827 {
828  struct pxa2xx_spi_chip *chip_info =
829  (struct pxa2xx_spi_chip *)spi->controller_data;
830  int bytes_per_word;
831  int burst_bytes;
832  int thresh_words;
833  int req_burst_size;
834  int retval = 0;
835 
836  /* Set the threshold (in registers) to equal the same amount of data
837  * as represented by burst size (in bytes). The computation below
838  * is (burst_size rounded up to nearest 8 byte, word or long word)
839  * divided by (bytes/register); the tx threshold is the inverse of
840  * the rx, so that there will always be enough data in the rx fifo
841  * to satisfy a burst, and there will always be enough space in the
842  * tx fifo to accept a burst (a tx burst will overwrite the fifo if
843  * there is not enough space), there must always remain enough empty
844  * space in the rx fifo for any data loaded to the tx fifo.
845  * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
846  * will be 8, or half the fifo;
847  * The threshold can only be set to 2, 4 or 8, but not 16, because
848  * to burst 16 to the tx fifo, the fifo would have to be empty;
849  * however, the minimum fifo trigger level is 1, and the tx will
850  * request service when the fifo is at this level, with only 15 spaces.
851  */
852 
853  /* find bytes/word */
854  if (bits_per_word <= 8)
855  bytes_per_word = 1;
856  else if (bits_per_word <= 16)
857  bytes_per_word = 2;
858  else
859  bytes_per_word = 4;
860 
861  /* use struct pxa2xx_spi_chip->dma_burst_size if available */
862  if (chip_info)
863  req_burst_size = chip_info->dma_burst_size;
864  else {
865  switch (chip->dma_burst_size) {
866  default:
867  /* if the default burst size is not set,
868  * do it now */
869  chip->dma_burst_size = DCMD_BURST8;
870  case DCMD_BURST8:
871  req_burst_size = 8;
872  break;
873  case DCMD_BURST16:
874  req_burst_size = 16;
875  break;
876  case DCMD_BURST32:
877  req_burst_size = 32;
878  break;
879  }
880  }
881  if (req_burst_size <= 8) {
882  *burst_code = DCMD_BURST8;
883  burst_bytes = 8;
884  } else if (req_burst_size <= 16) {
885  if (bytes_per_word == 1) {
886  /* don't burst more than 1/2 the fifo */
887  *burst_code = DCMD_BURST8;
888  burst_bytes = 8;
889  retval = 1;
890  } else {
891  *burst_code = DCMD_BURST16;
892  burst_bytes = 16;
893  }
894  } else {
895  if (bytes_per_word == 1) {
896  /* don't burst more than 1/2 the fifo */
897  *burst_code = DCMD_BURST8;
898  burst_bytes = 8;
899  retval = 1;
900  } else if (bytes_per_word == 2) {
901  /* don't burst more than 1/2 the fifo */
902  *burst_code = DCMD_BURST16;
903  burst_bytes = 16;
904  retval = 1;
905  } else {
906  *burst_code = DCMD_BURST32;
907  burst_bytes = 32;
908  }
909  }
910 
911  thresh_words = burst_bytes / bytes_per_word;
912 
913  /* thresh_words will be between 2 and 8 */
914  *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
915  | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
916 
917  return retval;
918 }
919 
920 static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
921 {
922  unsigned long ssp_clk = clk_get_rate(ssp->clk);
923 
924  if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
925  return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
926  else
927  return ((ssp_clk / rate - 1) & 0xfff) << 8;
928 }
929 
930 static void pump_transfers(unsigned long data)
931 {
932  struct driver_data *drv_data = (struct driver_data *)data;
933  struct spi_message *message = NULL;
934  struct spi_transfer *transfer = NULL;
935  struct spi_transfer *previous = NULL;
936  struct chip_data *chip = NULL;
937  struct ssp_device *ssp = drv_data->ssp;
938  void __iomem *reg = drv_data->ioaddr;
939  u32 clk_div = 0;
940  u8 bits = 0;
941  u32 speed = 0;
942  u32 cr0;
943  u32 cr1;
944  u32 dma_thresh = drv_data->cur_chip->dma_threshold;
945  u32 dma_burst = drv_data->cur_chip->dma_burst_size;
946 
947  /* Get current state information */
948  message = drv_data->cur_msg;
949  transfer = drv_data->cur_transfer;
950  chip = drv_data->cur_chip;
951 
952  /* Handle for abort */
953  if (message->state == ERROR_STATE) {
954  message->status = -EIO;
955  giveback(drv_data);
956  return;
957  }
958 
959  /* Handle end of message */
960  if (message->state == DONE_STATE) {
961  message->status = 0;
962  giveback(drv_data);
963  return;
964  }
965 
966  /* Delay if requested at end of transfer before CS change */
967  if (message->state == RUNNING_STATE) {
968  previous = list_entry(transfer->transfer_list.prev,
969  struct spi_transfer,
970  transfer_list);
971  if (previous->delay_usecs)
972  udelay(previous->delay_usecs);
973 
974  /* Drop chip select only if cs_change is requested */
975  if (previous->cs_change)
976  cs_deassert(drv_data);
977  }
978 
979  /* Check for transfers that need multiple DMA segments */
980  if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
981 
982  /* reject already-mapped transfers; PIO won't always work */
983  if (message->is_dma_mapped
984  || transfer->rx_dma || transfer->tx_dma) {
985  dev_err(&drv_data->pdev->dev,
986  "pump_transfers: mapped transfer length "
987  "of %u is greater than %d\n",
988  transfer->len, MAX_DMA_LEN);
989  message->status = -EINVAL;
990  giveback(drv_data);
991  return;
992  }
993 
994  /* warn ... we force this to PIO mode */
995  if (printk_ratelimit())
996  dev_warn(&message->spi->dev, "pump_transfers: "
997  "DMA disabled for transfer length %ld "
998  "greater than %d\n",
999  (long)drv_data->len, MAX_DMA_LEN);
1000  }
1001 
1002  /* Setup the transfer state based on the type of transfer */
1003  if (flush(drv_data) == 0) {
1004  dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
1005  message->status = -EIO;
1006  giveback(drv_data);
1007  return;
1008  }
1009  drv_data->n_bytes = chip->n_bytes;
1010  drv_data->dma_width = chip->dma_width;
1011  drv_data->tx = (void *)transfer->tx_buf;
1012  drv_data->tx_end = drv_data->tx + transfer->len;
1013  drv_data->rx = transfer->rx_buf;
1014  drv_data->rx_end = drv_data->rx + transfer->len;
1015  drv_data->rx_dma = transfer->rx_dma;
1016  drv_data->tx_dma = transfer->tx_dma;
1017  drv_data->len = transfer->len & DCMD_LENGTH;
1018  drv_data->write = drv_data->tx ? chip->write : null_writer;
1019  drv_data->read = drv_data->rx ? chip->read : null_reader;
1020 
1021  /* Change speed and bit per word on a per transfer */
1022  cr0 = chip->cr0;
1023  if (transfer->speed_hz || transfer->bits_per_word) {
1024 
1025  bits = chip->bits_per_word;
1026  speed = chip->speed_hz;
1027 
1028  if (transfer->speed_hz)
1029  speed = transfer->speed_hz;
1030 
1031  if (transfer->bits_per_word)
1032  bits = transfer->bits_per_word;
1033 
1034  clk_div = ssp_get_clk_div(ssp, speed);
1035 
1036  if (bits <= 8) {
1037  drv_data->n_bytes = 1;
1038  drv_data->dma_width = DCMD_WIDTH1;
1039  drv_data->read = drv_data->read != null_reader ?
1040  u8_reader : null_reader;
1041  drv_data->write = drv_data->write != null_writer ?
1042  u8_writer : null_writer;
1043  } else if (bits <= 16) {
1044  drv_data->n_bytes = 2;
1045  drv_data->dma_width = DCMD_WIDTH2;
1046  drv_data->read = drv_data->read != null_reader ?
1047  u16_reader : null_reader;
1048  drv_data->write = drv_data->write != null_writer ?
1049  u16_writer : null_writer;
1050  } else if (bits <= 32) {
1051  drv_data->n_bytes = 4;
1052  drv_data->dma_width = DCMD_WIDTH4;
1053  drv_data->read = drv_data->read != null_reader ?
1054  u32_reader : null_reader;
1055  drv_data->write = drv_data->write != null_writer ?
1056  u32_writer : null_writer;
1057  }
1058  /* if bits/word is changed in dma mode, then must check the
1059  * thresholds and burst also */
1060  if (chip->enable_dma) {
1061  if (set_dma_burst_and_threshold(chip, message->spi,
1062  bits, &dma_burst,
1063  &dma_thresh))
1064  if (printk_ratelimit())
1065  dev_warn(&message->spi->dev,
1066  "pump_transfers: "
1067  "DMA burst size reduced to "
1068  "match bits_per_word\n");
1069  }
1070 
1071  cr0 = clk_div
1072  | SSCR0_Motorola
1073  | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
1074  | SSCR0_SSE
1075  | (bits > 16 ? SSCR0_EDSS : 0);
1076  }
1077 
1078  message->state = RUNNING_STATE;
1079 
1080  /* Try to map dma buffer and do a dma transfer if successful, but
1081  * only if the length is non-zero and less than MAX_DMA_LEN.
1082  *
1083  * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
1084  * of PIO instead. Care is needed above because the transfer may
1085  * have have been passed with buffers that are already dma mapped.
1086  * A zero-length transfer in PIO mode will not try to write/read
1087  * to/from the buffers
1088  *
1089  * REVISIT large transfers are exactly where we most want to be
1090  * using DMA. If this happens much, split those transfers into
1091  * multiple DMA segments rather than forcing PIO.
1092  */
1093  drv_data->dma_mapped = 0;
1094  if (drv_data->len > 0 && drv_data->len <= MAX_DMA_LEN)
1095  drv_data->dma_mapped = map_dma_buffers(drv_data);
1096  if (drv_data->dma_mapped) {
1097 
1098  /* Ensure we have the correct interrupt handler */
1099  drv_data->transfer_handler = dma_transfer;
1100 
1101  /* Setup rx DMA Channel */
1102  DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
1103  DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
1104  DTADR(drv_data->rx_channel) = drv_data->rx_dma;
1105  if (drv_data->rx == drv_data->null_dma_buf)
1106  /* No target address increment */
1107  DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
1108  | drv_data->dma_width
1109  | dma_burst
1110  | drv_data->len;
1111  else
1112  DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
1113  | DCMD_FLOWSRC
1114  | drv_data->dma_width
1115  | dma_burst
1116  | drv_data->len;
1117 
1118  /* Setup tx DMA Channel */
1119  DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
1120  DSADR(drv_data->tx_channel) = drv_data->tx_dma;
1121  DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
1122  if (drv_data->tx == drv_data->null_dma_buf)
1123  /* No source address increment */
1124  DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
1125  | drv_data->dma_width
1126  | dma_burst
1127  | drv_data->len;
1128  else
1129  DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
1130  | DCMD_FLOWTRG
1131  | drv_data->dma_width
1132  | dma_burst
1133  | drv_data->len;
1134 
1135  /* Enable dma end irqs on SSP to detect end of transfer */
1136  if (drv_data->ssp_type == PXA25x_SSP)
1137  DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
1138 
1139  /* Clear status and start DMA engine */
1140  cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1141  write_SSSR(drv_data->clear_sr, reg);
1142  DCSR(drv_data->rx_channel) |= DCSR_RUN;
1143  DCSR(drv_data->tx_channel) |= DCSR_RUN;
1144  } else {
1145  /* Ensure we have the correct interrupt handler */
1146  drv_data->transfer_handler = interrupt_transfer;
1147 
1148  /* Clear status */
1149  cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1150  write_SSSR_CS(drv_data, drv_data->clear_sr);
1151  }
1152 
1153  /* see if we need to reload the config registers */
1154  if ((read_SSCR0(reg) != cr0)
1155  || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
1156  (cr1 & SSCR1_CHANGE_MASK)) {
1157 
1158  /* stop the SSP, and update the other bits */
1159  write_SSCR0(cr0 & ~SSCR0_SSE, reg);
1160  if (!pxa25x_ssp_comp(drv_data))
1161  write_SSTO(chip->timeout, reg);
1162  /* first set CR1 without interrupt and service enables */
1163  write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
1164  /* restart the SSP */
1165  write_SSCR0(cr0, reg);
1166 
1167  } else {
1168  if (!pxa25x_ssp_comp(drv_data))
1169  write_SSTO(chip->timeout, reg);
1170  }
1171 
1172  cs_assert(drv_data);
1173 
1174  /* after chip select, release the data by enabling service
1175  * requests and interrupts, without changing any mode bits */
1176  write_SSCR1(cr1, reg);
1177 }
1178 
1179 static void pump_messages(struct work_struct *work)
1180 {
1181  struct driver_data *drv_data =
1182  container_of(work, struct driver_data, pump_messages);
1183  unsigned long flags;
1184 
1185  /* Lock queue and check for queue work */
1186  spin_lock_irqsave(&drv_data->lock, flags);
1187  if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
1188  drv_data->busy = 0;
1189  spin_unlock_irqrestore(&drv_data->lock, flags);
1190  return;
1191  }
1192 
1193  /* Make sure we are not already running a message */
1194  if (drv_data->cur_msg) {
1195  spin_unlock_irqrestore(&drv_data->lock, flags);
1196  return;
1197  }
1198 
1199  /* Extract head of queue */
1200  drv_data->cur_msg = list_entry(drv_data->queue.next,
1201  struct spi_message, queue);
1202  list_del_init(&drv_data->cur_msg->queue);
1203 
1204  /* Initial message state*/
1205  drv_data->cur_msg->state = START_STATE;
1206  drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1207  struct spi_transfer,
1208  transfer_list);
1209 
1210  /* prepare to setup the SSP, in pump_transfers, using the per
1211  * chip configuration */
1212  drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1213 
1214  /* Mark as busy and launch transfers */
1215  tasklet_schedule(&drv_data->pump_transfers);
1216 
1217  drv_data->busy = 1;
1218  spin_unlock_irqrestore(&drv_data->lock, flags);
1219 }
1220 
1221 static int transfer(struct spi_device *spi, struct spi_message *msg)
1222 {
1223  struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1224  unsigned long flags;
1225 
1226  spin_lock_irqsave(&drv_data->lock, flags);
1227 
1228  if (drv_data->run == QUEUE_STOPPED) {
1229  spin_unlock_irqrestore(&drv_data->lock, flags);
1230  return -ESHUTDOWN;
1231  }
1232 
1233  msg->actual_length = 0;
1234  msg->status = -EINPROGRESS;
1235  msg->state = START_STATE;
1236 
1237  list_add_tail(&msg->queue, &drv_data->queue);
1238 
1239  if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
1240  queue_work(drv_data->workqueue, &drv_data->pump_messages);
1241 
1242  spin_unlock_irqrestore(&drv_data->lock, flags);
1243 
1244  return 0;
1245 }
1246 
1247 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1248  struct pxa2xx_spi_chip *chip_info)
1249 {
1250  int err = 0;
1251 
1252  if (chip == NULL || chip_info == NULL)
1253  return 0;
1254 
1255  /* NOTE: setup() can be called multiple times, possibly with
1256  * different chip_info, release previously requested GPIO
1257  */
1258  if (gpio_is_valid(chip->gpio_cs))
1259  gpio_free(chip->gpio_cs);
1260 
1261  /* If (*cs_control) is provided, ignore GPIO chip select */
1262  if (chip_info->cs_control) {
1263  chip->cs_control = chip_info->cs_control;
1264  return 0;
1265  }
1266 
1267  if (gpio_is_valid(chip_info->gpio_cs)) {
1268  err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1269  if (err) {
1270  dev_err(&spi->dev, "failed to request chip select "
1271  "GPIO%d\n", chip_info->gpio_cs);
1272  return err;
1273  }
1274 
1275  chip->gpio_cs = chip_info->gpio_cs;
1276  chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1277 
1278  err = gpio_direction_output(chip->gpio_cs,
1279  !chip->gpio_cs_inverted);
1280  }
1281 
1282  return err;
1283 }
1284 
1285 static int setup(struct spi_device *spi)
1286 {
1287  struct pxa2xx_spi_chip *chip_info = NULL;
1288  struct chip_data *chip;
1289  struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1290  struct ssp_device *ssp = drv_data->ssp;
1291  unsigned int clk_div;
1292  uint tx_thres = TX_THRESH_DFLT;
1293  uint rx_thres = RX_THRESH_DFLT;
1294 
1295  if (!pxa25x_ssp_comp(drv_data)
1296  && (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
1297  dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
1298  "b/w not 4-32 for type non-PXA25x_SSP\n",
1299  drv_data->ssp_type, spi->bits_per_word);
1300  return -EINVAL;
1301  } else if (pxa25x_ssp_comp(drv_data)
1302  && (spi->bits_per_word < 4
1303  || spi->bits_per_word > 16)) {
1304  dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
1305  "b/w not 4-16 for type PXA25x_SSP\n",
1306  drv_data->ssp_type, spi->bits_per_word);
1307  return -EINVAL;
1308  }
1309 
1310  /* Only alloc on first setup */
1311  chip = spi_get_ctldata(spi);
1312  if (!chip) {
1313  chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1314  if (!chip) {
1315  dev_err(&spi->dev,
1316  "failed setup: can't allocate chip data\n");
1317  return -ENOMEM;
1318  }
1319 
1320  if (drv_data->ssp_type == CE4100_SSP) {
1321  if (spi->chip_select > 4) {
1322  dev_err(&spi->dev, "failed setup: "
1323  "cs number must not be > 4.\n");
1324  kfree(chip);
1325  return -EINVAL;
1326  }
1327 
1328  chip->frm = spi->chip_select;
1329  } else
1330  chip->gpio_cs = -1;
1331  chip->enable_dma = 0;
1332  chip->timeout = TIMOUT_DFLT;
1333  chip->dma_burst_size = drv_data->master_info->enable_dma ?
1334  DCMD_BURST8 : 0;
1335  }
1336 
1337  /* protocol drivers may change the chip settings, so...
1338  * if chip_info exists, use it */
1339  chip_info = spi->controller_data;
1340 
1341  /* chip_info isn't always needed */
1342  chip->cr1 = 0;
1343  if (chip_info) {
1344  if (chip_info->timeout)
1345  chip->timeout = chip_info->timeout;
1346  if (chip_info->tx_threshold)
1347  tx_thres = chip_info->tx_threshold;
1348  if (chip_info->rx_threshold)
1349  rx_thres = chip_info->rx_threshold;
1350  chip->enable_dma = drv_data->master_info->enable_dma;
1351  chip->dma_threshold = 0;
1352  if (chip_info->enable_loopback)
1353  chip->cr1 = SSCR1_LBM;
1354  }
1355 
1356  chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1357  (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1358 
1359  /* set dma burst and threshold outside of chip_info path so that if
1360  * chip_info goes away after setting chip->enable_dma, the
1361  * burst and threshold can still respond to changes in bits_per_word */
1362  if (chip->enable_dma) {
1363  /* set up legal burst and threshold for dma */
1364  if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
1365  &chip->dma_burst_size,
1366  &chip->dma_threshold)) {
1367  dev_warn(&spi->dev, "in setup: DMA burst size reduced "
1368  "to match bits_per_word\n");
1369  }
1370  }
1371 
1372  clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
1373  chip->speed_hz = spi->max_speed_hz;
1374 
1375  chip->cr0 = clk_div
1376  | SSCR0_Motorola
1377  | SSCR0_DataSize(spi->bits_per_word > 16 ?
1378  spi->bits_per_word - 16 : spi->bits_per_word)
1379  | SSCR0_SSE
1380  | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
1381  chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1382  chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1383  | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1384 
1385  /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1386  if (!pxa25x_ssp_comp(drv_data))
1387  dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1388  clk_get_rate(ssp->clk)
1389  / (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
1390  chip->enable_dma ? "DMA" : "PIO");
1391  else
1392  dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1393  clk_get_rate(ssp->clk) / 2
1394  / (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1395  chip->enable_dma ? "DMA" : "PIO");
1396 
1397  if (spi->bits_per_word <= 8) {
1398  chip->n_bytes = 1;
1399  chip->dma_width = DCMD_WIDTH1;
1400  chip->read = u8_reader;
1401  chip->write = u8_writer;
1402  } else if (spi->bits_per_word <= 16) {
1403  chip->n_bytes = 2;
1404  chip->dma_width = DCMD_WIDTH2;
1405  chip->read = u16_reader;
1406  chip->write = u16_writer;
1407  } else if (spi->bits_per_word <= 32) {
1408  chip->cr0 |= SSCR0_EDSS;
1409  chip->n_bytes = 4;
1410  chip->dma_width = DCMD_WIDTH4;
1411  chip->read = u32_reader;
1412  chip->write = u32_writer;
1413  } else {
1414  dev_err(&spi->dev, "invalid wordsize\n");
1415  return -ENODEV;
1416  }
1417  chip->bits_per_word = spi->bits_per_word;
1418 
1419  spi_set_ctldata(spi, chip);
1420 
1421  if (drv_data->ssp_type == CE4100_SSP)
1422  return 0;
1423 
1424  return setup_cs(spi, chip, chip_info);
1425 }
1426 
1427 static void cleanup(struct spi_device *spi)
1428 {
1429  struct chip_data *chip = spi_get_ctldata(spi);
1430  struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1431 
1432  if (!chip)
1433  return;
1434 
1435  if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
1436  gpio_free(chip->gpio_cs);
1437 
1438  kfree(chip);
1439 }
1440 
1441 static int __devinit init_queue(struct driver_data *drv_data)
1442 {
1443  INIT_LIST_HEAD(&drv_data->queue);
1444  spin_lock_init(&drv_data->lock);
1445 
1446  drv_data->run = QUEUE_STOPPED;
1447  drv_data->busy = 0;
1448 
1449  tasklet_init(&drv_data->pump_transfers,
1450  pump_transfers, (unsigned long)drv_data);
1451 
1452  INIT_WORK(&drv_data->pump_messages, pump_messages);
1454  dev_name(drv_data->master->dev.parent));
1455  if (drv_data->workqueue == NULL)
1456  return -EBUSY;
1457 
1458  return 0;
1459 }
1460 
1461 static int start_queue(struct driver_data *drv_data)
1462 {
1463  unsigned long flags;
1464 
1465  spin_lock_irqsave(&drv_data->lock, flags);
1466 
1467  if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
1468  spin_unlock_irqrestore(&drv_data->lock, flags);
1469  return -EBUSY;
1470  }
1471 
1472  drv_data->run = QUEUE_RUNNING;
1473  drv_data->cur_msg = NULL;
1474  drv_data->cur_transfer = NULL;
1475  drv_data->cur_chip = NULL;
1476  spin_unlock_irqrestore(&drv_data->lock, flags);
1477 
1478  queue_work(drv_data->workqueue, &drv_data->pump_messages);
1479 
1480  return 0;
1481 }
1482 
1483 static int stop_queue(struct driver_data *drv_data)
1484 {
1485  unsigned long flags;
1486  unsigned limit = 500;
1487  int status = 0;
1488 
1489  spin_lock_irqsave(&drv_data->lock, flags);
1490 
1491  /* This is a bit lame, but is optimized for the common execution path.
1492  * A wait_queue on the drv_data->busy could be used, but then the common
1493  * execution path (pump_messages) would be required to call wake_up or
1494  * friends on every SPI message. Do this instead */
1495  drv_data->run = QUEUE_STOPPED;
1496  while ((!list_empty(&drv_data->queue) || drv_data->busy) && limit--) {
1497  spin_unlock_irqrestore(&drv_data->lock, flags);
1498  msleep(10);
1499  spin_lock_irqsave(&drv_data->lock, flags);
1500  }
1501 
1502  if (!list_empty(&drv_data->queue) || drv_data->busy)
1503  status = -EBUSY;
1504 
1505  spin_unlock_irqrestore(&drv_data->lock, flags);
1506 
1507  return status;
1508 }
1509 
1510 static int destroy_queue(struct driver_data *drv_data)
1511 {
1512  int status;
1513 
1514  status = stop_queue(drv_data);
1515  /* we are unloading the module or failing to load (only two calls
1516  * to this routine), and neither call can handle a return value.
1517  * However, destroy_workqueue calls flush_workqueue, and that will
1518  * block until all work is done. If the reason that stop_queue
1519  * timed out is that the work will never finish, then it does no
1520  * good to call destroy_workqueue, so return anyway. */
1521  if (status != 0)
1522  return status;
1523 
1524  destroy_workqueue(drv_data->workqueue);
1525 
1526  return 0;
1527 }
1528 
1529 static int __devinit pxa2xx_spi_probe(struct platform_device *pdev)
1530 {
1531  struct device *dev = &pdev->dev;
1533  struct spi_master *master;
1534  struct driver_data *drv_data;
1535  struct ssp_device *ssp;
1536  int status;
1537 
1538  platform_info = dev->platform_data;
1539 
1540  ssp = pxa_ssp_request(pdev->id, pdev->name);
1541  if (ssp == NULL) {
1542  dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
1543  return -ENODEV;
1544  }
1545 
1546  /* Allocate master with space for drv_data and null dma buffer */
1547  master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
1548  if (!master) {
1549  dev_err(&pdev->dev, "cannot alloc spi_master\n");
1550  pxa_ssp_free(ssp);
1551  return -ENOMEM;
1552  }
1553  drv_data = spi_master_get_devdata(master);
1554  drv_data->master = master;
1555  drv_data->master_info = platform_info;
1556  drv_data->pdev = pdev;
1557  drv_data->ssp = ssp;
1558 
1559  master->dev.parent = &pdev->dev;
1560  master->dev.of_node = pdev->dev.of_node;
1561  /* the spi->mode bits understood by this driver: */
1562  master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1563 
1564  master->bus_num = pdev->id;
1565  master->num_chipselect = platform_info->num_chipselect;
1566  master->dma_alignment = DMA_ALIGNMENT;
1567  master->cleanup = cleanup;
1568  master->setup = setup;
1569  master->transfer = transfer;
1570 
1571  drv_data->ssp_type = ssp->type;
1572  drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
1573  sizeof(struct driver_data)), 8);
1574 
1575  drv_data->ioaddr = ssp->mmio_base;
1576  drv_data->ssdr_physical = ssp->phys_base + SSDR;
1577  if (pxa25x_ssp_comp(drv_data)) {
1578  drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1579  drv_data->dma_cr1 = 0;
1580  drv_data->clear_sr = SSSR_ROR;
1581  drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1582  } else {
1583  drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1584  drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
1585  drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1586  drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1587  }
1588 
1589  status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1590  drv_data);
1591  if (status < 0) {
1592  dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1593  goto out_error_master_alloc;
1594  }
1595 
1596  /* Setup DMA if requested */
1597  drv_data->tx_channel = -1;
1598  drv_data->rx_channel = -1;
1599  if (platform_info->enable_dma) {
1600 
1601  /* Get two DMA channels (rx and tx) */
1602  drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
1603  DMA_PRIO_HIGH,
1604  dma_handler,
1605  drv_data);
1606  if (drv_data->rx_channel < 0) {
1607  dev_err(dev, "problem (%d) requesting rx channel\n",
1608  drv_data->rx_channel);
1609  status = -ENODEV;
1610  goto out_error_irq_alloc;
1611  }
1612  drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
1614  dma_handler,
1615  drv_data);
1616  if (drv_data->tx_channel < 0) {
1617  dev_err(dev, "problem (%d) requesting tx channel\n",
1618  drv_data->tx_channel);
1619  status = -ENODEV;
1620  goto out_error_dma_alloc;
1621  }
1622 
1623  DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
1624  DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
1625  }
1626 
1627  /* Enable SOC clock */
1628  clk_enable(ssp->clk);
1629 
1630  /* Load default SSP configuration */
1631  write_SSCR0(0, drv_data->ioaddr);
1632  write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
1634  drv_data->ioaddr);
1635  write_SSCR0(SSCR0_SCR(2)
1636  | SSCR0_Motorola
1637  | SSCR0_DataSize(8),
1638  drv_data->ioaddr);
1639  if (!pxa25x_ssp_comp(drv_data))
1640  write_SSTO(0, drv_data->ioaddr);
1641  write_SSPSP(0, drv_data->ioaddr);
1642 
1643  /* Initial and start queue */
1644  status = init_queue(drv_data);
1645  if (status != 0) {
1646  dev_err(&pdev->dev, "problem initializing queue\n");
1647  goto out_error_clock_enabled;
1648  }
1649  status = start_queue(drv_data);
1650  if (status != 0) {
1651  dev_err(&pdev->dev, "problem starting queue\n");
1652  goto out_error_clock_enabled;
1653  }
1654 
1655  /* Register with the SPI framework */
1656  platform_set_drvdata(pdev, drv_data);
1657  status = spi_register_master(master);
1658  if (status != 0) {
1659  dev_err(&pdev->dev, "problem registering spi master\n");
1660  goto out_error_queue_alloc;
1661  }
1662 
1663  return status;
1664 
1665 out_error_queue_alloc:
1666  destroy_queue(drv_data);
1667 
1668 out_error_clock_enabled:
1669  clk_disable(ssp->clk);
1670 
1671 out_error_dma_alloc:
1672  if (drv_data->tx_channel != -1)
1673  pxa_free_dma(drv_data->tx_channel);
1674  if (drv_data->rx_channel != -1)
1675  pxa_free_dma(drv_data->rx_channel);
1676 
1677 out_error_irq_alloc:
1678  free_irq(ssp->irq, drv_data);
1679 
1680 out_error_master_alloc:
1681  spi_master_put(master);
1682  pxa_ssp_free(ssp);
1683  return status;
1684 }
1685 
1686 static int pxa2xx_spi_remove(struct platform_device *pdev)
1687 {
1688  struct driver_data *drv_data = platform_get_drvdata(pdev);
1689  struct ssp_device *ssp;
1690  int status = 0;
1691 
1692  if (!drv_data)
1693  return 0;
1694  ssp = drv_data->ssp;
1695 
1696  /* Remove the queue */
1697  status = destroy_queue(drv_data);
1698  if (status != 0)
1699  /* the kernel does not check the return status of this
1700  * this routine (mod->exit, within the kernel). Therefore
1701  * nothing is gained by returning from here, the module is
1702  * going away regardless, and we should not leave any more
1703  * resources allocated than necessary. We cannot free the
1704  * message memory in drv_data->queue, but we can release the
1705  * resources below. I think the kernel should honor -EBUSY
1706  * returns but... */
1707  dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
1708  "complete, message memory not freed\n");
1709 
1710  /* Disable the SSP at the peripheral and SOC level */
1711  write_SSCR0(0, drv_data->ioaddr);
1712  clk_disable(ssp->clk);
1713 
1714  /* Release DMA */
1715  if (drv_data->master_info->enable_dma) {
1716  DRCMR(ssp->drcmr_rx) = 0;
1717  DRCMR(ssp->drcmr_tx) = 0;
1718  pxa_free_dma(drv_data->tx_channel);
1719  pxa_free_dma(drv_data->rx_channel);
1720  }
1721 
1722  /* Release IRQ */
1723  free_irq(ssp->irq, drv_data);
1724 
1725  /* Release SSP */
1726  pxa_ssp_free(ssp);
1727 
1728  /* Disconnect from the SPI framework */
1729  spi_unregister_master(drv_data->master);
1730 
1731  /* Prevent double remove */
1732  platform_set_drvdata(pdev, NULL);
1733 
1734  return 0;
1735 }
1736 
1737 static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1738 {
1739  int status = 0;
1740 
1741  if ((status = pxa2xx_spi_remove(pdev)) != 0)
1742  dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1743 }
1744 
1745 #ifdef CONFIG_PM
1746 static int pxa2xx_spi_suspend(struct device *dev)
1747 {
1748  struct driver_data *drv_data = dev_get_drvdata(dev);
1749  struct ssp_device *ssp = drv_data->ssp;
1750  int status = 0;
1751 
1752  status = stop_queue(drv_data);
1753  if (status != 0)
1754  return status;
1755  write_SSCR0(0, drv_data->ioaddr);
1756  clk_disable(ssp->clk);
1757 
1758  return 0;
1759 }
1760 
1761 static int pxa2xx_spi_resume(struct device *dev)
1762 {
1763  struct driver_data *drv_data = dev_get_drvdata(dev);
1764  struct ssp_device *ssp = drv_data->ssp;
1765  int status = 0;
1766 
1767  if (drv_data->rx_channel != -1)
1768  DRCMR(drv_data->ssp->drcmr_rx) =
1769  DRCMR_MAPVLD | drv_data->rx_channel;
1770  if (drv_data->tx_channel != -1)
1771  DRCMR(drv_data->ssp->drcmr_tx) =
1772  DRCMR_MAPVLD | drv_data->tx_channel;
1773 
1774  /* Enable the SSP clock */
1775  clk_enable(ssp->clk);
1776 
1777  /* Start the queue running */
1778  status = start_queue(drv_data);
1779  if (status != 0) {
1780  dev_err(dev, "problem starting queue (%d)\n", status);
1781  return status;
1782  }
1783 
1784  return 0;
1785 }
1786 
1787 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1788  .suspend = pxa2xx_spi_suspend,
1789  .resume = pxa2xx_spi_resume,
1790 };
1791 #endif
1792 
1793 static struct platform_driver driver = {
1794  .driver = {
1795  .name = "pxa2xx-spi",
1796  .owner = THIS_MODULE,
1797 #ifdef CONFIG_PM
1798  .pm = &pxa2xx_spi_pm_ops,
1799 #endif
1800  },
1801  .probe = pxa2xx_spi_probe,
1802  .remove = pxa2xx_spi_remove,
1803  .shutdown = pxa2xx_spi_shutdown,
1804 };
1805 
1806 static int __init pxa2xx_spi_init(void)
1807 {
1808  return platform_driver_register(&driver);
1809 }
1810 subsys_initcall(pxa2xx_spi_init);
1811 
1812 static void __exit pxa2xx_spi_exit(void)
1813 {
1814  platform_driver_unregister(&driver);
1815 }
1816 module_exit(pxa2xx_spi_exit);