Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
tehuti.c
Go to the documentation of this file.
1 /*
2  * Tehuti Networks(R) Network Driver
3  * ethtool interface implementation
4  * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  */
11 
12 /*
13  * RX HW/SW interaction overview
14  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
15  * There are 2 types of RX communication channels between driver and NIC.
16  * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
17  * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
18  * info about buffer's location, size and ID. An ID field is used to identify a
19  * buffer when it's returned with data via RXD Fifo (see below)
20  * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
21  * filled by HW and is readen by SW. Each descriptor holds status and ID.
22  * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
23  * via dma moves it into host memory, builds new RXD descriptor with same ID,
24  * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
25  *
26  * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
27  * One holds 1.5K packets and another - 26K packets. Depending on incoming
28  * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
29  * filled with data, HW builds new RXD descriptor for it and push it into single
30  * RXD Fifo.
31  *
32  * RX SW Data Structures
33  * ~~~~~~~~~~~~~~~~~~~~~
34  * skb db - used to keep track of all skbs owned by SW and their dma addresses.
35  * For RX case, ownership lasts from allocating new empty skb for RXF until
36  * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
37  * skb db. Implemented as array with bitmask.
38  * fifo - keeps info about fifo's size and location, relevant HW registers,
39  * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
40  * Implemented as simple struct.
41  *
42  * RX SW Execution Flow
43  * ~~~~~~~~~~~~~~~~~~~~
44  * Upon initialization (ifconfig up) driver creates RX fifos and initializes
45  * relevant registers. At the end of init phase, driver enables interrupts.
46  * NIC sees that there is no RXF buffers and raises
47  * RD_INTR interrupt, isr fills skbs and Rx begins.
48  * Driver has two receive operation modes:
49  * NAPI - interrupt-driven mixed with polling
50  * interrupt-driven only
51  *
52  * Interrupt-driven only flow is following. When buffer is ready, HW raises
53  * interrupt and isr is called. isr collects all available packets
54  * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
55 
56  * Rx buffer allocation note
57  * ~~~~~~~~~~~~~~~~~~~~~~~~~
58  * Driver cares to feed such amount of RxF descriptors that respective amount of
59  * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
60  * overflow check in Bordeaux for RxD fifo free/used size.
61  * FIXME: this is NOT fully implemented, more work should be done
62  *
63  */
64 
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66 
67 #include "tehuti.h"
68 
69 static DEFINE_PCI_DEVICE_TABLE(bdx_pci_tbl) = {
70  { PCI_VDEVICE(TEHUTI, 0x3009), },
71  { PCI_VDEVICE(TEHUTI, 0x3010), },
72  { PCI_VDEVICE(TEHUTI, 0x3014), },
73  { 0 }
74 };
75 
76 MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
77 
78 /* Definitions needed by ISR or NAPI functions */
79 static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
80 static void bdx_tx_cleanup(struct bdx_priv *priv);
81 static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
82 
83 /* Definitions needed by FW loading */
84 static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
85 
86 /* Definitions needed by hw_start */
87 static int bdx_tx_init(struct bdx_priv *priv);
88 static int bdx_rx_init(struct bdx_priv *priv);
89 
90 /* Definitions needed by bdx_close */
91 static void bdx_rx_free(struct bdx_priv *priv);
92 static void bdx_tx_free(struct bdx_priv *priv);
93 
94 /* Definitions needed by bdx_probe */
95 static void bdx_set_ethtool_ops(struct net_device *netdev);
96 
97 /*************************************************************************
98  * Print Info *
99  *************************************************************************/
100 
101 static void print_hw_id(struct pci_dev *pdev)
102 {
103  struct pci_nic *nic = pci_get_drvdata(pdev);
104  u16 pci_link_status = 0;
105  u16 pci_ctrl = 0;
106 
107  pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
108  pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
109 
110  pr_info("%s%s\n", BDX_NIC_NAME,
111  nic->port_num == 1 ? "" : ", 2-Port");
112  pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
113  readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
114  readl(nic->regs + FPGA_SEED),
115  GET_LINK_STATUS_LANES(pci_link_status),
116  GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
117 }
118 
119 static void print_fw_id(struct pci_nic *nic)
120 {
121  pr_info("fw 0x%x\n", readl(nic->regs + FW_VER));
122 }
123 
124 static void print_eth_id(struct net_device *ndev)
125 {
126  netdev_info(ndev, "%s, Port %c\n",
127  BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B');
128 
129 }
130 
131 /*************************************************************************
132  * Code *
133  *************************************************************************/
134 
135 #define bdx_enable_interrupts(priv) \
136  do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
137 #define bdx_disable_interrupts(priv) \
138  do { WRITE_REG(priv, regIMR, 0); } while (0)
139 
153 static int
154 bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
155  u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
156 {
157  u16 memsz = FIFO_SIZE * (1 << fsz_type);
158 
159  memset(f, 0, sizeof(struct fifo));
160  /* pci_alloc_consistent gives us 4k-aligned memory */
161  f->va = pci_alloc_consistent(priv->pdev,
162  memsz + FIFO_EXTRA_SPACE, &f->da);
163  if (!f->va) {
164  pr_err("pci_alloc_consistent failed\n");
165  RET(-ENOMEM);
166  }
167  f->reg_CFG0 = reg_CFG0;
168  f->reg_CFG1 = reg_CFG1;
169  f->reg_RPTR = reg_RPTR;
170  f->reg_WPTR = reg_WPTR;
171  f->rptr = 0;
172  f->wptr = 0;
173  f->memsz = memsz;
174  f->size_mask = memsz - 1;
175  WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
176  WRITE_REG(priv, reg_CFG1, H32_64(f->da));
177 
178  RET(0);
179 }
180 
186 static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
187 {
188  ENTER;
189  if (f->va) {
191  f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
192  f->va = NULL;
193  }
194  RET();
195 }
196 
201 static void bdx_link_changed(struct bdx_priv *priv)
202 {
204 
205  if (!link) {
206  if (netif_carrier_ok(priv->ndev)) {
207  netif_stop_queue(priv->ndev);
208  netif_carrier_off(priv->ndev);
209  netdev_err(priv->ndev, "Link Down\n");
210  }
211  } else {
212  if (!netif_carrier_ok(priv->ndev)) {
213  netif_wake_queue(priv->ndev);
214  netif_carrier_on(priv->ndev);
215  netdev_err(priv->ndev, "Link Up\n");
216  }
217  }
218 }
219 
220 static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
221 {
222  if (isr & IR_RX_FREE_0) {
223  bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
224  DBG("RX_FREE_0\n");
225  }
226 
227  if (isr & IR_LNKCHG0)
228  bdx_link_changed(priv);
229 
230  if (isr & IR_PCIE_LINK)
231  netdev_err(priv->ndev, "PCI-E Link Fault\n");
232 
233  if (isr & IR_PCIE_TOUT)
234  netdev_err(priv->ndev, "PCI-E Time Out\n");
235 
236 }
237 
252 static irqreturn_t bdx_isr_napi(int irq, void *dev)
253 {
254  struct net_device *ndev = dev;
255  struct bdx_priv *priv = netdev_priv(ndev);
256  u32 isr;
257 
258  ENTER;
259  isr = (READ_REG(priv, regISR) & IR_RUN);
260  if (unlikely(!isr)) {
261  bdx_enable_interrupts(priv);
262  return IRQ_NONE; /* Not our interrupt */
263  }
264 
265  if (isr & IR_EXTRA)
266  bdx_isr_extra(priv, isr);
267 
268  if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
269  if (likely(napi_schedule_prep(&priv->napi))) {
270  __napi_schedule(&priv->napi);
271  RET(IRQ_HANDLED);
272  } else {
273  /* NOTE: we get here if intr has slipped into window
274  * between these lines in bdx_poll:
275  * bdx_enable_interrupts(priv);
276  * return 0;
277  * currently intrs are disabled (since we read ISR),
278  * and we have failed to register next poll.
279  * so we read the regs to trigger chip
280  * and allow further interupts. */
281  READ_REG(priv, regTXF_WPTR_0);
282  READ_REG(priv, regRXD_WPTR_0);
283  }
284  }
285 
286  bdx_enable_interrupts(priv);
287  RET(IRQ_HANDLED);
288 }
289 
290 static int bdx_poll(struct napi_struct *napi, int budget)
291 {
292  struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
293  int work_done;
294 
295  ENTER;
296  bdx_tx_cleanup(priv);
297  work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
298  if ((work_done < budget) ||
299  (priv->napi_stop++ >= 30)) {
300  DBG("rx poll is done. backing to isr-driven\n");
301 
302  /* from time to time we exit to let NAPI layer release
303  * device lock and allow waiting tasks (eg rmmod) to advance) */
304  priv->napi_stop = 0;
305 
306  napi_complete(napi);
307  bdx_enable_interrupts(priv);
308  }
309  return work_done;
310 }
311 
322 static int bdx_fw_load(struct bdx_priv *priv)
323 {
324  const struct firmware *fw = NULL;
325  int master, i;
326  int rc;
327 
328  ENTER;
329  master = READ_REG(priv, regINIT_SEMAPHORE);
330  if (!READ_REG(priv, regINIT_STATUS) && master) {
331  rc = request_firmware(&fw, "tehuti/bdx.bin", &priv->pdev->dev);
332  if (rc)
333  goto out;
334  bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size);
335  mdelay(100);
336  }
337  for (i = 0; i < 200; i++) {
338  if (READ_REG(priv, regINIT_STATUS)) {
339  rc = 0;
340  goto out;
341  }
342  mdelay(2);
343  }
344  rc = -EIO;
345 out:
346  if (master)
347  WRITE_REG(priv, regINIT_SEMAPHORE, 1);
348 
349  release_firmware(fw);
350 
351  if (rc) {
352  netdev_err(priv->ndev, "firmware loading failed\n");
353  if (rc == -EIO)
354  DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
355  READ_REG(priv, regVPC),
356  READ_REG(priv, regVIC),
357  READ_REG(priv, regINIT_STATUS), i);
358  RET(rc);
359  } else {
360  DBG("%s: firmware loading success\n", priv->ndev->name);
361  RET(0);
362  }
363 }
364 
365 static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
366 {
367  u32 val;
368 
369  ENTER;
370  DBG("mac0=%x mac1=%x mac2=%x\n",
371  READ_REG(priv, regUNC_MAC0_A),
373 
374  val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
375  WRITE_REG(priv, regUNC_MAC2_A, val);
376  val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
377  WRITE_REG(priv, regUNC_MAC1_A, val);
378  val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
379  WRITE_REG(priv, regUNC_MAC0_A, val);
380 
381  DBG("mac0=%x mac1=%x mac2=%x\n",
382  READ_REG(priv, regUNC_MAC0_A),
384  RET();
385 }
386 
391 static int bdx_hw_start(struct bdx_priv *priv)
392 {
393  int rc = -EIO;
394  struct net_device *ndev = priv->ndev;
395 
396  ENTER;
397  bdx_link_changed(priv);
398 
399  /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
400  WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
401  WRITE_REG(priv, regPAUSE_QUANT, 0x96);
402  WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
403  WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
404  WRITE_REG(priv, regRX_FULLNESS, 0);
405  WRITE_REG(priv, regTX_FULLNESS, 0);
406  WRITE_REG(priv, regCTRLST,
408 
409  WRITE_REG(priv, regVGLB, 0);
411  priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
412 
413  DBG("RDINTCM=%08x\n", priv->rdintcm); /*NOTE: test script uses this */
414  WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
415  WRITE_REG(priv, regRDINTCM2, 0); /*cpu_to_le32(rcm.val)); */
416 
417  DBG("TDINTCM=%08x\n", priv->tdintcm); /*NOTE: test script uses this */
418  WRITE_REG(priv, regTDINTCM0, priv->tdintcm); /* old val = 0x300064 */
419 
420  /* Enable timer interrupt once in 2 secs. */
421  /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
422  bdx_restore_mac(priv->ndev, priv);
423 
426 
427 #define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
428 
429  rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE,
430  ndev->name, ndev);
431  if (rc)
432  goto err_irq;
433  bdx_enable_interrupts(priv);
434 
435  RET(0);
436 
437 err_irq:
438  RET(rc);
439 }
440 
441 static void bdx_hw_stop(struct bdx_priv *priv)
442 {
443  ENTER;
445  free_irq(priv->pdev->irq, priv->ndev);
446 
447  netif_carrier_off(priv->ndev);
448  netif_stop_queue(priv->ndev);
449 
450  RET();
451 }
452 
453 static int bdx_hw_reset_direct(void __iomem *regs)
454 {
455  u32 val, i;
456  ENTER;
457 
458  /* reset sequences: read, write 1, read, write 0 */
459  val = readl(regs + regCLKPLL);
460  writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
461  udelay(50);
462  val = readl(regs + regCLKPLL);
463  writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
464 
465  /* check that the PLLs are locked and reset ended */
466  for (i = 0; i < 70; i++, mdelay(10))
467  if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
468  /* do any PCI-E read transaction */
469  readl(regs + regRXD_CFG0_0);
470  return 0;
471  }
472  pr_err("HW reset failed\n");
473  return 1; /* failure */
474 }
475 
476 static int bdx_hw_reset(struct bdx_priv *priv)
477 {
478  u32 val, i;
479  ENTER;
480 
481  if (priv->port == 0) {
482  /* reset sequences: read, write 1, read, write 0 */
483  val = READ_REG(priv, regCLKPLL);
484  WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
485  udelay(50);
486  val = READ_REG(priv, regCLKPLL);
487  WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
488  }
489  /* check that the PLLs are locked and reset ended */
490  for (i = 0; i < 70; i++, mdelay(10))
491  if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
492  /* do any PCI-E read transaction */
493  READ_REG(priv, regRXD_CFG0_0);
494  return 0;
495  }
496  pr_err("HW reset failed\n");
497  return 1; /* failure */
498 }
499 
500 static int bdx_sw_reset(struct bdx_priv *priv)
501 {
502  int i;
503 
504  ENTER;
505  /* 1. load MAC (obsolete) */
506  /* 2. disable Rx (and Tx) */
507  WRITE_REG(priv, regGMAC_RXF_A, 0);
508  mdelay(100);
509  /* 3. disable port */
510  WRITE_REG(priv, regDIS_PORT, 1);
511  /* 4. disable queue */
512  WRITE_REG(priv, regDIS_QU, 1);
513  /* 5. wait until hw is disabled */
514  for (i = 0; i < 50; i++) {
515  if (READ_REG(priv, regRST_PORT) & 1)
516  break;
517  mdelay(10);
518  }
519  if (i == 50)
520  netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n");
521 
522  /* 6. disable intrs */
523  WRITE_REG(priv, regRDINTCM0, 0);
524  WRITE_REG(priv, regTDINTCM0, 0);
525  WRITE_REG(priv, regIMR, 0);
526  READ_REG(priv, regISR);
527 
528  /* 7. reset queue */
529  WRITE_REG(priv, regRST_QU, 1);
530  /* 8. reset port */
531  WRITE_REG(priv, regRST_PORT, 1);
532  /* 9. zero all read and write pointers */
533  for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
534  DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
535  for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
536  WRITE_REG(priv, i, 0);
537  /* 10. unseet port disable */
538  WRITE_REG(priv, regDIS_PORT, 0);
539  /* 11. unset queue disable */
540  WRITE_REG(priv, regDIS_QU, 0);
541  /* 12. unset queue reset */
542  WRITE_REG(priv, regRST_QU, 0);
543  /* 13. unset port reset */
544  WRITE_REG(priv, regRST_PORT, 0);
545  /* 14. enable Rx */
546  /* skiped. will be done later */
547  /* 15. save MAC (obsolete) */
548  for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
549  DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
550 
551  RET(0);
552 }
553 
554 /* bdx_reset - performs right type of reset depending on hw type */
555 static int bdx_reset(struct bdx_priv *priv)
556 {
557  ENTER;
558  RET((priv->pdev->device == 0x3009)
559  ? bdx_hw_reset(priv)
560  : bdx_sw_reset(priv));
561 }
562 
574 static int bdx_close(struct net_device *ndev)
575 {
576  struct bdx_priv *priv = NULL;
577 
578  ENTER;
579  priv = netdev_priv(ndev);
580 
581  napi_disable(&priv->napi);
582 
583  bdx_reset(priv);
584  bdx_hw_stop(priv);
585  bdx_rx_free(priv);
586  bdx_tx_free(priv);
587  RET(0);
588 }
589 
602 static int bdx_open(struct net_device *ndev)
603 {
604  struct bdx_priv *priv;
605  int rc;
606 
607  ENTER;
608  priv = netdev_priv(ndev);
609  bdx_reset(priv);
610  if (netif_running(ndev))
611  netif_stop_queue(priv->ndev);
612 
613  if ((rc = bdx_tx_init(priv)) ||
614  (rc = bdx_rx_init(priv)) ||
615  (rc = bdx_fw_load(priv)))
616  goto err;
617 
618  bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
619 
620  rc = bdx_hw_start(priv);
621  if (rc)
622  goto err;
623 
624  napi_enable(&priv->napi);
625 
626  print_fw_id(priv->nic);
627 
628  RET(0);
629 
630 err:
631  bdx_close(ndev);
632  RET(rc);
633 }
634 
635 static int bdx_range_check(struct bdx_priv *priv, u32 offset)
636 {
637  return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
638  -EINVAL : 0;
639 }
640 
641 static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
642 {
643  struct bdx_priv *priv = netdev_priv(ndev);
644  u32 data[3];
645  int error;
646 
647  ENTER;
648 
649  DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
650  if (cmd != SIOCDEVPRIVATE) {
651  error = copy_from_user(data, ifr->ifr_data, sizeof(data));
652  if (error) {
653  pr_err("can't copy from user\n");
654  RET(-EFAULT);
655  }
656  DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
657  }
658 
659  if (!capable(CAP_SYS_RAWIO))
660  return -EPERM;
661 
662  switch (data[0]) {
663 
664  case BDX_OP_READ:
665  error = bdx_range_check(priv, data[1]);
666  if (error < 0)
667  return error;
668  data[2] = READ_REG(priv, data[1]);
669  DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
670  data[2]);
671  error = copy_to_user(ifr->ifr_data, data, sizeof(data));
672  if (error)
673  RET(-EFAULT);
674  break;
675 
676  case BDX_OP_WRITE:
677  error = bdx_range_check(priv, data[1]);
678  if (error < 0)
679  return error;
680  WRITE_REG(priv, data[1], data[2]);
681  DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
682  break;
683 
684  default:
685  RET(-EOPNOTSUPP);
686  }
687  return 0;
688 }
689 
690 static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
691 {
692  ENTER;
693  if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
694  RET(bdx_ioctl_priv(ndev, ifr, cmd));
695  else
696  RET(-EOPNOTSUPP);
697 }
698 
707 static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
708 {
709  struct bdx_priv *priv = netdev_priv(ndev);
710  u32 reg, bit, val;
711 
712  ENTER;
713  DBG2("vid=%d value=%d\n", (int)vid, enable);
714  if (unlikely(vid >= 4096)) {
715  pr_err("invalid VID: %u (> 4096)\n", vid);
716  RET();
717  }
718  reg = regVLAN_0 + (vid / 32) * 4;
719  bit = 1 << vid % 32;
720  val = READ_REG(priv, reg);
721  DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
722  if (enable)
723  val |= bit;
724  else
725  val &= ~bit;
726  DBG2("new val %x\n", val);
727  WRITE_REG(priv, reg, val);
728  RET();
729 }
730 
736 static int bdx_vlan_rx_add_vid(struct net_device *ndev, uint16_t vid)
737 {
738  __bdx_vlan_rx_vid(ndev, vid, 1);
739  return 0;
740 }
741 
747 static int bdx_vlan_rx_kill_vid(struct net_device *ndev, unsigned short vid)
748 {
749  __bdx_vlan_rx_vid(ndev, vid, 0);
750  return 0;
751 }
752 
760 static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
761 {
762  ENTER;
763 
764  if (new_mtu == ndev->mtu)
765  RET(0);
766 
767  /* enforce minimum frame size */
768  if (new_mtu < ETH_ZLEN) {
769  netdev_err(ndev, "mtu %d is less then minimal %d\n",
770  new_mtu, ETH_ZLEN);
771  RET(-EINVAL);
772  }
773 
774  ndev->mtu = new_mtu;
775  if (netif_running(ndev)) {
776  bdx_close(ndev);
777  bdx_open(ndev);
778  }
779  RET(0);
780 }
781 
782 static void bdx_setmulti(struct net_device *ndev)
783 {
784  struct bdx_priv *priv = netdev_priv(ndev);
785 
786  u32 rxf_val =
788  int i;
789 
790  ENTER;
791  /* IMF - imperfect (hash) rx multicat filter */
792  /* PMF - perfect rx multicat filter */
793 
794  /* FIXME: RXE(OFF) */
795  if (ndev->flags & IFF_PROMISC) {
796  rxf_val |= GMAC_RX_FILTER_PRM;
797  } else if (ndev->flags & IFF_ALLMULTI) {
798  /* set IMF to accept all multicast frmaes */
799  for (i = 0; i < MAC_MCST_HASH_NUM; i++)
800  WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
801  } else if (!netdev_mc_empty(ndev)) {
802  u8 hash;
803  struct netdev_hw_addr *ha;
804  u32 reg, val;
805 
806  /* set IMF to deny all multicast frames */
807  for (i = 0; i < MAC_MCST_HASH_NUM; i++)
808  WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
809  /* set PMF to deny all multicast frames */
810  for (i = 0; i < MAC_MCST_NUM; i++) {
811  WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
812  WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
813  }
814 
815  /* use PMF to accept first MAC_MCST_NUM (15) addresses */
816  /* TBD: sort addresses and write them in ascending order
817  * into RX_MAC_MCST regs. we skip this phase now and accept ALL
818  * multicast frames throu IMF */
819  /* accept the rest of addresses throu IMF */
820  netdev_for_each_mc_addr(ha, ndev) {
821  hash = 0;
822  for (i = 0; i < ETH_ALEN; i++)
823  hash ^= ha->addr[i];
824  reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
825  val = READ_REG(priv, reg);
826  val |= (1 << (hash % 32));
827  WRITE_REG(priv, reg, val);
828  }
829 
830  } else {
831  DBG("only own mac %d\n", netdev_mc_count(ndev));
832  rxf_val |= GMAC_RX_FILTER_AB;
833  }
834  WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
835  /* enable RX */
836  /* FIXME: RXE(ON) */
837  RET();
838 }
839 
840 static int bdx_set_mac(struct net_device *ndev, void *p)
841 {
842  struct bdx_priv *priv = netdev_priv(ndev);
843  struct sockaddr *addr = p;
844 
845  ENTER;
846  /*
847  if (netif_running(dev))
848  return -EBUSY
849  */
850  memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
851  bdx_restore_mac(ndev, priv);
852  RET(0);
853 }
854 
855 static int bdx_read_mac(struct bdx_priv *priv)
856 {
857  u16 macAddress[3], i;
858  ENTER;
859 
860  macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
861  macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
862  macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
863  macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
864  macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
865  macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
866  for (i = 0; i < 3; i++) {
867  priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
868  priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
869  }
870  RET(0);
871 }
872 
873 static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
874 {
875  u64 val;
876 
877  val = READ_REG(priv, reg);
878  val |= ((u64) READ_REG(priv, reg + 8)) << 32;
879  return val;
880 }
881 
882 /*Do the statistics-update work*/
883 static void bdx_update_stats(struct bdx_priv *priv)
884 {
885  struct bdx_stats *stats = &priv->hw_stats;
886  u64 *stats_vector = (u64 *) stats;
887  int i;
888  int addr;
889 
890  /*Fill HW structure */
891  addr = 0x7200;
892  /*First 12 statistics - 0x7200 - 0x72B0 */
893  for (i = 0; i < 12; i++) {
894  stats_vector[i] = bdx_read_l2stat(priv, addr);
895  addr += 0x10;
896  }
897  BDX_ASSERT(addr != 0x72C0);
898  /* 0x72C0-0x72E0 RSRV */
899  addr = 0x72F0;
900  for (; i < 16; i++) {
901  stats_vector[i] = bdx_read_l2stat(priv, addr);
902  addr += 0x10;
903  }
904  BDX_ASSERT(addr != 0x7330);
905  /* 0x7330-0x7360 RSRV */
906  addr = 0x7370;
907  for (; i < 19; i++) {
908  stats_vector[i] = bdx_read_l2stat(priv, addr);
909  addr += 0x10;
910  }
911  BDX_ASSERT(addr != 0x73A0);
912  /* 0x73A0-0x73B0 RSRV */
913  addr = 0x73C0;
914  for (; i < 23; i++) {
915  stats_vector[i] = bdx_read_l2stat(priv, addr);
916  addr += 0x10;
917  }
918  BDX_ASSERT(addr != 0x7400);
919  BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
920 }
921 
922 static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
923  u16 rxd_vlan);
924 static void print_rxfd(struct rxf_desc *rxfd);
925 
926 /*************************************************************************
927  * Rx DB *
928  *************************************************************************/
929 
930 static void bdx_rxdb_destroy(struct rxdb *db)
931 {
932  vfree(db);
933 }
934 
935 static struct rxdb *bdx_rxdb_create(int nelem)
936 {
937  struct rxdb *db;
938  int i;
939 
940  db = vmalloc(sizeof(struct rxdb)
941  + (nelem * sizeof(int))
942  + (nelem * sizeof(struct rx_map)));
943  if (likely(db != NULL)) {
944  db->stack = (int *)(db + 1);
945  db->elems = (void *)(db->stack + nelem);
946  db->nelem = nelem;
947  db->top = nelem;
948  for (i = 0; i < nelem; i++)
949  db->stack[i] = nelem - i - 1; /* to make first allocs
950  close to db struct*/
951  }
952 
953  return db;
954 }
955 
956 static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
957 {
958  BDX_ASSERT(db->top <= 0);
959  return db->stack[--(db->top)];
960 }
961 
962 static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
963 {
964  BDX_ASSERT((n < 0) || (n >= db->nelem));
965  return db->elems + n;
966 }
967 
968 static inline int bdx_rxdb_available(struct rxdb *db)
969 {
970  return db->top;
971 }
972 
973 static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
974 {
975  BDX_ASSERT((n >= db->nelem) || (n < 0));
976  db->stack[(db->top)++] = n;
977 }
978 
979 /*************************************************************************
980  * Rx Init *
981  *************************************************************************/
982 
999 /* TBD: ensure proper packet size */
1000 
1001 static int bdx_rx_init(struct bdx_priv *priv)
1002 {
1003  ENTER;
1004 
1005  if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
1008  goto err_mem;
1009  if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
1012  goto err_mem;
1013  priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
1014  sizeof(struct rxf_desc));
1015  if (!priv->rxdb)
1016  goto err_mem;
1017 
1018  priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
1019  return 0;
1020 
1021 err_mem:
1022  netdev_err(priv->ndev, "Rx init failed\n");
1023  return -ENOMEM;
1024 }
1025 
1031 static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1032 {
1033  struct rx_map *dm;
1034  struct rxdb *db = priv->rxdb;
1035  u16 i;
1036 
1037  ENTER;
1038  DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
1039  db->nelem - bdx_rxdb_available(db));
1040  while (bdx_rxdb_available(db) > 0) {
1041  i = bdx_rxdb_alloc_elem(db);
1042  dm = bdx_rxdb_addr_elem(db, i);
1043  dm->dma = 0;
1044  }
1045  for (i = 0; i < db->nelem; i++) {
1046  dm = bdx_rxdb_addr_elem(db, i);
1047  if (dm->dma) {
1048  pci_unmap_single(priv->pdev,
1049  dm->dma, f->m.pktsz,
1051  dev_kfree_skb(dm->skb);
1052  }
1053  }
1054 }
1055 
1062 static void bdx_rx_free(struct bdx_priv *priv)
1063 {
1064  ENTER;
1065  if (priv->rxdb) {
1066  bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
1067  bdx_rxdb_destroy(priv->rxdb);
1068  priv->rxdb = NULL;
1069  }
1070  bdx_fifo_free(priv, &priv->rxf_fifo0.m);
1071  bdx_fifo_free(priv, &priv->rxd_fifo0.m);
1072 
1073  RET();
1074 }
1075 
1076 /*************************************************************************
1077  * Rx Engine *
1078  *************************************************************************/
1079 
1091 /* TBD: do not update WPTR if no desc were written */
1092 
1093 static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1094 {
1095  struct sk_buff *skb;
1096  struct rxf_desc *rxfd;
1097  struct rx_map *dm;
1098  int dno, delta, idx;
1099  struct rxdb *db = priv->rxdb;
1100 
1101  ENTER;
1102  dno = bdx_rxdb_available(db) - 1;
1103  while (dno > 0) {
1104  skb = netdev_alloc_skb(priv->ndev, f->m.pktsz + NET_IP_ALIGN);
1105  if (!skb) {
1106  pr_err("NO MEM: netdev_alloc_skb failed\n");
1107  break;
1108  }
1109  skb_reserve(skb, NET_IP_ALIGN);
1110 
1111  idx = bdx_rxdb_alloc_elem(db);
1112  dm = bdx_rxdb_addr_elem(db, idx);
1113  dm->dma = pci_map_single(priv->pdev,
1114  skb->data, f->m.pktsz,
1116  dm->skb = skb;
1117  rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1118  rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1119  rxfd->va_lo = idx;
1120  rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1121  rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1122  rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1123  print_rxfd(rxfd);
1124 
1125  f->m.wptr += sizeof(struct rxf_desc);
1126  delta = f->m.wptr - f->m.memsz;
1127  if (unlikely(delta >= 0)) {
1128  f->m.wptr = delta;
1129  if (delta > 0) {
1130  memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1131  DBG("wrapped descriptor\n");
1132  }
1133  }
1134  dno--;
1135  }
1136  /*TBD: to do - delayed rxf wptr like in txd */
1137  WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1138  RET();
1139 }
1140 
1141 static inline void
1142 NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
1143  struct sk_buff *skb)
1144 {
1145  ENTER;
1146  DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1));
1147  if (GET_RXD_VTAG(rxd_val1)) {
1148  DBG("%s: vlan rcv vlan '%x' vtag '%x'\n",
1149  priv->ndev->name,
1150  GET_RXD_VLAN_ID(rxd_vlan),
1151  GET_RXD_VTAG(rxd_val1));
1152  __vlan_hwaccel_put_tag(skb, GET_RXD_VLAN_TCI(rxd_vlan));
1153  }
1154  netif_receive_skb(skb);
1155 }
1156 
1157 static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
1158 {
1159  struct rxf_desc *rxfd;
1160  struct rx_map *dm;
1161  struct rxf_fifo *f;
1162  struct rxdb *db;
1163  struct sk_buff *skb;
1164  int delta;
1165 
1166  ENTER;
1167  DBG("priv=%p rxdd=%p\n", priv, rxdd);
1168  f = &priv->rxf_fifo0;
1169  db = priv->rxdb;
1170  DBG("db=%p f=%p\n", db, f);
1171  dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1172  DBG("dm=%p\n", dm);
1173  skb = dm->skb;
1174  rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1175  rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1176  rxfd->va_lo = rxdd->va_lo;
1177  rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1178  rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1179  rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1180  print_rxfd(rxfd);
1181 
1182  f->m.wptr += sizeof(struct rxf_desc);
1183  delta = f->m.wptr - f->m.memsz;
1184  if (unlikely(delta >= 0)) {
1185  f->m.wptr = delta;
1186  if (delta > 0) {
1187  memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1188  DBG("wrapped descriptor\n");
1189  }
1190  }
1191  RET();
1192 }
1193 
1205 /* TBD: replace memcpy func call by explicite inline asm */
1206 
1207 static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
1208 {
1209  struct net_device *ndev = priv->ndev;
1210  struct sk_buff *skb, *skb2;
1211  struct rxd_desc *rxdd;
1212  struct rx_map *dm;
1213  struct rxf_fifo *rxf_fifo;
1214  int tmp_len, size;
1215  int done = 0;
1216  int max_done = BDX_MAX_RX_DONE;
1217  struct rxdb *db = NULL;
1218  /* Unmarshalled descriptor - copy of descriptor in host order */
1219  u32 rxd_val1;
1220  u16 len;
1221  u16 rxd_vlan;
1222 
1223  ENTER;
1224  max_done = budget;
1225 
1226  f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
1227 
1228  size = f->m.wptr - f->m.rptr;
1229  if (size < 0)
1230  size = f->m.memsz + size; /* size is negative :-) */
1231 
1232  while (size > 0) {
1233 
1234  rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
1235  rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
1236 
1237  len = CPU_CHIP_SWAP16(rxdd->len);
1238 
1239  rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
1240 
1241  print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
1242 
1243  tmp_len = GET_RXD_BC(rxd_val1) << 3;
1244  BDX_ASSERT(tmp_len <= 0);
1245  size -= tmp_len;
1246  if (size < 0) /* test for partially arrived descriptor */
1247  break;
1248 
1249  f->m.rptr += tmp_len;
1250 
1251  tmp_len = f->m.rptr - f->m.memsz;
1252  if (unlikely(tmp_len >= 0)) {
1253  f->m.rptr = tmp_len;
1254  if (tmp_len > 0) {
1255  DBG("wrapped desc rptr=%d tmp_len=%d\n",
1256  f->m.rptr, tmp_len);
1257  memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
1258  }
1259  }
1260 
1261  if (unlikely(GET_RXD_ERR(rxd_val1))) {
1262  DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
1263  ndev->stats.rx_errors++;
1264  bdx_recycle_skb(priv, rxdd);
1265  continue;
1266  }
1267 
1268  rxf_fifo = &priv->rxf_fifo0;
1269  db = priv->rxdb;
1270  dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1271  skb = dm->skb;
1272 
1273  if (len < BDX_COPYBREAK &&
1274  (skb2 = netdev_alloc_skb(priv->ndev, len + NET_IP_ALIGN))) {
1275  skb_reserve(skb2, NET_IP_ALIGN);
1276  /*skb_put(skb2, len); */
1277  pci_dma_sync_single_for_cpu(priv->pdev,
1278  dm->dma, rxf_fifo->m.pktsz,
1280  memcpy(skb2->data, skb->data, len);
1281  bdx_recycle_skb(priv, rxdd);
1282  skb = skb2;
1283  } else {
1284  pci_unmap_single(priv->pdev,
1285  dm->dma, rxf_fifo->m.pktsz,
1287  bdx_rxdb_free_elem(db, rxdd->va_lo);
1288  }
1289 
1290  ndev->stats.rx_bytes += len;
1291 
1292  skb_put(skb, len);
1293  skb->protocol = eth_type_trans(skb, ndev);
1294 
1295  /* Non-IP packets aren't checksum-offloaded */
1296  if (GET_RXD_PKT_ID(rxd_val1) == 0)
1297  skb_checksum_none_assert(skb);
1298  else
1300 
1301  NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
1302 
1303  if (++done >= max_done)
1304  break;
1305  }
1306 
1307  ndev->stats.rx_packets += done;
1308 
1309  /* FIXME: do smth to minimize pci accesses */
1310  WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1311 
1312  bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
1313 
1314  RET(done);
1315 }
1316 
1317 /*************************************************************************
1318  * Debug / Temprorary Code *
1319  *************************************************************************/
1320 static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
1321  u16 rxd_vlan)
1322 {
1323  DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
1324  GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
1325  GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
1326  GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
1327  GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
1328  GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
1329  rxdd->va_hi);
1330 }
1331 
1332 static void print_rxfd(struct rxf_desc *rxfd)
1333 {
1334  DBG("=== RxF desc CHIP ORDER/ENDIANNESS =============\n"
1335  "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
1336  rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
1337 }
1338 
1339 /*
1340  * TX HW/SW interaction overview
1341  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1342  * There are 2 types of TX communication channels between driver and NIC.
1343  * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
1344  * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
1345  *
1346  * Currently NIC supports TSO, checksuming and gather DMA
1347  * UFO and IP fragmentation is on the way
1348  *
1349  * RX SW Data Structures
1350  * ~~~~~~~~~~~~~~~~~~~~~
1351  * txdb - used to keep track of all skbs owned by SW and their dma addresses.
1352  * For TX case, ownership lasts from geting packet via hard_xmit and until HW
1353  * acknowledges sent by TXF descriptors.
1354  * Implemented as cyclic buffer.
1355  * fifo - keeps info about fifo's size and location, relevant HW registers,
1356  * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
1357  * Implemented as simple struct.
1358  *
1359  * TX SW Execution Flow
1360  * ~~~~~~~~~~~~~~~~~~~~
1361  * OS calls driver's hard_xmit method with packet to sent.
1362  * Driver creates DMA mappings, builds TXD descriptors and kicks HW
1363  * by updating TXD WPTR.
1364  * When packet is sent, HW write us TXF descriptor and SW frees original skb.
1365  * To prevent TXD fifo overflow without reading HW registers every time,
1366  * SW deploys "tx level" technique.
1367  * Upon strart up, tx level is initialized to TXD fifo length.
1368  * For every sent packet, SW gets its TXD descriptor sizei
1369  * (from precalculated array) and substructs it from tx level.
1370  * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
1371  * original TXD descriptor from txdb and adds it to tx level.
1372  * When Tx level drops under some predefined treshhold, the driver
1373  * stops the TX queue. When TX level rises above that level,
1374  * the tx queue is enabled again.
1375  *
1376  * This technique avoids eccessive reading of RPTR and WPTR registers.
1377  * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
1378  */
1379 
1380 /*************************************************************************
1381  * Tx DB *
1382  *************************************************************************/
1383 static inline int bdx_tx_db_size(struct txdb *db)
1384 {
1385  int taken = db->wptr - db->rptr;
1386  if (taken < 0)
1387  taken = db->size + 1 + taken; /* (size + 1) equals memsz */
1388 
1389  return db->size - taken;
1390 }
1391 
1397 static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
1398 {
1399  BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */
1400 
1401  BDX_ASSERT(*pptr != db->rptr && /* expect either read */
1402  *pptr != db->wptr); /* or write pointer */
1403 
1404  BDX_ASSERT(*pptr < db->start || /* pointer has to be */
1405  *pptr >= db->end); /* in range */
1406 
1407  ++*pptr;
1408  if (unlikely(*pptr == db->end))
1409  *pptr = db->start;
1410 }
1411 
1416 static inline void bdx_tx_db_inc_rptr(struct txdb *db)
1417 {
1418  BDX_ASSERT(db->rptr == db->wptr); /* can't read from empty db */
1419  __bdx_tx_db_ptr_next(db, &db->rptr);
1420 }
1421 
1426 static inline void bdx_tx_db_inc_wptr(struct txdb *db)
1427 {
1428  __bdx_tx_db_ptr_next(db, &db->wptr);
1429  BDX_ASSERT(db->rptr == db->wptr); /* we can not get empty db as
1430  a result of write */
1431 }
1432 
1440 static int bdx_tx_db_init(struct txdb *d, int sz_type)
1441 {
1442  int memsz = FIFO_SIZE * (1 << (sz_type + 1));
1443 
1444  d->start = vmalloc(memsz);
1445  if (!d->start)
1446  return -ENOMEM;
1447 
1448  /*
1449  * In order to differentiate between db is empty and db is full
1450  * states at least one element should always be empty in order to
1451  * avoid rptr == wptr which means db is empty
1452  */
1453  d->size = memsz / sizeof(struct tx_map) - 1;
1454  d->end = d->start + d->size + 1; /* just after last element */
1455 
1456  /* all dbs are created equally empty */
1457  d->rptr = d->start;
1458  d->wptr = d->start;
1459 
1460  return 0;
1461 }
1462 
1467 static void bdx_tx_db_close(struct txdb *d)
1468 {
1469  BDX_ASSERT(d == NULL);
1470 
1471  vfree(d->start);
1472  d->start = NULL;
1473 }
1474 
1475 /*************************************************************************
1476  * Tx Engine *
1477  *************************************************************************/
1478 
1479 /* sizes of tx desc (including padding if needed) as function
1480  * of skb's frag number */
1481 static struct {
1483  u16 qwords; /* qword = 64 bit */
1484 } txd_sizes[MAX_SKB_FRAGS + 1];
1485 
1498 static inline void
1499 bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
1500  struct txd_desc *txdd)
1501 {
1502  struct txdb *db = &priv->txdb;
1503  struct pbl *pbl = &txdd->pbl[0];
1504  int nr_frags = skb_shinfo(skb)->nr_frags;
1505  int i;
1506 
1507  db->wptr->len = skb_headlen(skb);
1508  db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data,
1509  db->wptr->len, PCI_DMA_TODEVICE);
1510  pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1511  pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1512  pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1513  DBG("=== pbl len: 0x%x ================\n", pbl->len);
1514  DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
1515  DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
1516  bdx_tx_db_inc_wptr(db);
1517 
1518  for (i = 0; i < nr_frags; i++) {
1519  const struct skb_frag_struct *frag;
1520 
1521  frag = &skb_shinfo(skb)->frags[i];
1522  db->wptr->len = skb_frag_size(frag);
1523  db->wptr->addr.dma = skb_frag_dma_map(&priv->pdev->dev, frag,
1524  0, skb_frag_size(frag),
1525  DMA_TO_DEVICE);
1526 
1527  pbl++;
1528  pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1529  pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1530  pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1531  bdx_tx_db_inc_wptr(db);
1532  }
1533 
1534  /* add skb clean up info. */
1535  db->wptr->len = -txd_sizes[nr_frags].bytes;
1536  db->wptr->addr.skb = skb;
1537  bdx_tx_db_inc_wptr(db);
1538 }
1539 
1540 /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
1541  * number of frags is used as index to fetch correct descriptors size,
1542  * instead of calculating it each time */
1543 static void __init init_txd_sizes(void)
1544 {
1545  int i, lwords;
1546 
1547  /* 7 - is number of lwords in txd with one phys buffer
1548  * 3 - is number of lwords used for every additional phys buffer */
1549  for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
1550  lwords = 7 + (i * 3);
1551  if (lwords & 1)
1552  lwords++; /* pad it with 1 lword */
1553  txd_sizes[i].qwords = lwords >> 1;
1554  txd_sizes[i].bytes = lwords << 2;
1555  }
1556 }
1557 
1558 /* bdx_tx_init - initialize all Tx related stuff.
1559  * Namely, TXD and TXF fifos, database etc */
1560 static int bdx_tx_init(struct bdx_priv *priv)
1561 {
1562  if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
1563  regTXD_CFG0_0,
1565  goto err_mem;
1566  if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
1567  regTXF_CFG0_0,
1569  goto err_mem;
1570 
1571  /* The TX db has to keep mappings for all packets sent (on TxD)
1572  * and not yet reclaimed (on TxF) */
1573  if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
1574  goto err_mem;
1575 
1576  priv->tx_level = BDX_MAX_TX_LEVEL;
1577 #ifdef BDX_DELAY_WPTR
1578  priv->tx_update_mark = priv->tx_level - 1024;
1579 #endif
1580  return 0;
1581 
1582 err_mem:
1583  netdev_err(priv->ndev, "Tx init failed\n");
1584  return -ENOMEM;
1585 }
1586 
1593 static inline int bdx_tx_space(struct bdx_priv *priv)
1594 {
1595  struct txd_fifo *f = &priv->txd_fifo0;
1596  int fsize;
1597 
1598  f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
1599  fsize = f->m.rptr - f->m.wptr;
1600  if (fsize <= 0)
1601  fsize = f->m.memsz + fsize;
1602  return fsize;
1603 }
1604 
1616 static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb,
1617  struct net_device *ndev)
1618 {
1619  struct bdx_priv *priv = netdev_priv(ndev);
1620  struct txd_fifo *f = &priv->txd_fifo0;
1621  int txd_checksum = 7; /* full checksum */
1622  int txd_lgsnd = 0;
1623  int txd_vlan_id = 0;
1624  int txd_vtag = 0;
1625  int txd_mss = 0;
1626 
1627  int nr_frags = skb_shinfo(skb)->nr_frags;
1628  struct txd_desc *txdd;
1629  int len;
1630  unsigned long flags;
1631 
1632  ENTER;
1633  local_irq_save(flags);
1634  if (!spin_trylock(&priv->tx_lock)) {
1635  local_irq_restore(flags);
1636  DBG("%s[%s]: TX locked, returning NETDEV_TX_LOCKED\n",
1637  BDX_DRV_NAME, ndev->name);
1638  return NETDEV_TX_LOCKED;
1639  }
1640 
1641  /* build tx descriptor */
1642  BDX_ASSERT(f->m.wptr >= f->m.memsz); /* started with valid wptr */
1643  txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
1644  if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
1645  txd_checksum = 0;
1646 
1647  if (skb_shinfo(skb)->gso_size) {
1648  txd_mss = skb_shinfo(skb)->gso_size;
1649  txd_lgsnd = 1;
1650  DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
1651  txd_mss);
1652  }
1653 
1654  if (vlan_tx_tag_present(skb)) {
1655  /*Cut VLAN ID to 12 bits */
1656  txd_vlan_id = vlan_tx_tag_get(skb) & BITS_MASK(12);
1657  txd_vtag = 1;
1658  }
1659 
1660  txdd->length = CPU_CHIP_SWAP16(skb->len);
1661  txdd->mss = CPU_CHIP_SWAP16(txd_mss);
1662  txdd->txd_val1 =
1664  (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
1665  txd_lgsnd, txd_vlan_id));
1666  DBG("=== TxD desc =====================\n");
1667  DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
1668  DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
1669 
1670  bdx_tx_map_skb(priv, skb, txdd);
1671 
1672  /* increment TXD write pointer. In case of
1673  fifo wrapping copy reminder of the descriptor
1674  to the beginning */
1675  f->m.wptr += txd_sizes[nr_frags].bytes;
1676  len = f->m.wptr - f->m.memsz;
1677  if (unlikely(len >= 0)) {
1678  f->m.wptr = len;
1679  if (len > 0) {
1680  BDX_ASSERT(len > f->m.memsz);
1681  memcpy(f->m.va, f->m.va + f->m.memsz, len);
1682  }
1683  }
1684  BDX_ASSERT(f->m.wptr >= f->m.memsz); /* finished with valid wptr */
1685 
1686  priv->tx_level -= txd_sizes[nr_frags].bytes;
1687  BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1688 #ifdef BDX_DELAY_WPTR
1689  if (priv->tx_level > priv->tx_update_mark) {
1690  /* Force memory writes to complete before letting h/w
1691  know there are new descriptors to fetch.
1692  (might be needed on platforms like IA64)
1693  wmb(); */
1694  WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1695  } else {
1696  if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
1697  priv->tx_noupd = 0;
1698  WRITE_REG(priv, f->m.reg_WPTR,
1699  f->m.wptr & TXF_WPTR_WR_PTR);
1700  }
1701  }
1702 #else
1703  /* Force memory writes to complete before letting h/w
1704  know there are new descriptors to fetch.
1705  (might be needed on platforms like IA64)
1706  wmb(); */
1707  WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1708 
1709 #endif
1710 #ifdef BDX_LLTX
1711  ndev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */
1712 #endif
1713  ndev->stats.tx_packets++;
1714  ndev->stats.tx_bytes += skb->len;
1715 
1716  if (priv->tx_level < BDX_MIN_TX_LEVEL) {
1717  DBG("%s: %s: TX Q STOP level %d\n",
1718  BDX_DRV_NAME, ndev->name, priv->tx_level);
1719  netif_stop_queue(ndev);
1720  }
1721 
1722  spin_unlock_irqrestore(&priv->tx_lock, flags);
1723  return NETDEV_TX_OK;
1724 }
1725 
1733 static void bdx_tx_cleanup(struct bdx_priv *priv)
1734 {
1735  struct txf_fifo *f = &priv->txf_fifo0;
1736  struct txdb *db = &priv->txdb;
1737  int tx_level = 0;
1738 
1739  ENTER;
1740  f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
1741  BDX_ASSERT(f->m.rptr >= f->m.memsz); /* started with valid rptr */
1742 
1743  while (f->m.wptr != f->m.rptr) {
1744  f->m.rptr += BDX_TXF_DESC_SZ;
1745  f->m.rptr &= f->m.size_mask;
1746 
1747  /* unmap all the fragments */
1748  /* first has to come tx_maps containing dma */
1749  BDX_ASSERT(db->rptr->len == 0);
1750  do {
1751  BDX_ASSERT(db->rptr->addr.dma == 0);
1752  pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1753  db->rptr->len, PCI_DMA_TODEVICE);
1754  bdx_tx_db_inc_rptr(db);
1755  } while (db->rptr->len > 0);
1756  tx_level -= db->rptr->len; /* '-' koz len is negative */
1757 
1758  /* now should come skb pointer - free it */
1759  dev_kfree_skb_irq(db->rptr->addr.skb);
1760  bdx_tx_db_inc_rptr(db);
1761  }
1762 
1763  /* let h/w know which TXF descriptors were cleaned */
1764  BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
1765  WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1766 
1767  /* We reclaimed resources, so in case the Q is stopped by xmit callback,
1768  * we resume the transmition and use tx_lock to synchronize with xmit.*/
1769  spin_lock(&priv->tx_lock);
1770  priv->tx_level += tx_level;
1771  BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1772 #ifdef BDX_DELAY_WPTR
1773  if (priv->tx_noupd) {
1774  priv->tx_noupd = 0;
1775  WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
1776  priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
1777  }
1778 #endif
1779 
1780  if (unlikely(netif_queue_stopped(priv->ndev) &&
1781  netif_carrier_ok(priv->ndev) &&
1782  (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
1783  DBG("%s: %s: TX Q WAKE level %d\n",
1784  BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
1785  netif_wake_queue(priv->ndev);
1786  }
1787  spin_unlock(&priv->tx_lock);
1788 }
1789 
1794 static void bdx_tx_free_skbs(struct bdx_priv *priv)
1795 {
1796  struct txdb *db = &priv->txdb;
1797 
1798  ENTER;
1799  while (db->rptr != db->wptr) {
1800  if (likely(db->rptr->len))
1801  pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1802  db->rptr->len, PCI_DMA_TODEVICE);
1803  else
1804  dev_kfree_skb(db->rptr->addr.skb);
1805  bdx_tx_db_inc_rptr(db);
1806  }
1807  RET();
1808 }
1809 
1810 /* bdx_tx_free - frees all Tx resources */
1811 static void bdx_tx_free(struct bdx_priv *priv)
1812 {
1813  ENTER;
1814  bdx_tx_free_skbs(priv);
1815  bdx_fifo_free(priv, &priv->txd_fifo0.m);
1816  bdx_fifo_free(priv, &priv->txf_fifo0.m);
1817  bdx_tx_db_close(&priv->txdb);
1818 }
1819 
1831 static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
1832 {
1833  struct txd_fifo *f = &priv->txd_fifo0;
1834  int i = f->m.memsz - f->m.wptr;
1835 
1836  if (size == 0)
1837  return;
1838 
1839  if (i > size) {
1840  memcpy(f->m.va + f->m.wptr, data, size);
1841  f->m.wptr += size;
1842  } else {
1843  memcpy(f->m.va + f->m.wptr, data, i);
1844  f->m.wptr = size - i;
1845  memcpy(f->m.va, data + i, f->m.wptr);
1846  }
1847  WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1848 }
1849 
1859 static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
1860 {
1861  int timer = 0;
1862  ENTER;
1863 
1864  while (size > 0) {
1865  /* we substruct 8 because when fifo is full rptr == wptr
1866  which also means that fifo is empty, we can understand
1867  the difference, but could hw do the same ??? :) */
1868  int avail = bdx_tx_space(priv) - 8;
1869  if (avail <= 0) {
1870  if (timer++ > 300) { /* prevent endless loop */
1871  DBG("timeout while writing desc to TxD fifo\n");
1872  break;
1873  }
1874  udelay(50); /* give hw a chance to clean fifo */
1875  continue;
1876  }
1877  avail = min(avail, size);
1878  DBG("about to push %d bytes starting %p size %d\n", avail,
1879  data, size);
1880  bdx_tx_push_desc(priv, data, avail);
1881  size -= avail;
1882  data += avail;
1883  }
1884  RET();
1885 }
1886 
1887 static const struct net_device_ops bdx_netdev_ops = {
1888  .ndo_open = bdx_open,
1889  .ndo_stop = bdx_close,
1890  .ndo_start_xmit = bdx_tx_transmit,
1891  .ndo_validate_addr = eth_validate_addr,
1892  .ndo_do_ioctl = bdx_ioctl,
1893  .ndo_set_rx_mode = bdx_setmulti,
1894  .ndo_change_mtu = bdx_change_mtu,
1895  .ndo_set_mac_address = bdx_set_mac,
1896  .ndo_vlan_rx_add_vid = bdx_vlan_rx_add_vid,
1897  .ndo_vlan_rx_kill_vid = bdx_vlan_rx_kill_vid,
1898 };
1899 
1916 /* TBD: netif_msg should be checked and implemented. I disable it for now */
1917 static int __devinit
1918 bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1919 {
1920  struct net_device *ndev;
1921  struct bdx_priv *priv;
1922  int err, pci_using_dac, port;
1923  unsigned long pciaddr;
1924  u32 regionSize;
1925  struct pci_nic *nic;
1926 
1927  ENTER;
1928 
1929  nic = vmalloc(sizeof(*nic));
1930  if (!nic)
1931  RET(-ENOMEM);
1932 
1933  /************** pci *****************/
1934  err = pci_enable_device(pdev);
1935  if (err) /* it triggers interrupt, dunno why. */
1936  goto err_pci; /* it's not a problem though */
1937 
1938  if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) &&
1939  !(err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)))) {
1940  pci_using_dac = 1;
1941  } else {
1942  if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) ||
1943  (err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))) {
1944  pr_err("No usable DMA configuration, aborting\n");
1945  goto err_dma;
1946  }
1947  pci_using_dac = 0;
1948  }
1949 
1950  err = pci_request_regions(pdev, BDX_DRV_NAME);
1951  if (err)
1952  goto err_dma;
1953 
1954  pci_set_master(pdev);
1955 
1956  pciaddr = pci_resource_start(pdev, 0);
1957  if (!pciaddr) {
1958  err = -EIO;
1959  pr_err("no MMIO resource\n");
1960  goto err_out_res;
1961  }
1962  regionSize = pci_resource_len(pdev, 0);
1963  if (regionSize < BDX_REGS_SIZE) {
1964  err = -EIO;
1965  pr_err("MMIO resource (%x) too small\n", regionSize);
1966  goto err_out_res;
1967  }
1968 
1969  nic->regs = ioremap(pciaddr, regionSize);
1970  if (!nic->regs) {
1971  err = -EIO;
1972  pr_err("ioremap failed\n");
1973  goto err_out_res;
1974  }
1975 
1976  if (pdev->irq < 2) {
1977  err = -EIO;
1978  pr_err("invalid irq (%d)\n", pdev->irq);
1979  goto err_out_iomap;
1980  }
1981  pci_set_drvdata(pdev, nic);
1982 
1983  if (pdev->device == 0x3014)
1984  nic->port_num = 2;
1985  else
1986  nic->port_num = 1;
1987 
1988  print_hw_id(pdev);
1989 
1990  bdx_hw_reset_direct(nic->regs);
1991 
1992  nic->irq_type = IRQ_INTX;
1993 #ifdef BDX_MSI
1994  if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
1995  err = pci_enable_msi(pdev);
1996  if (err)
1997  pr_err("Can't eneble msi. error is %d\n", err);
1998  else
1999  nic->irq_type = IRQ_MSI;
2000  } else
2001  DBG("HW does not support MSI\n");
2002 #endif
2003 
2004  /************** netdev **************/
2005  for (port = 0; port < nic->port_num; port++) {
2006  ndev = alloc_etherdev(sizeof(struct bdx_priv));
2007  if (!ndev) {
2008  err = -ENOMEM;
2009  goto err_out_iomap;
2010  }
2011 
2012  ndev->netdev_ops = &bdx_netdev_ops;
2014 
2015  bdx_set_ethtool_ops(ndev); /* ethtool interface */
2016 
2017  /* these fields are used for info purposes only
2018  * so we can have them same for all ports of the board */
2019  ndev->if_port = port;
2023  /*| NETIF_F_FRAGLIST */
2024  ;
2027 
2028  if (pci_using_dac)
2029  ndev->features |= NETIF_F_HIGHDMA;
2030 
2031  /************** priv ****************/
2032  priv = nic->priv[port] = netdev_priv(ndev);
2033 
2034  priv->pBdxRegs = nic->regs + port * 0x8000;
2035  priv->port = port;
2036  priv->pdev = pdev;
2037  priv->ndev = ndev;
2038  priv->nic = nic;
2040 
2041  netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
2042 
2043  if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
2044  DBG("HW statistics not supported\n");
2045  priv->stats_flag = 0;
2046  } else {
2047  priv->stats_flag = 1;
2048  }
2049 
2050  /* Initialize fifo sizes. */
2051  priv->txd_size = 2;
2052  priv->txf_size = 2;
2053  priv->rxd_size = 2;
2054  priv->rxf_size = 3;
2055 
2056  /* Initialize the initial coalescing registers. */
2057  priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
2058  priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
2059 
2060  /* ndev->xmit_lock spinlock is not used.
2061  * Private priv->tx_lock is used for synchronization
2062  * between transmit and TX irq cleanup. In addition
2063  * set multicast list callback has to use priv->tx_lock.
2064  */
2065 #ifdef BDX_LLTX
2066  ndev->features |= NETIF_F_LLTX;
2067 #endif
2068  spin_lock_init(&priv->tx_lock);
2069 
2070  /*bdx_hw_reset(priv); */
2071  if (bdx_read_mac(priv)) {
2072  pr_err("load MAC address failed\n");
2073  goto err_out_iomap;
2074  }
2075  SET_NETDEV_DEV(ndev, &pdev->dev);
2076  err = register_netdev(ndev);
2077  if (err) {
2078  pr_err("register_netdev failed\n");
2079  goto err_out_free;
2080  }
2081  netif_carrier_off(ndev);
2082  netif_stop_queue(ndev);
2083 
2084  print_eth_id(ndev);
2085  }
2086  RET(0);
2087 
2088 err_out_free:
2089  free_netdev(ndev);
2090 err_out_iomap:
2091  iounmap(nic->regs);
2092 err_out_res:
2093  pci_release_regions(pdev);
2094 err_dma:
2095  pci_disable_device(pdev);
2096 err_pci:
2097  vfree(nic);
2098 
2099  RET(err);
2100 }
2101 
2102 /****************** Ethtool interface *********************/
2103 /* get strings for statistics counters */
2104 static const char
2105  bdx_stat_names[][ETH_GSTRING_LEN] = {
2106  "InUCast", /* 0x7200 */
2107  "InMCast", /* 0x7210 */
2108  "InBCast", /* 0x7220 */
2109  "InPkts", /* 0x7230 */
2110  "InErrors", /* 0x7240 */
2111  "InDropped", /* 0x7250 */
2112  "FrameTooLong", /* 0x7260 */
2113  "FrameSequenceErrors", /* 0x7270 */
2114  "InVLAN", /* 0x7280 */
2115  "InDroppedDFE", /* 0x7290 */
2116  "InDroppedIntFull", /* 0x72A0 */
2117  "InFrameAlignErrors", /* 0x72B0 */
2118 
2119  /* 0x72C0-0x72E0 RSRV */
2120 
2121  "OutUCast", /* 0x72F0 */
2122  "OutMCast", /* 0x7300 */
2123  "OutBCast", /* 0x7310 */
2124  "OutPkts", /* 0x7320 */
2125 
2126  /* 0x7330-0x7360 RSRV */
2127 
2128  "OutVLAN", /* 0x7370 */
2129  "InUCastOctects", /* 0x7380 */
2130  "OutUCastOctects", /* 0x7390 */
2131 
2132  /* 0x73A0-0x73B0 RSRV */
2133 
2134  "InBCastOctects", /* 0x73C0 */
2135  "OutBCastOctects", /* 0x73D0 */
2136  "InOctects", /* 0x73E0 */
2137  "OutOctects", /* 0x73F0 */
2138 };
2139 
2140 /*
2141  * bdx_get_settings - get device-specific settings
2142  * @netdev
2143  * @ecmd
2144  */
2145 static int bdx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
2146 {
2147  u32 rdintcm;
2148  u32 tdintcm;
2149  struct bdx_priv *priv = netdev_priv(netdev);
2150 
2151  rdintcm = priv->rdintcm;
2152  tdintcm = priv->tdintcm;
2153 
2156  ethtool_cmd_speed_set(ecmd, SPEED_10000);
2157  ecmd->duplex = DUPLEX_FULL;
2158  ecmd->port = PORT_FIBRE;
2159  ecmd->transceiver = XCVR_EXTERNAL; /* what does it mean? */
2160  ecmd->autoneg = AUTONEG_DISABLE;
2161 
2162  /* PCK_TH measures in multiples of FIFO bytes
2163  We translate to packets */
2164  ecmd->maxtxpkt =
2165  ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2166  ecmd->maxrxpkt =
2167  ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2168 
2169  return 0;
2170 }
2171 
2172 /*
2173  * bdx_get_drvinfo - report driver information
2174  * @netdev
2175  * @drvinfo
2176  */
2177 static void
2178 bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
2179 {
2180  struct bdx_priv *priv = netdev_priv(netdev);
2181 
2182  strlcat(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
2183  strlcat(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
2184  strlcat(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
2185  strlcat(drvinfo->bus_info, pci_name(priv->pdev),
2186  sizeof(drvinfo->bus_info));
2187 
2188  drvinfo->n_stats = ((priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0);
2189  drvinfo->testinfo_len = 0;
2190  drvinfo->regdump_len = 0;
2191  drvinfo->eedump_len = 0;
2192 }
2193 
2194 /*
2195  * bdx_get_coalesce - get interrupt coalescing parameters
2196  * @netdev
2197  * @ecoal
2198  */
2199 static int
2200 bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2201 {
2202  u32 rdintcm;
2203  u32 tdintcm;
2204  struct bdx_priv *priv = netdev_priv(netdev);
2205 
2206  rdintcm = priv->rdintcm;
2207  tdintcm = priv->tdintcm;
2208 
2209  /* PCK_TH measures in multiples of FIFO bytes
2210  We translate to packets */
2211  ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
2212  ecoal->rx_max_coalesced_frames =
2213  ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2214 
2215  ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
2216  ecoal->tx_max_coalesced_frames =
2217  ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2218 
2219  /* adaptive parameters ignored */
2220  return 0;
2221 }
2222 
2223 /*
2224  * bdx_set_coalesce - set interrupt coalescing parameters
2225  * @netdev
2226  * @ecoal
2227  */
2228 static int
2229 bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2230 {
2231  u32 rdintcm;
2232  u32 tdintcm;
2233  struct bdx_priv *priv = netdev_priv(netdev);
2234  int rx_coal;
2235  int tx_coal;
2236  int rx_max_coal;
2237  int tx_max_coal;
2238 
2239  /* Check for valid input */
2240  rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
2241  tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
2242  rx_max_coal = ecoal->rx_max_coalesced_frames;
2243  tx_max_coal = ecoal->tx_max_coalesced_frames;
2244 
2245  /* Translate from packets to multiples of FIFO bytes */
2246  rx_max_coal =
2247  (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
2248  / PCK_TH_MULT);
2249  tx_max_coal =
2250  (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
2251  / PCK_TH_MULT);
2252 
2253  if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) ||
2254  (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
2255  return -EINVAL;
2256 
2257  rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
2258  GET_RXF_TH(priv->rdintcm), rx_max_coal);
2259  tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
2260  tx_max_coal);
2261 
2262  priv->rdintcm = rdintcm;
2263  priv->tdintcm = tdintcm;
2264 
2265  WRITE_REG(priv, regRDINTCM0, rdintcm);
2266  WRITE_REG(priv, regTDINTCM0, tdintcm);
2267 
2268  return 0;
2269 }
2270 
2271 /* Convert RX fifo size to number of pending packets */
2272 static inline int bdx_rx_fifo_size_to_packets(int rx_size)
2273 {
2274  return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc);
2275 }
2276 
2277 /* Convert TX fifo size to number of pending packets */
2278 static inline int bdx_tx_fifo_size_to_packets(int tx_size)
2279 {
2280  return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ;
2281 }
2282 
2283 /*
2284  * bdx_get_ringparam - report ring sizes
2285  * @netdev
2286  * @ring
2287  */
2288 static void
2289 bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2290 {
2291  struct bdx_priv *priv = netdev_priv(netdev);
2292 
2293  /*max_pending - the maximum-sized FIFO we allow */
2294  ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
2295  ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
2296  ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
2297  ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
2298 }
2299 
2300 /*
2301  * bdx_set_ringparam - set ring sizes
2302  * @netdev
2303  * @ring
2304  */
2305 static int
2306 bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2307 {
2308  struct bdx_priv *priv = netdev_priv(netdev);
2309  int rx_size = 0;
2310  int tx_size = 0;
2311 
2312  for (; rx_size < 4; rx_size++) {
2313  if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
2314  break;
2315  }
2316  if (rx_size == 4)
2317  rx_size = 3;
2318 
2319  for (; tx_size < 4; tx_size++) {
2320  if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
2321  break;
2322  }
2323  if (tx_size == 4)
2324  tx_size = 3;
2325 
2326  /*Is there anything to do? */
2327  if ((rx_size == priv->rxf_size) &&
2328  (tx_size == priv->txd_size))
2329  return 0;
2330 
2331  priv->rxf_size = rx_size;
2332  if (rx_size > 1)
2333  priv->rxd_size = rx_size - 1;
2334  else
2335  priv->rxd_size = rx_size;
2336 
2337  priv->txf_size = priv->txd_size = tx_size;
2338 
2339  if (netif_running(netdev)) {
2340  bdx_close(netdev);
2341  bdx_open(netdev);
2342  }
2343  return 0;
2344 }
2345 
2346 /*
2347  * bdx_get_strings - return a set of strings that describe the requested objects
2348  * @netdev
2349  * @data
2350  */
2351 static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2352 {
2353  switch (stringset) {
2354  case ETH_SS_STATS:
2355  memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
2356  break;
2357  }
2358 }
2359 
2360 /*
2361  * bdx_get_sset_count - return number of statistics or tests
2362  * @netdev
2363  */
2364 static int bdx_get_sset_count(struct net_device *netdev, int stringset)
2365 {
2366  struct bdx_priv *priv = netdev_priv(netdev);
2367 
2368  switch (stringset) {
2369  case ETH_SS_STATS:
2370  BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
2371  != sizeof(struct bdx_stats) / sizeof(u64));
2372  return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0;
2373  }
2374 
2375  return -EINVAL;
2376 }
2377 
2378 /*
2379  * bdx_get_ethtool_stats - return device's hardware L2 statistics
2380  * @netdev
2381  * @stats
2382  * @data
2383  */
2384 static void bdx_get_ethtool_stats(struct net_device *netdev,
2385  struct ethtool_stats *stats, u64 *data)
2386 {
2387  struct bdx_priv *priv = netdev_priv(netdev);
2388 
2389  if (priv->stats_flag) {
2390 
2391  /* Update stats from HW */
2392  bdx_update_stats(priv);
2393 
2394  /* Copy data to user buffer */
2395  memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
2396  }
2397 }
2398 
2399 /*
2400  * bdx_set_ethtool_ops - ethtool interface implementation
2401  * @netdev
2402  */
2403 static void bdx_set_ethtool_ops(struct net_device *netdev)
2404 {
2405  static const struct ethtool_ops bdx_ethtool_ops = {
2406  .get_settings = bdx_get_settings,
2407  .get_drvinfo = bdx_get_drvinfo,
2408  .get_link = ethtool_op_get_link,
2409  .get_coalesce = bdx_get_coalesce,
2410  .set_coalesce = bdx_set_coalesce,
2411  .get_ringparam = bdx_get_ringparam,
2412  .set_ringparam = bdx_set_ringparam,
2413  .get_strings = bdx_get_strings,
2414  .get_sset_count = bdx_get_sset_count,
2415  .get_ethtool_stats = bdx_get_ethtool_stats,
2416  };
2417 
2418  SET_ETHTOOL_OPS(netdev, &bdx_ethtool_ops);
2419 }
2420 
2430 static void __devexit bdx_remove(struct pci_dev *pdev)
2431 {
2432  struct pci_nic *nic = pci_get_drvdata(pdev);
2433  struct net_device *ndev;
2434  int port;
2435 
2436  for (port = 0; port < nic->port_num; port++) {
2437  ndev = nic->priv[port]->ndev;
2438  unregister_netdev(ndev);
2439  free_netdev(ndev);
2440  }
2441 
2442  /*bdx_hw_reset_direct(nic->regs); */
2443 #ifdef BDX_MSI
2444  if (nic->irq_type == IRQ_MSI)
2445  pci_disable_msi(pdev);
2446 #endif
2447 
2448  iounmap(nic->regs);
2449  pci_release_regions(pdev);
2450  pci_disable_device(pdev);
2451  pci_set_drvdata(pdev, NULL);
2452  vfree(nic);
2453 
2454  RET();
2455 }
2456 
2457 static struct pci_driver bdx_pci_driver = {
2458  .name = BDX_DRV_NAME,
2459  .id_table = bdx_pci_tbl,
2460  .probe = bdx_probe,
2461  .remove = __devexit_p(bdx_remove),
2462 };
2463 
2464 /*
2465  * print_driver_id - print parameters of the driver build
2466  */
2467 static void __init print_driver_id(void)
2468 {
2469  pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION);
2470  pr_info("Options: hw_csum %s\n", BDX_MSI_STRING);
2471 }
2472 
2473 static int __init bdx_module_init(void)
2474 {
2475  ENTER;
2476  init_txd_sizes();
2477  print_driver_id();
2478  RET(pci_register_driver(&bdx_pci_driver));
2479 }
2480 
2481 module_init(bdx_module_init);
2482 
2483 static void __exit bdx_module_exit(void)
2484 {
2485  ENTER;
2486  pci_unregister_driver(&bdx_pci_driver);
2487  RET();
2488 }
2489 
2490 module_exit(bdx_module_exit);
2491 
2492 MODULE_LICENSE("GPL");
2495 MODULE_FIRMWARE("tehuti/bdx.bin");