Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
enlighten.c
Go to the documentation of this file.
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <[email protected]>, XenSource Inc, 2007
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 
35 #include <xen/xen.h>
36 #include <xen/events.h>
37 #include <xen/interface/xen.h>
38 #include <xen/interface/version.h>
39 #include <xen/interface/physdev.h>
40 #include <xen/interface/vcpu.h>
41 #include <xen/interface/memory.h>
42 #include <xen/interface/xen-mca.h>
43 #include <xen/features.h>
44 #include <xen/page.h>
45 #include <xen/hvm.h>
46 #include <xen/hvc-console.h>
47 #include <xen/acpi.h>
48 
49 #include <asm/paravirt.h>
50 #include <asm/apic.h>
51 #include <asm/page.h>
52 #include <asm/xen/pci.h>
53 #include <asm/xen/hypercall.h>
54 #include <asm/xen/hypervisor.h>
55 #include <asm/fixmap.h>
56 #include <asm/processor.h>
57 #include <asm/proto.h>
58 #include <asm/msr-index.h>
59 #include <asm/traps.h>
60 #include <asm/setup.h>
61 #include <asm/desc.h>
62 #include <asm/pgalloc.h>
63 #include <asm/pgtable.h>
64 #include <asm/tlbflush.h>
65 #include <asm/reboot.h>
66 #include <asm/stackprotector.h>
67 #include <asm/hypervisor.h>
68 #include <asm/mwait.h>
69 #include <asm/pci_x86.h>
70 
71 #ifdef CONFIG_ACPI
72 #include <linux/acpi.h>
73 #include <asm/acpi.h>
74 #include <acpi/pdc_intel.h>
75 #include <acpi/processor.h>
76 #include <xen/interface/platform.h>
77 #endif
78 
79 #include "xen-ops.h"
80 #include "mmu.h"
81 #include "smp.h"
82 #include "multicalls.h"
83 
85 
86 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
87 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
88 
91 
94 unsigned long machine_to_phys_nr;
96 
98 EXPORT_SYMBOL_GPL(xen_start_info);
99 
101 
103 
104 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
107 
108 /*
109  * Point at some empty memory to start with. We map the real shared_info
110  * page as soon as fixmap is up and running.
111  */
113 
114 /*
115  * Flag to determine whether vcpu info placement is available on all
116  * VCPUs. We assume it is to start with, and then set it to zero on
117  * the first failure. This is because it can succeed on some VCPUs
118  * and not others, since it can involve hypervisor memory allocation,
119  * or because the guest failed to guarantee all the appropriate
120  * constraints on all VCPUs (ie buffer can't cross a page boundary).
121  *
122  * Note that any particular CPU may be using a placed vcpu structure,
123  * but we can only optimise if the all are.
124  *
125  * 0: not available, 1: available
126  */
127 static int have_vcpu_info_placement = 1;
128 
129 struct tls_descs {
130  struct desc_struct desc[3];
131 };
132 
133 /*
134  * Updating the 3 TLS descriptors in the GDT on every task switch is
135  * surprisingly expensive so we avoid updating them if they haven't
136  * changed. Since Xen writes different descriptors than the one
137  * passed in the update_descriptor hypercall we keep shadow copies to
138  * compare against.
139  */
140 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
141 
142 static void clamp_max_cpus(void)
143 {
144 #ifdef CONFIG_SMP
147 #endif
148 }
149 
150 static void xen_vcpu_setup(int cpu)
151 {
153  int err;
154  struct vcpu_info *vcpup;
155 
156  BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
157 
158  if (cpu < MAX_VIRT_CPUS)
159  per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
160 
161  if (!have_vcpu_info_placement) {
162  if (cpu >= MAX_VIRT_CPUS)
163  clamp_max_cpus();
164  return;
165  }
166 
167  vcpup = &per_cpu(xen_vcpu_info, cpu);
168  info.mfn = arbitrary_virt_to_mfn(vcpup);
169  info.offset = offset_in_page(vcpup);
170 
171  /* Check to see if the hypervisor will put the vcpu_info
172  structure where we want it, which allows direct access via
173  a percpu-variable. */
175 
176  if (err) {
177  printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
178  have_vcpu_info_placement = 0;
179  clamp_max_cpus();
180  } else {
181  /* This cpu is using the registered vcpu info, even if
182  later ones fail to. */
183  per_cpu(xen_vcpu, cpu) = vcpup;
184  }
185 }
186 
187 /*
188  * On restore, set the vcpu placement up again.
189  * If it fails, then we're in a bad state, since
190  * we can't back out from using it...
191  */
193 {
194  int cpu;
195 
196  for_each_online_cpu(cpu) {
197  bool other_cpu = (cpu != smp_processor_id());
198 
199  if (other_cpu &&
201  BUG();
202 
204 
205  if (have_vcpu_info_placement)
206  xen_vcpu_setup(cpu);
207 
208  if (other_cpu &&
210  BUG();
211  }
212 }
213 
214 static void __init xen_banner(void)
215 {
217  struct xen_extraversion extra;
219 
220  printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
221  pv_info.name);
222  printk(KERN_INFO "Xen version: %d.%d%s%s\n",
223  version >> 16, version & 0xffff, extra.extraversion,
224  xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
225 }
226 
227 #define CPUID_THERM_POWER_LEAF 6
228 #define APERFMPERF_PRESENT 0
229 
230 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
231 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
232 
233 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
234 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
235 static __read_mostly unsigned int cpuid_leaf5_edx_val;
236 
237 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
238  unsigned int *cx, unsigned int *dx)
239 {
240  unsigned maskebx = ~0;
241  unsigned maskecx = ~0;
242  unsigned maskedx = ~0;
243  unsigned setecx = 0;
244  /*
245  * Mask out inconvenient features, to try and disable as many
246  * unsupported kernel subsystems as possible.
247  */
248  switch (*ax) {
249  case 1:
250  maskecx = cpuid_leaf1_ecx_mask;
251  setecx = cpuid_leaf1_ecx_set_mask;
252  maskedx = cpuid_leaf1_edx_mask;
253  break;
254 
255  case CPUID_MWAIT_LEAF:
256  /* Synthesize the values.. */
257  *ax = 0;
258  *bx = 0;
259  *cx = cpuid_leaf5_ecx_val;
260  *dx = cpuid_leaf5_edx_val;
261  return;
262 
264  /* Disabling APERFMPERF for kernel usage */
265  maskecx = ~(1 << APERFMPERF_PRESENT);
266  break;
267 
268  case 0xb:
269  /* Suppress extended topology stuff */
270  maskebx = 0;
271  break;
272  }
273 
274  asm(XEN_EMULATE_PREFIX "cpuid"
275  : "=a" (*ax),
276  "=b" (*bx),
277  "=c" (*cx),
278  "=d" (*dx)
279  : "0" (*ax), "2" (*cx));
280 
281  *bx &= maskebx;
282  *cx &= maskecx;
283  *cx |= setecx;
284  *dx &= maskedx;
285 
286 }
287 
288 static bool __init xen_check_mwait(void)
289 {
290 #if defined(CONFIG_ACPI) && !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR) && \
291  !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR_MODULE)
292  struct xen_platform_op op = {
294  .u.set_pminfo.id = -1,
295  .u.set_pminfo.type = XEN_PM_PDC,
296  };
297  uint32_t buf[3];
298  unsigned int ax, bx, cx, dx;
299  unsigned int mwait_mask;
300 
301  /* We need to determine whether it is OK to expose the MWAIT
302  * capability to the kernel to harvest deeper than C3 states from ACPI
303  * _CST using the processor_harvest_xen.c module. For this to work, we
304  * need to gather the MWAIT_LEAF values (which the cstate.c code
305  * checks against). The hypervisor won't expose the MWAIT flag because
306  * it would break backwards compatibility; so we will find out directly
307  * from the hardware and hypercall.
308  */
309  if (!xen_initial_domain())
310  return false;
311 
312  ax = 1;
313  cx = 0;
314 
315  native_cpuid(&ax, &bx, &cx, &dx);
316 
317  mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
318  (1 << (X86_FEATURE_MWAIT % 32));
319 
320  if ((cx & mwait_mask) != mwait_mask)
321  return false;
322 
323  /* We need to emulate the MWAIT_LEAF and for that we need both
324  * ecx and edx. The hypercall provides only partial information.
325  */
326 
327  ax = CPUID_MWAIT_LEAF;
328  bx = 0;
329  cx = 0;
330  dx = 0;
331 
332  native_cpuid(&ax, &bx, &cx, &dx);
333 
334  /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
335  * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
336  */
337  buf[0] = ACPI_PDC_REVISION_ID;
338  buf[1] = 1;
340 
341  set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
342 
343  if ((HYPERVISOR_dom0_op(&op) == 0) &&
344  (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
345  cpuid_leaf5_ecx_val = cx;
346  cpuid_leaf5_edx_val = dx;
347  }
348  return true;
349 #else
350  return false;
351 #endif
352 }
353 static void __init xen_init_cpuid_mask(void)
354 {
355  unsigned int ax, bx, cx, dx;
356  unsigned int xsave_mask;
357 
358  cpuid_leaf1_edx_mask =
359  ~((1 << X86_FEATURE_MTRR) | /* disable MTRR */
360  (1 << X86_FEATURE_ACC)); /* thermal monitoring */
361 
362  if (!xen_initial_domain())
363  cpuid_leaf1_edx_mask &=
364  ~((1 << X86_FEATURE_APIC) | /* disable local APIC */
365  (1 << X86_FEATURE_ACPI)); /* disable ACPI */
366  ax = 1;
367  cx = 0;
368  xen_cpuid(&ax, &bx, &cx, &dx);
369 
370  xsave_mask =
371  (1 << (X86_FEATURE_XSAVE % 32)) |
372  (1 << (X86_FEATURE_OSXSAVE % 32));
373 
374  /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
375  if ((cx & xsave_mask) != xsave_mask)
376  cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
377  if (xen_check_mwait())
378  cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
379 }
380 
381 static void xen_set_debugreg(int reg, unsigned long val)
382 {
383  HYPERVISOR_set_debugreg(reg, val);
384 }
385 
386 static unsigned long xen_get_debugreg(int reg)
387 {
388  return HYPERVISOR_get_debugreg(reg);
389 }
390 
391 static void xen_end_context_switch(struct task_struct *next)
392 {
393  xen_mc_flush();
395 }
396 
397 static unsigned long xen_store_tr(void)
398 {
399  return 0;
400 }
401 
402 /*
403  * Set the page permissions for a particular virtual address. If the
404  * address is a vmalloc mapping (or other non-linear mapping), then
405  * find the linear mapping of the page and also set its protections to
406  * match.
407  */
408 static void set_aliased_prot(void *v, pgprot_t prot)
409 {
410  int level;
411  pte_t *ptep;
412  pte_t pte;
413  unsigned long pfn;
414  struct page *page;
415 
416  ptep = lookup_address((unsigned long)v, &level);
417  BUG_ON(ptep == NULL);
418 
419  pfn = pte_pfn(*ptep);
420  page = pfn_to_page(pfn);
421 
422  pte = pfn_pte(pfn, prot);
423 
424  if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
425  BUG();
426 
427  if (!PageHighMem(page)) {
428  void *av = __va(PFN_PHYS(pfn));
429 
430  if (av != v)
431  if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
432  BUG();
433  } else
435 }
436 
437 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
438 {
439  const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
440  int i;
441 
442  for(i = 0; i < entries; i += entries_per_page)
443  set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
444 }
445 
446 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
447 {
448  const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
449  int i;
450 
451  for(i = 0; i < entries; i += entries_per_page)
452  set_aliased_prot(ldt + i, PAGE_KERNEL);
453 }
454 
455 static void xen_set_ldt(const void *addr, unsigned entries)
456 {
457  struct mmuext_op *op;
458  struct multicall_space mcs = xen_mc_entry(sizeof(*op));
459 
460  trace_xen_cpu_set_ldt(addr, entries);
461 
462  op = mcs.args;
463  op->cmd = MMUEXT_SET_LDT;
464  op->arg1.linear_addr = (unsigned long)addr;
465  op->arg2.nr_ents = entries;
466 
467  MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
468 
469  xen_mc_issue(PARAVIRT_LAZY_CPU);
470 }
471 
472 static void xen_load_gdt(const struct desc_ptr *dtr)
473 {
474  unsigned long va = dtr->address;
475  unsigned int size = dtr->size + 1;
476  unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
477  unsigned long frames[pages];
478  int f;
479 
480  /*
481  * A GDT can be up to 64k in size, which corresponds to 8192
482  * 8-byte entries, or 16 4k pages..
483  */
484 
485  BUG_ON(size > 65536);
486  BUG_ON(va & ~PAGE_MASK);
487 
488  for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
489  int level;
490  pte_t *ptep;
491  unsigned long pfn, mfn;
492  void *virt;
493 
494  /*
495  * The GDT is per-cpu and is in the percpu data area.
496  * That can be virtually mapped, so we need to do a
497  * page-walk to get the underlying MFN for the
498  * hypercall. The page can also be in the kernel's
499  * linear range, so we need to RO that mapping too.
500  */
501  ptep = lookup_address(va, &level);
502  BUG_ON(ptep == NULL);
503 
504  pfn = pte_pfn(*ptep);
505  mfn = pfn_to_mfn(pfn);
506  virt = __va(PFN_PHYS(pfn));
507 
508  frames[f] = mfn;
509 
510  make_lowmem_page_readonly((void *)va);
512  }
513 
514  if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
515  BUG();
516 }
517 
518 /*
519  * load_gdt for early boot, when the gdt is only mapped once
520  */
521 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
522 {
523  unsigned long va = dtr->address;
524  unsigned int size = dtr->size + 1;
525  unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
526  unsigned long frames[pages];
527  int f;
528 
529  /*
530  * A GDT can be up to 64k in size, which corresponds to 8192
531  * 8-byte entries, or 16 4k pages..
532  */
533 
534  BUG_ON(size > 65536);
535  BUG_ON(va & ~PAGE_MASK);
536 
537  for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
538  pte_t pte;
539  unsigned long pfn, mfn;
540 
541  pfn = virt_to_pfn(va);
542  mfn = pfn_to_mfn(pfn);
543 
544  pte = pfn_pte(pfn, PAGE_KERNEL_RO);
545 
546  if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
547  BUG();
548 
549  frames[f] = mfn;
550  }
551 
552  if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
553  BUG();
554 }
555 
556 static inline bool desc_equal(const struct desc_struct *d1,
557  const struct desc_struct *d2)
558 {
559  return d1->a == d2->a && d1->b == d2->b;
560 }
561 
562 static void load_TLS_descriptor(struct thread_struct *t,
563  unsigned int cpu, unsigned int i)
564 {
565  struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
566  struct desc_struct *gdt;
567  xmaddr_t maddr;
568  struct multicall_space mc;
569 
570  if (desc_equal(shadow, &t->tls_array[i]))
571  return;
572 
573  *shadow = t->tls_array[i];
574 
575  gdt = get_cpu_gdt_table(cpu);
577  mc = __xen_mc_entry(0);
578 
579  MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
580 }
581 
582 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
583 {
584  /*
585  * XXX sleazy hack: If we're being called in a lazy-cpu zone
586  * and lazy gs handling is enabled, it means we're in a
587  * context switch, and %gs has just been saved. This means we
588  * can zero it out to prevent faults on exit from the
589  * hypervisor if the next process has no %gs. Either way, it
590  * has been saved, and the new value will get loaded properly.
591  * This will go away as soon as Xen has been modified to not
592  * save/restore %gs for normal hypercalls.
593  *
594  * On x86_64, this hack is not used for %gs, because gs points
595  * to KERNEL_GS_BASE (and uses it for PDA references), so we
596  * must not zero %gs on x86_64
597  *
598  * For x86_64, we need to zero %fs, otherwise we may get an
599  * exception between the new %fs descriptor being loaded and
600  * %fs being effectively cleared at __switch_to().
601  */
603 #ifdef CONFIG_X86_32
604  lazy_load_gs(0);
605 #else
606  loadsegment(fs, 0);
607 #endif
608  }
609 
610  xen_mc_batch();
611 
612  load_TLS_descriptor(t, cpu, 0);
613  load_TLS_descriptor(t, cpu, 1);
614  load_TLS_descriptor(t, cpu, 2);
615 
616  xen_mc_issue(PARAVIRT_LAZY_CPU);
617 }
618 
619 #ifdef CONFIG_X86_64
620 static void xen_load_gs_index(unsigned int idx)
621 {
622  if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
623  BUG();
624 }
625 #endif
626 
627 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
628  const void *ptr)
629 {
630  xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
631  u64 entry = *(u64 *)ptr;
632 
633  trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
634 
635  preempt_disable();
636 
637  xen_mc_flush();
638  if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
639  BUG();
640 
641  preempt_enable();
642 }
643 
644 static int cvt_gate_to_trap(int vector, const gate_desc *val,
645  struct trap_info *info)
646 {
647  unsigned long addr;
648 
649  if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
650  return 0;
651 
652  info->vector = vector;
653 
654  addr = gate_offset(*val);
655 #ifdef CONFIG_X86_64
656  /*
657  * Look for known traps using IST, and substitute them
658  * appropriately. The debugger ones are the only ones we care
659  * about. Xen will handle faults like double_fault,
660  * so we should never see them. Warn if
661  * there's an unexpected IST-using fault handler.
662  */
663  if (addr == (unsigned long)debug)
664  addr = (unsigned long)xen_debug;
665  else if (addr == (unsigned long)int3)
666  addr = (unsigned long)xen_int3;
667  else if (addr == (unsigned long)stack_segment)
668  addr = (unsigned long)xen_stack_segment;
669  else if (addr == (unsigned long)double_fault ||
670  addr == (unsigned long)nmi) {
671  /* Don't need to handle these */
672  return 0;
673 #ifdef CONFIG_X86_MCE
674  } else if (addr == (unsigned long)machine_check) {
675  /*
676  * when xen hypervisor inject vMCE to guest,
677  * use native mce handler to handle it
678  */
679  ;
680 #endif
681  } else {
682  /* Some other trap using IST? */
683  if (WARN_ON(val->ist != 0))
684  return 0;
685  }
686 #endif /* CONFIG_X86_64 */
687  info->address = addr;
688 
689  info->cs = gate_segment(*val);
690  info->flags = val->dpl;
691  /* interrupt gates clear IF */
692  if (val->type == GATE_INTERRUPT)
693  info->flags |= 1 << 2;
694 
695  return 1;
696 }
697 
698 /* Locations of each CPU's IDT */
699 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
700 
701 /* Set an IDT entry. If the entry is part of the current IDT, then
702  also update Xen. */
703 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
704 {
705  unsigned long p = (unsigned long)&dt[entrynum];
706  unsigned long start, end;
707 
708  trace_xen_cpu_write_idt_entry(dt, entrynum, g);
709 
710  preempt_disable();
711 
712  start = __this_cpu_read(idt_desc.address);
713  end = start + __this_cpu_read(idt_desc.size) + 1;
714 
715  xen_mc_flush();
716 
717  native_write_idt_entry(dt, entrynum, g);
718 
719  if (p >= start && (p + 8) <= end) {
720  struct trap_info info[2];
721 
722  info[1].address = 0;
723 
724  if (cvt_gate_to_trap(entrynum, g, &info[0]))
725  if (HYPERVISOR_set_trap_table(info))
726  BUG();
727  }
728 
729  preempt_enable();
730 }
731 
732 static void xen_convert_trap_info(const struct desc_ptr *desc,
733  struct trap_info *traps)
734 {
735  unsigned in, out, count;
736 
737  count = (desc->size+1) / sizeof(gate_desc);
738  BUG_ON(count > 256);
739 
740  for (in = out = 0; in < count; in++) {
741  gate_desc *entry = (gate_desc*)(desc->address) + in;
742 
743  if (cvt_gate_to_trap(in, entry, &traps[out]))
744  out++;
745  }
746  traps[out].address = 0;
747 }
748 
749 void xen_copy_trap_info(struct trap_info *traps)
750 {
751  const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
752 
753  xen_convert_trap_info(desc, traps);
754 }
755 
756 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
757  hold a spinlock to protect the static traps[] array (static because
758  it avoids allocation, and saves stack space). */
759 static void xen_load_idt(const struct desc_ptr *desc)
760 {
761  static DEFINE_SPINLOCK(lock);
762  static struct trap_info traps[257];
763 
764  trace_xen_cpu_load_idt(desc);
765 
766  spin_lock(&lock);
767 
768  __get_cpu_var(idt_desc) = *desc;
769 
770  xen_convert_trap_info(desc, traps);
771 
772  xen_mc_flush();
773  if (HYPERVISOR_set_trap_table(traps))
774  BUG();
775 
776  spin_unlock(&lock);
777 }
778 
779 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
780  they're handled differently. */
781 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
782  const void *desc, int type)
783 {
784  trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
785 
786  preempt_disable();
787 
788  switch (type) {
789  case DESC_LDT:
790  case DESC_TSS:
791  /* ignore */
792  break;
793 
794  default: {
795  xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
796 
797  xen_mc_flush();
798  if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
799  BUG();
800  }
801 
802  }
803 
804  preempt_enable();
805 }
806 
807 /*
808  * Version of write_gdt_entry for use at early boot-time needed to
809  * update an entry as simply as possible.
810  */
811 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
812  const void *desc, int type)
813 {
814  trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
815 
816  switch (type) {
817  case DESC_LDT:
818  case DESC_TSS:
819  /* ignore */
820  break;
821 
822  default: {
823  xmaddr_t maddr = virt_to_machine(&dt[entry]);
824 
825  if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
826  dt[entry] = *(struct desc_struct *)desc;
827  }
828 
829  }
830 }
831 
832 static void xen_load_sp0(struct tss_struct *tss,
833  struct thread_struct *thread)
834 {
835  struct multicall_space mcs;
836 
837  mcs = xen_mc_entry(0);
838  MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
839  xen_mc_issue(PARAVIRT_LAZY_CPU);
840 }
841 
842 static void xen_set_iopl_mask(unsigned mask)
843 {
844  struct physdev_set_iopl set_iopl;
845 
846  /* Force the change at ring 0. */
847  set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
849 }
850 
851 static void xen_io_delay(void)
852 {
853 }
854 
855 #ifdef CONFIG_X86_LOCAL_APIC
856 static unsigned long xen_set_apic_id(unsigned int x)
857 {
858  WARN_ON(1);
859  return x;
860 }
861 static unsigned int xen_get_apic_id(unsigned long x)
862 {
863  return ((x)>>24) & 0xFFu;
864 }
865 static u32 xen_apic_read(u32 reg)
866 {
867  struct xen_platform_op op = {
869  .interface_version = XENPF_INTERFACE_VERSION,
870  .u.pcpu_info.xen_cpuid = 0,
871  };
872  int ret = 0;
873 
874  /* Shouldn't need this as APIC is turned off for PV, and we only
875  * get called on the bootup processor. But just in case. */
877  return 0;
878 
879  if (reg == APIC_LVR)
880  return 0x10;
881 
882  if (reg != APIC_ID)
883  return 0;
884 
885  ret = HYPERVISOR_dom0_op(&op);
886  if (ret)
887  return 0;
888 
889  return op.u.pcpu_info.apic_id << 24;
890 }
891 
892 static void xen_apic_write(u32 reg, u32 val)
893 {
894  /* Warn to see if there's any stray references */
895  WARN_ON(1);
896 }
897 
898 static u64 xen_apic_icr_read(void)
899 {
900  return 0;
901 }
902 
903 static void xen_apic_icr_write(u32 low, u32 id)
904 {
905  /* Warn to see if there's any stray references */
906  WARN_ON(1);
907 }
908 
909 static void xen_apic_wait_icr_idle(void)
910 {
911  return;
912 }
913 
914 static u32 xen_safe_apic_wait_icr_idle(void)
915 {
916  return 0;
917 }
918 
919 static void set_xen_basic_apic_ops(void)
920 {
921  apic->read = xen_apic_read;
922  apic->write = xen_apic_write;
923  apic->icr_read = xen_apic_icr_read;
924  apic->icr_write = xen_apic_icr_write;
925  apic->wait_icr_idle = xen_apic_wait_icr_idle;
926  apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
927  apic->set_apic_id = xen_set_apic_id;
928  apic->get_apic_id = xen_get_apic_id;
929 
930 #ifdef CONFIG_SMP
936 #endif
937 }
938 
939 #endif
940 
941 static void xen_clts(void)
942 {
943  struct multicall_space mcs;
944 
945  mcs = xen_mc_entry(0);
946 
947  MULTI_fpu_taskswitch(mcs.mc, 0);
948 
949  xen_mc_issue(PARAVIRT_LAZY_CPU);
950 }
951 
952 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
953 
954 static unsigned long xen_read_cr0(void)
955 {
956  unsigned long cr0 = this_cpu_read(xen_cr0_value);
957 
958  if (unlikely(cr0 == 0)) {
959  cr0 = native_read_cr0();
960  this_cpu_write(xen_cr0_value, cr0);
961  }
962 
963  return cr0;
964 }
965 
966 static void xen_write_cr0(unsigned long cr0)
967 {
968  struct multicall_space mcs;
969 
970  this_cpu_write(xen_cr0_value, cr0);
971 
972  /* Only pay attention to cr0.TS; everything else is
973  ignored. */
974  mcs = xen_mc_entry(0);
975 
976  MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
977 
978  xen_mc_issue(PARAVIRT_LAZY_CPU);
979 }
980 
981 static void xen_write_cr4(unsigned long cr4)
982 {
983  cr4 &= ~X86_CR4_PGE;
984  cr4 &= ~X86_CR4_PSE;
985 
986  native_write_cr4(cr4);
987 }
988 #ifdef CONFIG_X86_64
989 static inline unsigned long xen_read_cr8(void)
990 {
991  return 0;
992 }
993 static inline void xen_write_cr8(unsigned long val)
994 {
995  BUG_ON(val);
996 }
997 #endif
998 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
999 {
1000  int ret;
1001 
1002  ret = 0;
1003 
1004  switch (msr) {
1005 #ifdef CONFIG_X86_64
1006  unsigned which;
1007  u64 base;
1008 
1009  case MSR_FS_BASE: which = SEGBASE_FS; goto set;
1010  case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
1011  case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
1012 
1013  set:
1014  base = ((u64)high << 32) | low;
1015  if (HYPERVISOR_set_segment_base(which, base) != 0)
1016  ret = -EIO;
1017  break;
1018 #endif
1019 
1020  case MSR_STAR:
1021  case MSR_CSTAR:
1022  case MSR_LSTAR:
1023  case MSR_SYSCALL_MASK:
1024  case MSR_IA32_SYSENTER_CS:
1025  case MSR_IA32_SYSENTER_ESP:
1026  case MSR_IA32_SYSENTER_EIP:
1027  /* Fast syscall setup is all done in hypercalls, so
1028  these are all ignored. Stub them out here to stop
1029  Xen console noise. */
1030  break;
1031 
1032  case MSR_IA32_CR_PAT:
1033  if (smp_processor_id() == 0)
1034  xen_set_pat(((u64)high << 32) | low);
1035  break;
1036 
1037  default:
1038  ret = native_write_msr_safe(msr, low, high);
1039  }
1040 
1041  return ret;
1042 }
1043 
1045 {
1046  if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1047  set_fixmap(FIX_PARAVIRT_BOOTMAP,
1048  xen_start_info->shared_info);
1049 
1050  HYPERVISOR_shared_info =
1051  (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1052  } else
1053  HYPERVISOR_shared_info =
1054  (struct shared_info *)__va(xen_start_info->shared_info);
1055 
1056 #ifndef CONFIG_SMP
1057  /* In UP this is as good a place as any to set up shared info */
1059 #endif
1060 
1062 }
1063 
1064 /* This is called once we have the cpu_possible_mask */
1066 {
1067  int cpu;
1068 
1070  xen_vcpu_setup(cpu);
1071 
1072  /* xen_vcpu_setup managed to place the vcpu_info within the
1073  percpu area for all cpus, so make use of it */
1074  if (have_vcpu_info_placement) {
1075  pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1076  pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1077  pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1078  pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1080  }
1081 }
1082 
1083 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1084  unsigned long addr, unsigned len)
1085 {
1086  char *start, *end, *reloc;
1087  unsigned ret;
1088 
1089  start = end = reloc = NULL;
1090 
1091 #define SITE(op, x) \
1092  case PARAVIRT_PATCH(op.x): \
1093  if (have_vcpu_info_placement) { \
1094  start = (char *)xen_##x##_direct; \
1095  end = xen_##x##_direct_end; \
1096  reloc = xen_##x##_direct_reloc; \
1097  } \
1098  goto patch_site
1099 
1100  switch (type) {
1103  SITE(pv_irq_ops, save_fl);
1104  SITE(pv_irq_ops, restore_fl);
1105 #undef SITE
1106 
1107  patch_site:
1108  if (start == NULL || (end-start) > len)
1109  goto default_patch;
1110 
1111  ret = paravirt_patch_insns(insnbuf, len, start, end);
1112 
1113  /* Note: because reloc is assigned from something that
1114  appears to be an array, gcc assumes it's non-null,
1115  but doesn't know its relationship with start and
1116  end. */
1117  if (reloc > start && reloc < end) {
1118  int reloc_off = reloc - start;
1119  long *relocp = (long *)(insnbuf + reloc_off);
1120  long delta = start - (char *)addr;
1121 
1122  *relocp += delta;
1123  }
1124  break;
1125 
1126  default_patch:
1127  default:
1128  ret = paravirt_patch_default(type, clobbers, insnbuf,
1129  addr, len);
1130  break;
1131  }
1132 
1133  return ret;
1134 }
1135 
1136 static const struct pv_info xen_info __initconst = {
1137  .paravirt_enabled = 1,
1138  .shared_kernel_pmd = 0,
1139 
1140 #ifdef CONFIG_X86_64
1141  .extra_user_64bit_cs = FLAT_USER_CS64,
1142 #endif
1143 
1144  .name = "Xen",
1145 };
1146 
1147 static const struct pv_init_ops xen_init_ops __initconst = {
1148  .patch = xen_patch,
1149 };
1150 
1151 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1152  .cpuid = xen_cpuid,
1153 
1154  .set_debugreg = xen_set_debugreg,
1155  .get_debugreg = xen_get_debugreg,
1156 
1157  .clts = xen_clts,
1158 
1159  .read_cr0 = xen_read_cr0,
1160  .write_cr0 = xen_write_cr0,
1161 
1162  .read_cr4 = native_read_cr4,
1163  .read_cr4_safe = native_read_cr4_safe,
1164  .write_cr4 = xen_write_cr4,
1165 
1166 #ifdef CONFIG_X86_64
1167  .read_cr8 = xen_read_cr8,
1168  .write_cr8 = xen_write_cr8,
1169 #endif
1170 
1171  .wbinvd = native_wbinvd,
1172 
1173  .read_msr = native_read_msr_safe,
1174  .write_msr = xen_write_msr_safe,
1175 
1176  .read_tsc = native_read_tsc,
1177  .read_pmc = native_read_pmc,
1178 
1179  .read_tscp = native_read_tscp,
1180 
1181  .iret = xen_iret,
1182  .irq_enable_sysexit = xen_sysexit,
1183 #ifdef CONFIG_X86_64
1184  .usergs_sysret32 = xen_sysret32,
1185  .usergs_sysret64 = xen_sysret64,
1186 #endif
1187 
1188  .load_tr_desc = paravirt_nop,
1189  .set_ldt = xen_set_ldt,
1190  .load_gdt = xen_load_gdt,
1191  .load_idt = xen_load_idt,
1192  .load_tls = xen_load_tls,
1193 #ifdef CONFIG_X86_64
1194  .load_gs_index = xen_load_gs_index,
1195 #endif
1196 
1197  .alloc_ldt = xen_alloc_ldt,
1198  .free_ldt = xen_free_ldt,
1199 
1200  .store_gdt = native_store_gdt,
1201  .store_idt = native_store_idt,
1202  .store_tr = xen_store_tr,
1203 
1204  .write_ldt_entry = xen_write_ldt_entry,
1205  .write_gdt_entry = xen_write_gdt_entry,
1206  .write_idt_entry = xen_write_idt_entry,
1207  .load_sp0 = xen_load_sp0,
1208 
1209  .set_iopl_mask = xen_set_iopl_mask,
1210  .io_delay = xen_io_delay,
1211 
1212  /* Xen takes care of %gs when switching to usermode for us */
1213  .swapgs = paravirt_nop,
1214 
1215  .start_context_switch = paravirt_start_context_switch,
1216  .end_context_switch = xen_end_context_switch,
1217 };
1218 
1219 static const struct pv_apic_ops xen_apic_ops __initconst = {
1220 #ifdef CONFIG_X86_LOCAL_APIC
1221  .startup_ipi_hook = paravirt_nop,
1222 #endif
1223 };
1224 
1225 static void xen_reboot(int reason)
1226 {
1227  struct sched_shutdown r = { .reason = reason };
1228 
1230  BUG();
1231 }
1232 
1233 static void xen_restart(char *msg)
1234 {
1235  xen_reboot(SHUTDOWN_reboot);
1236 }
1237 
1238 static void xen_emergency_restart(void)
1239 {
1240  xen_reboot(SHUTDOWN_reboot);
1241 }
1242 
1243 static void xen_machine_halt(void)
1244 {
1245  xen_reboot(SHUTDOWN_poweroff);
1246 }
1247 
1248 static void xen_machine_power_off(void)
1249 {
1250  if (pm_power_off)
1251  pm_power_off();
1252  xen_reboot(SHUTDOWN_poweroff);
1253 }
1254 
1255 static void xen_crash_shutdown(struct pt_regs *regs)
1256 {
1257  xen_reboot(SHUTDOWN_crash);
1258 }
1259 
1260 static int
1261 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1262 {
1263  xen_reboot(SHUTDOWN_crash);
1264  return NOTIFY_DONE;
1265 }
1266 
1267 static struct notifier_block xen_panic_block = {
1268  .notifier_call= xen_panic_event,
1269 };
1270 
1272 {
1274  return 0;
1275 }
1276 
1277 static const struct machine_ops xen_machine_ops __initconst = {
1278  .restart = xen_restart,
1279  .halt = xen_machine_halt,
1280  .power_off = xen_machine_power_off,
1281  .shutdown = xen_machine_halt,
1282  .crash_shutdown = xen_crash_shutdown,
1283  .emergency_restart = xen_emergency_restart,
1284 };
1285 
1286 /*
1287  * Set up the GDT and segment registers for -fstack-protector. Until
1288  * we do this, we have to be careful not to call any stack-protected
1289  * function, which is most of the kernel.
1290  */
1291 static void __init xen_setup_stackprotector(void)
1292 {
1293  pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1294  pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1295 
1296  setup_stack_canary_segment(0);
1297  switch_to_new_gdt(0);
1298 
1299  pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1300  pv_cpu_ops.load_gdt = xen_load_gdt;
1301 }
1302 
1303 /* First C function to be called on Xen boot */
1305 {
1306  struct physdev_set_iopl set_iopl;
1307  int rc;
1308 
1309  if (!xen_start_info)
1310  return;
1311 
1313 
1315 
1316  /* Install Xen paravirt ops */
1317  pv_info = xen_info;
1318  pv_init_ops = xen_init_ops;
1319  pv_cpu_ops = xen_cpu_ops;
1320  pv_apic_ops = xen_apic_ops;
1321 
1322  x86_init.resources.memory_setup = xen_memory_setup;
1323  x86_init.oem.arch_setup = xen_arch_setup;
1324  x86_init.oem.banner = xen_banner;
1325 
1327 
1328  /*
1329  * Set up some pagetable state before starting to set any ptes.
1330  */
1331 
1332  xen_init_mmu_ops();
1333 
1334  /* Prevent unwanted bits from being set in PTEs. */
1336 #if 0
1337  if (!xen_initial_domain())
1338 #endif
1340 
1342 
1343  /*
1344  * Prevent page tables from being allocated in highmem, even
1345  * if CONFIG_HIGHPTE is enabled.
1346  */
1348 
1349  /* Work out if we support NX */
1350  x86_configure_nx();
1351 
1353 
1354  /* Get mfn list */
1355  if (!xen_feature(XENFEAT_auto_translated_physmap))
1357 
1358  /*
1359  * Set up kernel GDT and segment registers, mainly so that
1360  * -fstack-protector code can be executed.
1361  */
1362  xen_setup_stackprotector();
1363 
1364  xen_init_irq_ops();
1365  xen_init_cpuid_mask();
1366 
1367 #ifdef CONFIG_X86_LOCAL_APIC
1368  /*
1369  * set up the basic apic ops.
1370  */
1371  set_xen_basic_apic_ops();
1372 #endif
1373 
1374  if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1377  }
1378 
1379  machine_ops = xen_machine_ops;
1380 
1381  /*
1382  * The only reliable way to retain the initial address of the
1383  * percpu gdt_page is to remember it here, so we can go and
1384  * mark it RW later, when the initial percpu area is freed.
1385  */
1387 
1388  xen_smp_init();
1389 
1390 #ifdef CONFIG_ACPI_NUMA
1391  /*
1392  * The pages we from Xen are not related to machine pages, so
1393  * any NUMA information the kernel tries to get from ACPI will
1394  * be meaningless. Prevent it from trying.
1395  */
1396  acpi_numa = -1;
1397 #endif
1398 
1399  /* Don't do the full vcpu_info placement stuff until we have a
1400  possible map and a non-dummy shared_info. */
1401  per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1402 
1404  early_boot_irqs_disabled = true;
1405 
1406  xen_raw_console_write("mapping kernel into physical memory\n");
1407  xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, xen_start_info->nr_pages);
1408 
1409  /* Allocate and initialize top and mid mfn levels for p2m structure */
1411 
1412  /* keep using Xen gdt for now; no urgent need to change it */
1413 
1414 #ifdef CONFIG_X86_32
1415  pv_info.kernel_rpl = 1;
1416  if (xen_feature(XENFEAT_supervisor_mode_kernel))
1417  pv_info.kernel_rpl = 0;
1418 #else
1419  pv_info.kernel_rpl = 0;
1420 #endif
1421  /* set the limit of our address space */
1422  xen_reserve_top();
1423 
1424  /* We used to do this in xen_arch_setup, but that is too late on AMD
1425  * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1426  * which pokes 0xcf8 port.
1427  */
1428  set_iopl.iopl = 1;
1429  rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1430  if (rc != 0)
1431  xen_raw_printk("physdev_op failed %d\n", rc);
1432 
1433 #ifdef CONFIG_X86_32
1434  /* set up basic CPUID stuff */
1436  new_cpu_data.hard_math = 1;
1437  new_cpu_data.wp_works_ok = 1;
1438  new_cpu_data.x86_capability[0] = cpuid_edx(1);
1439 #endif
1440 
1441  /* Poke various useful things into boot_params */
1442  boot_params.hdr.type_of_loader = (9 << 4) | 0;
1443  boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1444  ? __pa(xen_start_info->mod_start) : 0;
1445  boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1446  boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1447 
1448  if (!xen_initial_domain()) {
1449  add_preferred_console("xenboot", 0, NULL);
1450  add_preferred_console("tty", 0, NULL);
1451  add_preferred_console("hvc", 0, NULL);
1452  if (pci_xen)
1453  x86_init.pci.arch_init = pci_xen_init;
1454  } else {
1455  const struct dom0_vga_console_info *info =
1456  (void *)((char *)xen_start_info +
1457  xen_start_info->console.dom0.info_off);
1458  struct xen_platform_op op = {
1460  .interface_version = XENPF_INTERFACE_VERSION,
1461  .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1462  };
1463 
1464  xen_init_vga(info, xen_start_info->console.dom0.info_size);
1465  xen_start_info->console.domU.mfn = 0;
1466  xen_start_info->console.domU.evtchn = 0;
1467 
1468  if (HYPERVISOR_dom0_op(&op) == 0)
1469  boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1470 
1471  xen_init_apic();
1472 
1473  /* Make sure ACS will be enabled */
1474  pci_request_acs();
1475 
1476  xen_acpi_sleep_register();
1477 
1478  /* Avoid searching for BIOS MP tables */
1479  x86_init.mpparse.find_smp_config = x86_init_noop;
1480  x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1481  }
1482 #ifdef CONFIG_PCI
1483  /* PCI BIOS service won't work from a PV guest. */
1485 #endif
1486  xen_raw_console_write("about to get started...\n");
1487 
1489 
1490  /* Start the world */
1491 #ifdef CONFIG_X86_32
1493 #else
1495 #endif
1496 }
1497 
1499 {
1500  int cpu;
1501  struct xen_add_to_physmap xatp;
1502  static struct shared_info *shared_info_page = 0;
1503 
1504  if (!shared_info_page)
1505  shared_info_page = (struct shared_info *)
1507  xatp.domid = DOMID_SELF;
1508  xatp.idx = 0;
1510  xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1512  BUG();
1513 
1514  HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1515 
1516  /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1517  * page, we use it in the event channel upcall and in some pvclock
1518  * related functions. We don't need the vcpu_info placement
1519  * optimizations because we don't use any pv_mmu or pv_irq op on
1520  * HVM.
1521  * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1522  * online but xen_hvm_init_shared_info is run at resume time too and
1523  * in that case multiple vcpus might be online. */
1524  for_each_online_cpu(cpu) {
1525  per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1526  }
1527 }
1528 
1529 #ifdef CONFIG_XEN_PVHVM
1530 static void __init init_hvm_pv_info(void)
1531 {
1532  int major, minor;
1533  uint32_t eax, ebx, ecx, edx, pages, msr, base;
1534  u64 pfn;
1535 
1536  base = xen_cpuid_base();
1537  cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1538 
1539  major = eax >> 16;
1540  minor = eax & 0xffff;
1541  printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1542 
1543  cpuid(base + 2, &pages, &msr, &ecx, &edx);
1544 
1545  pfn = __pa(hypercall_page);
1546  wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1547 
1549 
1550  pv_info.name = "Xen HVM";
1551 
1553 }
1554 
1555 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1556  unsigned long action, void *hcpu)
1557 {
1558  int cpu = (long)hcpu;
1559  switch (action) {
1560  case CPU_UP_PREPARE:
1561  xen_vcpu_setup(cpu);
1563  xen_init_lock_cpu(cpu);
1564  break;
1565  default:
1566  break;
1567  }
1568  return NOTIFY_OK;
1569 }
1570 
1571 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1572  .notifier_call = xen_hvm_cpu_notify,
1573 };
1574 
1575 static void __init xen_hvm_guest_init(void)
1576 {
1577  init_hvm_pv_info();
1578 
1580 
1581  if (xen_feature(XENFEAT_hvm_callback_vector))
1583  xen_hvm_smp_init();
1584  register_cpu_notifier(&xen_hvm_cpu_notifier);
1586  x86_init.irqs.intr_init = xen_init_IRQ;
1589 }
1590 
1591 static bool __init xen_hvm_platform(void)
1592 {
1593  if (xen_pv_domain())
1594  return false;
1595 
1596  if (!xen_cpuid_base())
1597  return false;
1598 
1599  return true;
1600 }
1601 
1602 bool xen_hvm_need_lapic(void)
1603 {
1604  if (xen_pv_domain())
1605  return false;
1606  if (!xen_hvm_domain())
1607  return false;
1608  if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1609  return false;
1610  return true;
1611 }
1612 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1613 
1615  .name = "Xen HVM",
1616  .detect = xen_hvm_platform,
1617  .init_platform = xen_hvm_guest_init,
1618 };
1619 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1620 #endif