Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
zd_usb.c
Go to the documentation of this file.
1 /* ZD1211 USB-WLAN driver for Linux
2  *
3  * Copyright (C) 2005-2007 Ulrich Kunitz <[email protected]>
4  * Copyright (C) 2006-2007 Daniel Drake <[email protected]>
5  * Copyright (C) 2006-2007 Michael Wu <[email protected]>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/firmware.h>
25 #include <linux/device.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/skbuff.h>
29 #include <linux/usb.h>
30 #include <linux/workqueue.h>
31 #include <linux/module.h>
32 #include <net/mac80211.h>
33 #include <asm/unaligned.h>
34 
35 #include "zd_def.h"
36 #include "zd_mac.h"
37 #include "zd_usb.h"
38 
39 static struct usb_device_id usb_ids[] = {
40  /* ZD1211 */
41  { USB_DEVICE(0x0105, 0x145f), .driver_info = DEVICE_ZD1211 },
42  { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
43  { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
44  { USB_DEVICE(0x0586, 0x3407), .driver_info = DEVICE_ZD1211 },
45  { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
46  { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
47  { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
48  { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
49  { USB_DEVICE(0x0ace, 0xa211), .driver_info = DEVICE_ZD1211 },
50  { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
51  { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
52  { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
53  { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
54  { USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
55  { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
56  { USB_DEVICE(0x129b, 0x1666), .driver_info = DEVICE_ZD1211 },
57  { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
58  { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
59  { USB_DEVICE(0x14ea, 0xab10), .driver_info = DEVICE_ZD1211 },
60  { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
61  { USB_DEVICE(0x157e, 0x300a), .driver_info = DEVICE_ZD1211 },
62  { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
63  { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
64  { USB_DEVICE(0x157e, 0x3207), .driver_info = DEVICE_ZD1211 },
65  { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
66  { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
67  /* ZD1211B */
68  { USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
69  { USB_DEVICE(0x0409, 0x0248), .driver_info = DEVICE_ZD1211B },
70  { USB_DEVICE(0x0411, 0x00da), .driver_info = DEVICE_ZD1211B },
71  { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
72  { USB_DEVICE(0x0471, 0x1237), .driver_info = DEVICE_ZD1211B },
73  { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
74  { USB_DEVICE(0x054c, 0x0257), .driver_info = DEVICE_ZD1211B },
75  { USB_DEVICE(0x0586, 0x340a), .driver_info = DEVICE_ZD1211B },
76  { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
77  { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
78  { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
79  { USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B },
80  { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
81  { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211B },
82  { USB_DEVICE(0x07fa, 0x1196), .driver_info = DEVICE_ZD1211B },
83  { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
84  { USB_DEVICE(0x083a, 0xe501), .driver_info = DEVICE_ZD1211B },
85  { USB_DEVICE(0x083a, 0xe503), .driver_info = DEVICE_ZD1211B },
86  { USB_DEVICE(0x083a, 0xe506), .driver_info = DEVICE_ZD1211B },
87  { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
88  { USB_DEVICE(0x0ace, 0xb215), .driver_info = DEVICE_ZD1211B },
89  { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
90  { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
91  { USB_DEVICE(0x0cde, 0x001a), .driver_info = DEVICE_ZD1211B },
92  { USB_DEVICE(0x0df6, 0x0036), .driver_info = DEVICE_ZD1211B },
93  { USB_DEVICE(0x129b, 0x1667), .driver_info = DEVICE_ZD1211B },
94  { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
95  { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
96  { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
97  { USB_DEVICE(0x2019, 0x5303), .driver_info = DEVICE_ZD1211B },
98  { USB_DEVICE(0x2019, 0xed01), .driver_info = DEVICE_ZD1211B },
99  /* "Driverless" devices that need ejecting */
100  { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
101  { USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
102  {}
103 };
104 
105 MODULE_LICENSE("GPL");
106 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
107 MODULE_AUTHOR("Ulrich Kunitz");
108 MODULE_AUTHOR("Daniel Drake");
109 MODULE_VERSION("1.0");
110 MODULE_DEVICE_TABLE(usb, usb_ids);
111 
112 #define FW_ZD1211_PREFIX "zd1211/zd1211_"
113 #define FW_ZD1211B_PREFIX "zd1211/zd1211b_"
114 
115 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
116  unsigned int count);
117 
118 /* USB device initialization */
119 static void int_urb_complete(struct urb *urb);
120 
121 static int request_fw_file(
122  const struct firmware **fw, const char *name, struct device *device)
123 {
124  int r;
125 
126  dev_dbg_f(device, "fw name %s\n", name);
127 
128  r = request_firmware(fw, name, device);
129  if (r)
130  dev_err(device,
131  "Could not load firmware file %s. Error number %d\n",
132  name, r);
133  return r;
134 }
135 
136 static inline u16 get_bcdDevice(const struct usb_device *udev)
137 {
138  return le16_to_cpu(udev->descriptor.bcdDevice);
139 }
140 
142  REBOOT = 1,
143 };
144 
145 /* Ensures that MAX_TRANSFER_SIZE is even. */
146 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
147 
148 static int upload_code(struct usb_device *udev,
149  const u8 *data, size_t size, u16 code_offset, int flags)
150 {
151  u8 *p;
152  int r;
153 
154  /* USB request blocks need "kmalloced" buffers.
155  */
157  if (!p) {
158  dev_err(&udev->dev, "out of memory\n");
159  r = -ENOMEM;
160  goto error;
161  }
162 
163  size &= ~1;
164  while (size > 0) {
165  size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
166  size : MAX_TRANSFER_SIZE;
167 
168  dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
169 
170  memcpy(p, data, transfer_size);
171  r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
174  code_offset, 0, p, transfer_size, 1000 /* ms */);
175  if (r < 0) {
176  dev_err(&udev->dev,
177  "USB control request for firmware upload"
178  " failed. Error number %d\n", r);
179  goto error;
180  }
181  transfer_size = r & ~1;
182 
183  size -= transfer_size;
184  data += transfer_size;
185  code_offset += transfer_size/sizeof(u16);
186  }
187 
188  if (flags & REBOOT) {
189  u8 ret;
190 
191  /* Use "DMA-aware" buffer. */
192  r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
195  0, 0, p, sizeof(ret), 5000 /* ms */);
196  if (r != sizeof(ret)) {
197  dev_err(&udev->dev,
198  "control request firmeware confirmation failed."
199  " Return value %d\n", r);
200  if (r >= 0)
201  r = -ENODEV;
202  goto error;
203  }
204  ret = p[0];
205  if (ret & 0x80) {
206  dev_err(&udev->dev,
207  "Internal error while downloading."
208  " Firmware confirm return value %#04x\n",
209  (unsigned int)ret);
210  r = -ENODEV;
211  goto error;
212  }
213  dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
214  (unsigned int)ret);
215  }
216 
217  r = 0;
218 error:
219  kfree(p);
220  return r;
221 }
222 
223 static u16 get_word(const void *data, u16 offset)
224 {
225  const __le16 *p = data;
226  return le16_to_cpu(p[offset]);
227 }
228 
229 static char *get_fw_name(struct zd_usb *usb, char *buffer, size_t size,
230  const char* postfix)
231 {
232  scnprintf(buffer, size, "%s%s",
233  usb->is_zd1211b ?
235  postfix);
236  return buffer;
237 }
238 
239 static int handle_version_mismatch(struct zd_usb *usb,
240  const struct firmware *ub_fw)
241 {
242  struct usb_device *udev = zd_usb_to_usbdev(usb);
243  const struct firmware *ur_fw = NULL;
244  int offset;
245  int r = 0;
246  char fw_name[128];
247 
248  r = request_fw_file(&ur_fw,
249  get_fw_name(usb, fw_name, sizeof(fw_name), "ur"),
250  &udev->dev);
251  if (r)
252  goto error;
253 
254  r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
255  if (r)
256  goto error;
257 
258  offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
259  r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
261 
262  /* At this point, the vendor driver downloads the whole firmware
263  * image, hacks around with version IDs, and uploads it again,
264  * completely overwriting the boot code. We do not do this here as
265  * it is not required on any tested devices, and it is suspected to
266  * cause problems. */
267 error:
268  release_firmware(ur_fw);
269  return r;
270 }
271 
272 static int upload_firmware(struct zd_usb *usb)
273 {
274  int r;
275  u16 fw_bcdDevice;
276  u16 bcdDevice;
277  struct usb_device *udev = zd_usb_to_usbdev(usb);
278  const struct firmware *ub_fw = NULL;
279  const struct firmware *uph_fw = NULL;
280  char fw_name[128];
281 
282  bcdDevice = get_bcdDevice(udev);
283 
284  r = request_fw_file(&ub_fw,
285  get_fw_name(usb, fw_name, sizeof(fw_name), "ub"),
286  &udev->dev);
287  if (r)
288  goto error;
289 
290  fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
291 
292  if (fw_bcdDevice != bcdDevice) {
293  dev_info(&udev->dev,
294  "firmware version %#06x and device bootcode version "
295  "%#06x differ\n", fw_bcdDevice, bcdDevice);
296  if (bcdDevice <= 0x4313)
297  dev_warn(&udev->dev, "device has old bootcode, please "
298  "report success or failure\n");
299 
300  r = handle_version_mismatch(usb, ub_fw);
301  if (r)
302  goto error;
303  } else {
304  dev_dbg_f(&udev->dev,
305  "firmware device id %#06x is equal to the "
306  "actual device id\n", fw_bcdDevice);
307  }
308 
309 
310  r = request_fw_file(&uph_fw,
311  get_fw_name(usb, fw_name, sizeof(fw_name), "uphr"),
312  &udev->dev);
313  if (r)
314  goto error;
315 
316  r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
317  if (r) {
318  dev_err(&udev->dev,
319  "Could not upload firmware code uph. Error number %d\n",
320  r);
321  }
322 
323  /* FALL-THROUGH */
324 error:
325  release_firmware(ub_fw);
326  release_firmware(uph_fw);
327  return r;
328 }
329 
336 
337 /* Read data from device address space using "firmware interface" which does
338  * not require firmware to be loaded. */
339 int zd_usb_read_fw(struct zd_usb *usb, zd_addr_t addr, u8 *data, u16 len)
340 {
341  int r;
342  struct usb_device *udev = zd_usb_to_usbdev(usb);
343  u8 *buf;
344 
345  /* Use "DMA-aware" buffer. */
346  buf = kmalloc(len, GFP_KERNEL);
347  if (!buf)
348  return -ENOMEM;
349  r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
350  USB_REQ_FIRMWARE_READ_DATA, USB_DIR_IN | 0x40, addr, 0,
351  buf, len, 5000);
352  if (r < 0) {
353  dev_err(&udev->dev,
354  "read over firmware interface failed: %d\n", r);
355  goto exit;
356  } else if (r != len) {
357  dev_err(&udev->dev,
358  "incomplete read over firmware interface: %d/%d\n",
359  r, len);
360  r = -EIO;
361  goto exit;
362  }
363  r = 0;
364  memcpy(data, buf, len);
365 exit:
366  kfree(buf);
367  return r;
368 }
369 
370 #define urb_dev(urb) (&(urb)->dev->dev)
371 
372 static inline void handle_regs_int_override(struct urb *urb)
373 {
374  struct zd_usb *usb = urb->context;
375  struct zd_usb_interrupt *intr = &usb->intr;
376 
377  spin_lock(&intr->lock);
378  if (atomic_read(&intr->read_regs_enabled)) {
379  atomic_set(&intr->read_regs_enabled, 0);
380  intr->read_regs_int_overridden = 1;
381  complete(&intr->read_regs.completion);
382  }
383  spin_unlock(&intr->lock);
384 }
385 
386 static inline void handle_regs_int(struct urb *urb)
387 {
388  struct zd_usb *usb = urb->context;
389  struct zd_usb_interrupt *intr = &usb->intr;
390  int len;
391  u16 int_num;
392 
394  spin_lock(&intr->lock);
395 
396  int_num = le16_to_cpu(*(__le16 *)(urb->transfer_buffer+2));
397  if (int_num == CR_INTERRUPT) {
398  struct zd_mac *mac = zd_hw_mac(zd_usb_to_hw(urb->context));
399  spin_lock(&mac->lock);
400  memcpy(&mac->intr_buffer, urb->transfer_buffer,
402  spin_unlock(&mac->lock);
404  } else if (atomic_read(&intr->read_regs_enabled)) {
405  len = urb->actual_length;
406  intr->read_regs.length = urb->actual_length;
407  if (len > sizeof(intr->read_regs.buffer))
408  len = sizeof(intr->read_regs.buffer);
409 
410  memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
411 
412  /* Sometimes USB_INT_ID_REGS is not overridden, but comes after
413  * USB_INT_ID_RETRY_FAILED. Read-reg retry then gets this
414  * delayed USB_INT_ID_REGS, but leaves USB_INT_ID_REGS of
415  * retry unhandled. Next read-reg command then might catch
416  * this wrong USB_INT_ID_REGS. Fix by ignoring wrong reads.
417  */
418  if (!check_read_regs(usb, intr->read_regs.req,
419  intr->read_regs.req_count))
420  goto out;
421 
422  atomic_set(&intr->read_regs_enabled, 0);
423  intr->read_regs_int_overridden = 0;
424  complete(&intr->read_regs.completion);
425 
426  goto out;
427  }
428 
429 out:
430  spin_unlock(&intr->lock);
431 
432  /* CR_INTERRUPT might override read_reg too. */
433  if (int_num == CR_INTERRUPT && atomic_read(&intr->read_regs_enabled))
434  handle_regs_int_override(urb);
435 }
436 
437 static void int_urb_complete(struct urb *urb)
438 {
439  int r;
440  struct usb_int_header *hdr;
441  struct zd_usb *usb;
442  struct zd_usb_interrupt *intr;
443 
444  switch (urb->status) {
445  case 0:
446  break;
447  case -ESHUTDOWN:
448  case -EINVAL:
449  case -ENODEV:
450  case -ENOENT:
451  case -ECONNRESET:
452  case -EPIPE:
453  dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
454  return;
455  default:
456  dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
457  goto resubmit;
458  }
459 
460  if (urb->actual_length < sizeof(hdr)) {
461  dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
462  goto resubmit;
463  }
464 
465  hdr = urb->transfer_buffer;
466  if (hdr->type != USB_INT_TYPE) {
467  dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
468  goto resubmit;
469  }
470 
471  /* USB_INT_ID_RETRY_FAILED triggered by tx-urb submit can override
472  * pending USB_INT_ID_REGS causing read command timeout.
473  */
474  usb = urb->context;
475  intr = &usb->intr;
476  if (hdr->id != USB_INT_ID_REGS && atomic_read(&intr->read_regs_enabled))
477  handle_regs_int_override(urb);
478 
479  switch (hdr->id) {
480  case USB_INT_ID_REGS:
481  handle_regs_int(urb);
482  break;
484  zd_mac_tx_failed(urb);
485  break;
486  default:
487  dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
488  (unsigned int)hdr->id);
489  goto resubmit;
490  }
491 
492 resubmit:
493  r = usb_submit_urb(urb, GFP_ATOMIC);
494  if (r) {
495  dev_dbg_f(urb_dev(urb), "error: resubmit urb %p err code %d\n",
496  urb, r);
497  /* TODO: add worker to reset intr->urb */
498  }
499  return;
500 }
501 
502 static inline int int_urb_interval(struct usb_device *udev)
503 {
504  switch (udev->speed) {
505  case USB_SPEED_HIGH:
506  return 4;
507  case USB_SPEED_LOW:
508  return 10;
509  case USB_SPEED_FULL:
510  default:
511  return 1;
512  }
513 }
514 
515 static inline int usb_int_enabled(struct zd_usb *usb)
516 {
517  unsigned long flags;
518  struct zd_usb_interrupt *intr = &usb->intr;
519  struct urb *urb;
520 
521  spin_lock_irqsave(&intr->lock, flags);
522  urb = intr->urb;
523  spin_unlock_irqrestore(&intr->lock, flags);
524  return urb != NULL;
525 }
526 
527 int zd_usb_enable_int(struct zd_usb *usb)
528 {
529  int r;
530  struct usb_device *udev = zd_usb_to_usbdev(usb);
531  struct zd_usb_interrupt *intr = &usb->intr;
532  struct urb *urb;
533 
534  dev_dbg_f(zd_usb_dev(usb), "\n");
535 
536  urb = usb_alloc_urb(0, GFP_KERNEL);
537  if (!urb) {
538  r = -ENOMEM;
539  goto out;
540  }
541 
543  spin_lock_irq(&intr->lock);
544  if (intr->urb) {
545  spin_unlock_irq(&intr->lock);
546  r = 0;
547  goto error_free_urb;
548  }
549  intr->urb = urb;
550  spin_unlock_irq(&intr->lock);
551 
552  r = -ENOMEM;
554  GFP_KERNEL, &intr->buffer_dma);
555  if (!intr->buffer) {
556  dev_dbg_f(zd_usb_dev(usb),
557  "couldn't allocate transfer_buffer\n");
558  goto error_set_urb_null;
559  }
560 
561  usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
563  int_urb_complete, usb,
564  intr->interval);
565  urb->transfer_dma = intr->buffer_dma;
566  urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
567 
568  dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
569  r = usb_submit_urb(urb, GFP_KERNEL);
570  if (r) {
571  dev_dbg_f(zd_usb_dev(usb),
572  "Couldn't submit urb. Error number %d\n", r);
573  goto error;
574  }
575 
576  return 0;
577 error:
579  intr->buffer, intr->buffer_dma);
580 error_set_urb_null:
581  spin_lock_irq(&intr->lock);
582  intr->urb = NULL;
583  spin_unlock_irq(&intr->lock);
584 error_free_urb:
585  usb_free_urb(urb);
586 out:
587  return r;
588 }
589 
590 void zd_usb_disable_int(struct zd_usb *usb)
591 {
592  unsigned long flags;
593  struct usb_device *udev = zd_usb_to_usbdev(usb);
594  struct zd_usb_interrupt *intr = &usb->intr;
595  struct urb *urb;
596  void *buffer;
598 
599  spin_lock_irqsave(&intr->lock, flags);
600  urb = intr->urb;
601  if (!urb) {
602  spin_unlock_irqrestore(&intr->lock, flags);
603  return;
604  }
605  intr->urb = NULL;
606  buffer = intr->buffer;
607  buffer_dma = intr->buffer_dma;
608  intr->buffer = NULL;
609  spin_unlock_irqrestore(&intr->lock, flags);
610 
611  usb_kill_urb(urb);
612  dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
613  usb_free_urb(urb);
614 
615  if (buffer)
617  buffer, buffer_dma);
618 }
619 
620 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
621  unsigned int length)
622 {
623  int i;
624  const struct rx_length_info *length_info;
625 
626  if (length < sizeof(struct rx_length_info)) {
627  /* It's not a complete packet anyhow. */
628  dev_dbg_f(zd_usb_dev(usb), "invalid, small RX packet : %d\n",
629  length);
630  return;
631  }
632  length_info = (struct rx_length_info *)
633  (buffer + length - sizeof(struct rx_length_info));
634 
635  /* It might be that three frames are merged into a single URB
636  * transaction. We have to check for the length info tag.
637  *
638  * While testing we discovered that length_info might be unaligned,
639  * because if USB transactions are merged, the last packet will not
640  * be padded. Unaligned access might also happen if the length_info
641  * structure is not present.
642  */
643  if (get_unaligned_le16(&length_info->tag) == RX_LENGTH_INFO_TAG)
644  {
645  unsigned int l, k, n;
646  for (i = 0, l = 0;; i++) {
647  k = get_unaligned_le16(&length_info->length[i]);
648  if (k == 0)
649  return;
650  n = l+k;
651  if (n > length)
652  return;
653  zd_mac_rx(zd_usb_to_hw(usb), buffer+l, k);
654  if (i >= 2)
655  return;
656  l = (n+3) & ~3;
657  }
658  } else {
659  zd_mac_rx(zd_usb_to_hw(usb), buffer, length);
660  }
661 }
662 
663 static void rx_urb_complete(struct urb *urb)
664 {
665  int r;
666  struct zd_usb *usb;
667  struct zd_usb_rx *rx;
668  const u8 *buffer;
669  unsigned int length;
670 
671  switch (urb->status) {
672  case 0:
673  break;
674  case -ESHUTDOWN:
675  case -EINVAL:
676  case -ENODEV:
677  case -ENOENT:
678  case -ECONNRESET:
679  case -EPIPE:
680  dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
681  return;
682  default:
683  dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
684  goto resubmit;
685  }
686 
687  buffer = urb->transfer_buffer;
688  length = urb->actual_length;
689  usb = urb->context;
690  rx = &usb->rx;
691 
692  tasklet_schedule(&rx->reset_timer_tasklet);
693 
694  if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
695  /* If there is an old first fragment, we don't care. */
696  dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
697  ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
698  spin_lock(&rx->lock);
699  memcpy(rx->fragment, buffer, length);
700  rx->fragment_length = length;
701  spin_unlock(&rx->lock);
702  goto resubmit;
703  }
704 
705  spin_lock(&rx->lock);
706  if (rx->fragment_length > 0) {
707  /* We are on a second fragment, we believe */
708  ZD_ASSERT(length + rx->fragment_length <=
709  ARRAY_SIZE(rx->fragment));
710  dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
711  memcpy(rx->fragment+rx->fragment_length, buffer, length);
712  handle_rx_packet(usb, rx->fragment,
713  rx->fragment_length + length);
714  rx->fragment_length = 0;
715  spin_unlock(&rx->lock);
716  } else {
717  spin_unlock(&rx->lock);
718  handle_rx_packet(usb, buffer, length);
719  }
720 
721 resubmit:
722  r = usb_submit_urb(urb, GFP_ATOMIC);
723  if (r)
724  dev_dbg_f(urb_dev(urb), "urb %p resubmit error %d\n", urb, r);
725 }
726 
727 static struct urb *alloc_rx_urb(struct zd_usb *usb)
728 {
729  struct usb_device *udev = zd_usb_to_usbdev(usb);
730  struct urb *urb;
731  void *buffer;
732 
733  urb = usb_alloc_urb(0, GFP_KERNEL);
734  if (!urb)
735  return NULL;
737  &urb->transfer_dma);
738  if (!buffer) {
739  usb_free_urb(urb);
740  return NULL;
741  }
742 
743  usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
744  buffer, USB_MAX_RX_SIZE,
745  rx_urb_complete, usb);
746  urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
747 
748  return urb;
749 }
750 
751 static void free_rx_urb(struct urb *urb)
752 {
753  if (!urb)
754  return;
755  usb_free_coherent(urb->dev, urb->transfer_buffer_length,
756  urb->transfer_buffer, urb->transfer_dma);
757  usb_free_urb(urb);
758 }
759 
760 static int __zd_usb_enable_rx(struct zd_usb *usb)
761 {
762  int i, r;
763  struct zd_usb_rx *rx = &usb->rx;
764  struct urb **urbs;
765 
766  dev_dbg_f(zd_usb_dev(usb), "\n");
767 
768  r = -ENOMEM;
769  urbs = kcalloc(RX_URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
770  if (!urbs)
771  goto error;
772  for (i = 0; i < RX_URBS_COUNT; i++) {
773  urbs[i] = alloc_rx_urb(usb);
774  if (!urbs[i])
775  goto error;
776  }
777 
779  spin_lock_irq(&rx->lock);
780  if (rx->urbs) {
781  spin_unlock_irq(&rx->lock);
782  r = 0;
783  goto error;
784  }
785  rx->urbs = urbs;
787  spin_unlock_irq(&rx->lock);
788 
789  for (i = 0; i < RX_URBS_COUNT; i++) {
790  r = usb_submit_urb(urbs[i], GFP_KERNEL);
791  if (r)
792  goto error_submit;
793  }
794 
795  return 0;
796 error_submit:
797  for (i = 0; i < RX_URBS_COUNT; i++) {
798  usb_kill_urb(urbs[i]);
799  }
800  spin_lock_irq(&rx->lock);
801  rx->urbs = NULL;
802  rx->urbs_count = 0;
803  spin_unlock_irq(&rx->lock);
804 error:
805  if (urbs) {
806  for (i = 0; i < RX_URBS_COUNT; i++)
807  free_rx_urb(urbs[i]);
808  }
809  return r;
810 }
811 
812 int zd_usb_enable_rx(struct zd_usb *usb)
813 {
814  int r;
815  struct zd_usb_rx *rx = &usb->rx;
816 
817  mutex_lock(&rx->setup_mutex);
818  r = __zd_usb_enable_rx(usb);
820 
822 
823  return r;
824 }
825 
826 static void __zd_usb_disable_rx(struct zd_usb *usb)
827 {
828  int i;
829  unsigned long flags;
830  struct urb **urbs;
831  unsigned int count;
832  struct zd_usb_rx *rx = &usb->rx;
833 
834  spin_lock_irqsave(&rx->lock, flags);
835  urbs = rx->urbs;
836  count = rx->urbs_count;
837  spin_unlock_irqrestore(&rx->lock, flags);
838  if (!urbs)
839  return;
840 
841  for (i = 0; i < count; i++) {
842  usb_kill_urb(urbs[i]);
843  free_rx_urb(urbs[i]);
844  }
845  kfree(urbs);
846 
847  spin_lock_irqsave(&rx->lock, flags);
848  rx->urbs = NULL;
849  rx->urbs_count = 0;
850  spin_unlock_irqrestore(&rx->lock, flags);
851 }
852 
853 void zd_usb_disable_rx(struct zd_usb *usb)
854 {
855  struct zd_usb_rx *rx = &usb->rx;
856 
857  mutex_lock(&rx->setup_mutex);
858  __zd_usb_disable_rx(usb);
860 
863 }
864 
865 static void zd_usb_reset_rx(struct zd_usb *usb)
866 {
867  bool do_reset;
868  struct zd_usb_rx *rx = &usb->rx;
869  unsigned long flags;
870 
871  mutex_lock(&rx->setup_mutex);
872 
873  spin_lock_irqsave(&rx->lock, flags);
874  do_reset = rx->urbs != NULL;
875  spin_unlock_irqrestore(&rx->lock, flags);
876 
877  if (do_reset) {
878  __zd_usb_disable_rx(usb);
879  __zd_usb_enable_rx(usb);
880  }
881 
883 
884  if (do_reset)
886 }
887 
894 void zd_usb_disable_tx(struct zd_usb *usb)
895 {
896  struct zd_usb_tx *tx = &usb->tx;
897  unsigned long flags;
898 
899  atomic_set(&tx->enabled, 0);
900 
901  /* kill all submitted tx-urbs */
903 
904  spin_lock_irqsave(&tx->lock, flags);
905  WARN_ON(!skb_queue_empty(&tx->submitted_skbs));
906  WARN_ON(tx->submitted_urbs != 0);
907  tx->submitted_urbs = 0;
908  spin_unlock_irqrestore(&tx->lock, flags);
909 
910  /* The stopped state is ignored, relying on ieee80211_wake_queues()
911  * in a potentionally following zd_usb_enable_tx().
912  */
913 }
914 
922 void zd_usb_enable_tx(struct zd_usb *usb)
923 {
924  unsigned long flags;
925  struct zd_usb_tx *tx = &usb->tx;
926 
927  spin_lock_irqsave(&tx->lock, flags);
928  atomic_set(&tx->enabled, 1);
929  tx->submitted_urbs = 0;
930  ieee80211_wake_queues(zd_usb_to_hw(usb));
931  tx->stopped = 0;
932  spin_unlock_irqrestore(&tx->lock, flags);
933 }
934 
935 static void tx_dec_submitted_urbs(struct zd_usb *usb)
936 {
937  struct zd_usb_tx *tx = &usb->tx;
938  unsigned long flags;
939 
940  spin_lock_irqsave(&tx->lock, flags);
941  --tx->submitted_urbs;
942  if (tx->stopped && tx->submitted_urbs <= ZD_USB_TX_LOW) {
943  ieee80211_wake_queues(zd_usb_to_hw(usb));
944  tx->stopped = 0;
945  }
946  spin_unlock_irqrestore(&tx->lock, flags);
947 }
948 
949 static void tx_inc_submitted_urbs(struct zd_usb *usb)
950 {
951  struct zd_usb_tx *tx = &usb->tx;
952  unsigned long flags;
953 
954  spin_lock_irqsave(&tx->lock, flags);
955  ++tx->submitted_urbs;
956  if (!tx->stopped && tx->submitted_urbs > ZD_USB_TX_HIGH) {
957  ieee80211_stop_queues(zd_usb_to_hw(usb));
958  tx->stopped = 1;
959  }
960  spin_unlock_irqrestore(&tx->lock, flags);
961 }
962 
970 static void tx_urb_complete(struct urb *urb)
971 {
972  int r;
973  struct sk_buff *skb;
974  struct ieee80211_tx_info *info;
975  struct zd_usb *usb;
976  struct zd_usb_tx *tx;
977 
978  skb = (struct sk_buff *)urb->context;
979  info = IEEE80211_SKB_CB(skb);
980  /*
981  * grab 'usb' pointer before handing off the skb (since
982  * it might be freed by zd_mac_tx_to_dev or mac80211)
983  */
984  usb = &zd_hw_mac(info->rate_driver_data[0])->chip.usb;
985  tx = &usb->tx;
986 
987  switch (urb->status) {
988  case 0:
989  break;
990  case -ESHUTDOWN:
991  case -EINVAL:
992  case -ENODEV:
993  case -ENOENT:
994  case -ECONNRESET:
995  case -EPIPE:
996  dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
997  break;
998  default:
999  dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
1000  goto resubmit;
1001  }
1002 free_urb:
1003  skb_unlink(skb, &usb->tx.submitted_skbs);
1004  zd_mac_tx_to_dev(skb, urb->status);
1005  usb_free_urb(urb);
1006  tx_dec_submitted_urbs(usb);
1007  return;
1008 resubmit:
1009  usb_anchor_urb(urb, &tx->submitted);
1010  r = usb_submit_urb(urb, GFP_ATOMIC);
1011  if (r) {
1012  usb_unanchor_urb(urb);
1013  dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
1014  goto free_urb;
1015  }
1016 }
1017 
1030 int zd_usb_tx(struct zd_usb *usb, struct sk_buff *skb)
1031 {
1032  int r;
1033  struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1034  struct usb_device *udev = zd_usb_to_usbdev(usb);
1035  struct urb *urb;
1036  struct zd_usb_tx *tx = &usb->tx;
1037 
1038  if (!atomic_read(&tx->enabled)) {
1039  r = -ENOENT;
1040  goto out;
1041  }
1042 
1043  urb = usb_alloc_urb(0, GFP_ATOMIC);
1044  if (!urb) {
1045  r = -ENOMEM;
1046  goto out;
1047  }
1048 
1049  usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
1050  skb->data, skb->len, tx_urb_complete, skb);
1051 
1052  info->rate_driver_data[1] = (void *)jiffies;
1053  skb_queue_tail(&tx->submitted_skbs, skb);
1054  usb_anchor_urb(urb, &tx->submitted);
1055 
1056  r = usb_submit_urb(urb, GFP_ATOMIC);
1057  if (r) {
1058  dev_dbg_f(zd_usb_dev(usb), "error submit urb %p %d\n", urb, r);
1059  usb_unanchor_urb(urb);
1060  skb_unlink(skb, &tx->submitted_skbs);
1061  goto error;
1062  }
1063  tx_inc_submitted_urbs(usb);
1064  return 0;
1065 error:
1066  usb_free_urb(urb);
1067 out:
1068  return r;
1069 }
1070 
1071 static bool zd_tx_timeout(struct zd_usb *usb)
1072 {
1073  struct zd_usb_tx *tx = &usb->tx;
1074  struct sk_buff_head *q = &tx->submitted_skbs;
1075  struct sk_buff *skb, *skbnext;
1076  struct ieee80211_tx_info *info;
1077  unsigned long flags, trans_start;
1078  bool have_timedout = false;
1079 
1080  spin_lock_irqsave(&q->lock, flags);
1081  skb_queue_walk_safe(q, skb, skbnext) {
1082  info = IEEE80211_SKB_CB(skb);
1083  trans_start = (unsigned long)info->rate_driver_data[1];
1084 
1085  if (time_is_before_jiffies(trans_start + ZD_TX_TIMEOUT)) {
1086  have_timedout = true;
1087  break;
1088  }
1089  }
1090  spin_unlock_irqrestore(&q->lock, flags);
1091 
1092  return have_timedout;
1093 }
1094 
1095 static void zd_tx_watchdog_handler(struct work_struct *work)
1096 {
1097  struct zd_usb *usb =
1098  container_of(work, struct zd_usb, tx.watchdog_work.work);
1099  struct zd_usb_tx *tx = &usb->tx;
1100 
1101  if (!atomic_read(&tx->enabled) || !tx->watchdog_enabled)
1102  goto out;
1103  if (!zd_tx_timeout(usb))
1104  goto out;
1105 
1106  /* TX halted, try reset */
1107  dev_warn(zd_usb_dev(usb), "TX-stall detected, resetting device...");
1108 
1110 
1111  /* reset will stop this worker, don't rearm */
1112  return;
1113 out:
1116 }
1117 
1119 {
1120  struct zd_usb_tx *tx = &usb->tx;
1121 
1122  if (!tx->watchdog_enabled) {
1123  dev_dbg_f(zd_usb_dev(usb), "\n");
1126  tx->watchdog_enabled = 1;
1127  }
1128 }
1129 
1131 {
1132  struct zd_usb_tx *tx = &usb->tx;
1133 
1134  if (tx->watchdog_enabled) {
1135  dev_dbg_f(zd_usb_dev(usb), "\n");
1136  tx->watchdog_enabled = 0;
1138  }
1139 }
1140 
1141 static void zd_rx_idle_timer_handler(struct work_struct *work)
1142 {
1143  struct zd_usb *usb =
1144  container_of(work, struct zd_usb, rx.idle_work.work);
1145  struct zd_mac *mac = zd_usb_to_mac(usb);
1146 
1147  if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1148  return;
1149 
1150  dev_dbg_f(zd_usb_dev(usb), "\n");
1151 
1152  /* 30 seconds since last rx, reset rx */
1153  zd_usb_reset_rx(usb);
1154 }
1155 
1156 static void zd_usb_reset_rx_idle_timer_tasklet(unsigned long param)
1157 {
1158  struct zd_usb *usb = (struct zd_usb *)param;
1159 
1161 }
1162 
1164 {
1165  struct zd_usb_rx *rx = &usb->rx;
1166 
1168 }
1169 
1170 static inline void init_usb_interrupt(struct zd_usb *usb)
1171 {
1172  struct zd_usb_interrupt *intr = &usb->intr;
1173 
1174  spin_lock_init(&intr->lock);
1175  intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
1176  init_completion(&intr->read_regs.completion);
1177  atomic_set(&intr->read_regs_enabled, 0);
1178  intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
1179 }
1180 
1181 static inline void init_usb_rx(struct zd_usb *usb)
1182 {
1183  struct zd_usb_rx *rx = &usb->rx;
1184 
1185  spin_lock_init(&rx->lock);
1186  mutex_init(&rx->setup_mutex);
1187  if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
1188  rx->usb_packet_size = 512;
1189  } else {
1190  rx->usb_packet_size = 64;
1191  }
1192  ZD_ASSERT(rx->fragment_length == 0);
1193  INIT_DELAYED_WORK(&rx->idle_work, zd_rx_idle_timer_handler);
1194  rx->reset_timer_tasklet.func = zd_usb_reset_rx_idle_timer_tasklet;
1195  rx->reset_timer_tasklet.data = (unsigned long)usb;
1196 }
1197 
1198 static inline void init_usb_tx(struct zd_usb *usb)
1199 {
1200  struct zd_usb_tx *tx = &usb->tx;
1201 
1202  spin_lock_init(&tx->lock);
1203  atomic_set(&tx->enabled, 0);
1204  tx->stopped = 0;
1205  skb_queue_head_init(&tx->submitted_skbs);
1206  init_usb_anchor(&tx->submitted);
1207  tx->submitted_urbs = 0;
1208  tx->watchdog_enabled = 0;
1209  INIT_DELAYED_WORK(&tx->watchdog_work, zd_tx_watchdog_handler);
1210 }
1211 
1212 void zd_usb_init(struct zd_usb *usb, struct ieee80211_hw *hw,
1213  struct usb_interface *intf)
1214 {
1215  memset(usb, 0, sizeof(*usb));
1216  usb->intf = usb_get_intf(intf);
1217  usb_set_intfdata(usb->intf, hw);
1218  init_usb_anchor(&usb->submitted_cmds);
1219  init_usb_interrupt(usb);
1220  init_usb_tx(usb);
1221  init_usb_rx(usb);
1222 }
1223 
1224 void zd_usb_clear(struct zd_usb *usb)
1225 {
1226  usb_set_intfdata(usb->intf, NULL);
1227  usb_put_intf(usb->intf);
1228  ZD_MEMCLEAR(usb, sizeof(*usb));
1229  /* FIXME: usb_interrupt, usb_tx, usb_rx? */
1230 }
1231 
1232 static const char *speed(enum usb_device_speed speed)
1233 {
1234  switch (speed) {
1235  case USB_SPEED_LOW:
1236  return "low";
1237  case USB_SPEED_FULL:
1238  return "full";
1239  case USB_SPEED_HIGH:
1240  return "high";
1241  default:
1242  return "unknown speed";
1243  }
1244 }
1245 
1246 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
1247 {
1248  return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
1249  le16_to_cpu(udev->descriptor.idVendor),
1250  le16_to_cpu(udev->descriptor.idProduct),
1251  get_bcdDevice(udev),
1252  speed(udev->speed));
1253 }
1254 
1255 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
1256 {
1257  struct usb_device *udev = interface_to_usbdev(usb->intf);
1258  return scnprint_id(udev, buffer, size);
1259 }
1260 
1261 #ifdef DEBUG
1262 static void print_id(struct usb_device *udev)
1263 {
1264  char buffer[40];
1265 
1266  scnprint_id(udev, buffer, sizeof(buffer));
1267  buffer[sizeof(buffer)-1] = 0;
1268  dev_dbg_f(&udev->dev, "%s\n", buffer);
1269 }
1270 #else
1271 #define print_id(udev) do { } while (0)
1272 #endif
1273 
1274 static int eject_installer(struct usb_interface *intf)
1275 {
1276  struct usb_device *udev = interface_to_usbdev(intf);
1277  struct usb_host_interface *iface_desc = &intf->altsetting[0];
1279  unsigned char *cmd;
1280  u8 bulk_out_ep;
1281  int r;
1282 
1283  /* Find bulk out endpoint */
1284  for (r = 1; r >= 0; r--) {
1285  endpoint = &iface_desc->endpoint[r].desc;
1286  if (usb_endpoint_dir_out(endpoint) &&
1287  usb_endpoint_xfer_bulk(endpoint)) {
1288  bulk_out_ep = endpoint->bEndpointAddress;
1289  break;
1290  }
1291  }
1292  if (r == -1) {
1293  dev_err(&udev->dev,
1294  "zd1211rw: Could not find bulk out endpoint\n");
1295  return -ENODEV;
1296  }
1297 
1298  cmd = kzalloc(31, GFP_KERNEL);
1299  if (cmd == NULL)
1300  return -ENODEV;
1301 
1302  /* USB bulk command block */
1303  cmd[0] = 0x55; /* bulk command signature */
1304  cmd[1] = 0x53; /* bulk command signature */
1305  cmd[2] = 0x42; /* bulk command signature */
1306  cmd[3] = 0x43; /* bulk command signature */
1307  cmd[14] = 6; /* command length */
1308 
1309  cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
1310  cmd[19] = 0x2; /* eject disc */
1311 
1312  dev_info(&udev->dev, "Ejecting virtual installer media...\n");
1313  r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
1314  cmd, 31, NULL, 2000);
1315  kfree(cmd);
1316  if (r)
1317  return r;
1318 
1319  /* At this point, the device disconnects and reconnects with the real
1320  * ID numbers. */
1321 
1322  usb_set_intfdata(intf, NULL);
1323  return 0;
1324 }
1325 
1326 int zd_usb_init_hw(struct zd_usb *usb)
1327 {
1328  int r;
1329  struct zd_mac *mac = zd_usb_to_mac(usb);
1330 
1331  dev_dbg_f(zd_usb_dev(usb), "\n");
1332 
1333  r = upload_firmware(usb);
1334  if (r) {
1335  dev_err(zd_usb_dev(usb),
1336  "couldn't load firmware. Error number %d\n", r);
1337  return r;
1338  }
1339 
1340  r = usb_reset_configuration(zd_usb_to_usbdev(usb));
1341  if (r) {
1342  dev_dbg_f(zd_usb_dev(usb),
1343  "couldn't reset configuration. Error number %d\n", r);
1344  return r;
1345  }
1346 
1347  r = zd_mac_init_hw(mac->hw);
1348  if (r) {
1349  dev_dbg_f(zd_usb_dev(usb),
1350  "couldn't initialize mac. Error number %d\n", r);
1351  return r;
1352  }
1353 
1354  usb->initialized = 1;
1355  return 0;
1356 }
1357 
1358 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1359 {
1360  int r;
1361  struct usb_device *udev = interface_to_usbdev(intf);
1362  struct zd_usb *usb;
1363  struct ieee80211_hw *hw = NULL;
1364 
1365  print_id(udev);
1366 
1367  if (id->driver_info & DEVICE_INSTALLER)
1368  return eject_installer(intf);
1369 
1370  switch (udev->speed) {
1371  case USB_SPEED_LOW:
1372  case USB_SPEED_FULL:
1373  case USB_SPEED_HIGH:
1374  break;
1375  default:
1376  dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1377  r = -ENODEV;
1378  goto error;
1379  }
1380 
1381  r = usb_reset_device(udev);
1382  if (r) {
1383  dev_err(&intf->dev,
1384  "couldn't reset usb device. Error number %d\n", r);
1385  goto error;
1386  }
1387 
1388  hw = zd_mac_alloc_hw(intf);
1389  if (hw == NULL) {
1390  r = -ENOMEM;
1391  goto error;
1392  }
1393 
1394  usb = &zd_hw_mac(hw)->chip.usb;
1395  usb->is_zd1211b = (id->driver_info == DEVICE_ZD1211B) != 0;
1396 
1397  r = zd_mac_preinit_hw(hw);
1398  if (r) {
1399  dev_dbg_f(&intf->dev,
1400  "couldn't initialize mac. Error number %d\n", r);
1401  goto error;
1402  }
1403 
1404  r = ieee80211_register_hw(hw);
1405  if (r) {
1406  dev_dbg_f(&intf->dev,
1407  "couldn't register device. Error number %d\n", r);
1408  goto error;
1409  }
1410 
1411  dev_dbg_f(&intf->dev, "successful\n");
1412  dev_info(&intf->dev, "%s\n", wiphy_name(hw->wiphy));
1413  return 0;
1414 error:
1415  usb_reset_device(interface_to_usbdev(intf));
1416  if (hw) {
1417  zd_mac_clear(zd_hw_mac(hw));
1418  ieee80211_free_hw(hw);
1419  }
1420  return r;
1421 }
1422 
1423 static void disconnect(struct usb_interface *intf)
1424 {
1425  struct ieee80211_hw *hw = zd_intf_to_hw(intf);
1426  struct zd_mac *mac;
1427  struct zd_usb *usb;
1428 
1429  /* Either something really bad happened, or we're just dealing with
1430  * a DEVICE_INSTALLER. */
1431  if (hw == NULL)
1432  return;
1433 
1434  mac = zd_hw_mac(hw);
1435  usb = &mac->chip.usb;
1436 
1437  dev_dbg_f(zd_usb_dev(usb), "\n");
1438 
1440 
1441  /* Just in case something has gone wrong! */
1442  zd_usb_disable_tx(usb);
1443  zd_usb_disable_rx(usb);
1444  zd_usb_disable_int(usb);
1445 
1446  /* If the disconnect has been caused by a removal of the
1447  * driver module, the reset allows reloading of the driver. If the
1448  * reset will not be executed here, the upload of the firmware in the
1449  * probe function caused by the reloading of the driver will fail.
1450  */
1451  usb_reset_device(interface_to_usbdev(intf));
1452 
1453  zd_mac_clear(mac);
1454  ieee80211_free_hw(hw);
1455  dev_dbg(&intf->dev, "disconnected\n");
1456 }
1457 
1458 static void zd_usb_resume(struct zd_usb *usb)
1459 {
1460  struct zd_mac *mac = zd_usb_to_mac(usb);
1461  int r;
1462 
1463  dev_dbg_f(zd_usb_dev(usb), "\n");
1464 
1465  r = zd_op_start(zd_usb_to_hw(usb));
1466  if (r < 0) {
1467  dev_warn(zd_usb_dev(usb), "Device resume failed "
1468  "with error code %d. Retrying...\n", r);
1469  if (usb->was_running)
1472  return;
1473  }
1474 
1475  if (mac->type != NL80211_IFTYPE_UNSPECIFIED) {
1476  r = zd_restore_settings(mac);
1477  if (r < 0) {
1478  dev_dbg(zd_usb_dev(usb),
1479  "failed to restore settings, %d\n", r);
1480  return;
1481  }
1482  }
1483 }
1484 
1485 static void zd_usb_stop(struct zd_usb *usb)
1486 {
1487  dev_dbg_f(zd_usb_dev(usb), "\n");
1488 
1489  zd_op_stop(zd_usb_to_hw(usb));
1490 
1491  zd_usb_disable_tx(usb);
1492  zd_usb_disable_rx(usb);
1493  zd_usb_disable_int(usb);
1494 
1495  usb->initialized = 0;
1496 }
1497 
1498 static int pre_reset(struct usb_interface *intf)
1499 {
1500  struct ieee80211_hw *hw = usb_get_intfdata(intf);
1501  struct zd_mac *mac;
1502  struct zd_usb *usb;
1503 
1504  if (!hw || intf->condition != USB_INTERFACE_BOUND)
1505  return 0;
1506 
1507  mac = zd_hw_mac(hw);
1508  usb = &mac->chip.usb;
1509 
1511 
1512  zd_usb_stop(usb);
1513 
1514  mutex_lock(&mac->chip.mutex);
1515  return 0;
1516 }
1517 
1518 static int post_reset(struct usb_interface *intf)
1519 {
1520  struct ieee80211_hw *hw = usb_get_intfdata(intf);
1521  struct zd_mac *mac;
1522  struct zd_usb *usb;
1523 
1524  if (!hw || intf->condition != USB_INTERFACE_BOUND)
1525  return 0;
1526 
1527  mac = zd_hw_mac(hw);
1528  usb = &mac->chip.usb;
1529 
1530  mutex_unlock(&mac->chip.mutex);
1531 
1532  if (usb->was_running)
1533  zd_usb_resume(usb);
1534  return 0;
1535 }
1536 
1537 static struct usb_driver driver = {
1538  .name = KBUILD_MODNAME,
1539  .id_table = usb_ids,
1540  .probe = probe,
1541  .disconnect = disconnect,
1542  .pre_reset = pre_reset,
1543  .post_reset = post_reset,
1544  .disable_hub_initiated_lpm = 1,
1545 };
1546 
1548 
1549 static int __init usb_init(void)
1550 {
1551  int r;
1552 
1553  pr_debug("%s usb_init()\n", driver.name);
1554 
1555  zd_workqueue = create_singlethread_workqueue(driver.name);
1556  if (zd_workqueue == NULL) {
1557  printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
1558  return -ENOMEM;
1559  }
1560 
1561  r = usb_register(&driver);
1562  if (r) {
1563  destroy_workqueue(zd_workqueue);
1564  printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
1565  driver.name, r);
1566  return r;
1567  }
1568 
1569  pr_debug("%s initialized\n", driver.name);
1570  return 0;
1571 }
1572 
1573 static void __exit usb_exit(void)
1574 {
1575  pr_debug("%s usb_exit()\n", driver.name);
1576  usb_deregister(&driver);
1577  destroy_workqueue(zd_workqueue);
1578 }
1579 
1580 module_init(usb_init);
1581 module_exit(usb_exit);
1582 
1583 static int zd_ep_regs_out_msg(struct usb_device *udev, void *data, int len,
1584  int *actual_length, int timeout)
1585 {
1586  /* In USB 2.0 mode EP_REGS_OUT endpoint is interrupt type. However in
1587  * USB 1.1 mode endpoint is bulk. Select correct type URB by endpoint
1588  * descriptor.
1589  */
1590  struct usb_host_endpoint *ep;
1591  unsigned int pipe;
1592 
1593  pipe = usb_sndintpipe(udev, EP_REGS_OUT);
1594  ep = usb_pipe_endpoint(udev, pipe);
1595  if (!ep)
1596  return -EINVAL;
1597 
1598  if (usb_endpoint_xfer_int(&ep->desc)) {
1599  return usb_interrupt_msg(udev, pipe, data, len,
1600  actual_length, timeout);
1601  } else {
1602  pipe = usb_sndbulkpipe(udev, EP_REGS_OUT);
1603  return usb_bulk_msg(udev, pipe, data, len, actual_length,
1604  timeout);
1605  }
1606 }
1607 
1608 static int usb_int_regs_length(unsigned int count)
1609 {
1610  return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1611 }
1612 
1613 static void prepare_read_regs_int(struct zd_usb *usb,
1614  struct usb_req_read_regs *req,
1615  unsigned int count)
1616 {
1617  struct zd_usb_interrupt *intr = &usb->intr;
1618 
1619  spin_lock_irq(&intr->lock);
1620  atomic_set(&intr->read_regs_enabled, 1);
1621  intr->read_regs.req = req;
1622  intr->read_regs.req_count = count;
1623  INIT_COMPLETION(intr->read_regs.completion);
1624  spin_unlock_irq(&intr->lock);
1625 }
1626 
1627 static void disable_read_regs_int(struct zd_usb *usb)
1628 {
1629  struct zd_usb_interrupt *intr = &usb->intr;
1630 
1631  spin_lock_irq(&intr->lock);
1632  atomic_set(&intr->read_regs_enabled, 0);
1633  spin_unlock_irq(&intr->lock);
1634 }
1635 
1636 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
1637  unsigned int count)
1638 {
1639  int i;
1640  struct zd_usb_interrupt *intr = &usb->intr;
1641  struct read_regs_int *rr = &intr->read_regs;
1642  struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1643 
1644  /* The created block size seems to be larger than expected.
1645  * However results appear to be correct.
1646  */
1647  if (rr->length < usb_int_regs_length(count)) {
1648  dev_dbg_f(zd_usb_dev(usb),
1649  "error: actual length %d less than expected %d\n",
1650  rr->length, usb_int_regs_length(count));
1651  return false;
1652  }
1653 
1654  if (rr->length > sizeof(rr->buffer)) {
1655  dev_dbg_f(zd_usb_dev(usb),
1656  "error: actual length %d exceeds buffer size %zu\n",
1657  rr->length, sizeof(rr->buffer));
1658  return false;
1659  }
1660 
1661  for (i = 0; i < count; i++) {
1662  struct reg_data *rd = &regs->regs[i];
1663  if (rd->addr != req->addr[i]) {
1664  dev_dbg_f(zd_usb_dev(usb),
1665  "rd[%d] addr %#06hx expected %#06hx\n", i,
1666  le16_to_cpu(rd->addr),
1667  le16_to_cpu(req->addr[i]));
1668  return false;
1669  }
1670  }
1671 
1672  return true;
1673 }
1674 
1675 static int get_results(struct zd_usb *usb, u16 *values,
1676  struct usb_req_read_regs *req, unsigned int count,
1677  bool *retry)
1678 {
1679  int r;
1680  int i;
1681  struct zd_usb_interrupt *intr = &usb->intr;
1682  struct read_regs_int *rr = &intr->read_regs;
1683  struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1684 
1685  spin_lock_irq(&intr->lock);
1686 
1687  r = -EIO;
1688 
1689  /* Read failed because firmware bug? */
1690  *retry = !!intr->read_regs_int_overridden;
1691  if (*retry)
1692  goto error_unlock;
1693 
1694  if (!check_read_regs(usb, req, count)) {
1695  dev_dbg_f(zd_usb_dev(usb), "error: invalid read regs\n");
1696  goto error_unlock;
1697  }
1698 
1699  for (i = 0; i < count; i++) {
1700  struct reg_data *rd = &regs->regs[i];
1701  values[i] = le16_to_cpu(rd->value);
1702  }
1703 
1704  r = 0;
1705 error_unlock:
1706  spin_unlock_irq(&intr->lock);
1707  return r;
1708 }
1709 
1710 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1711  const zd_addr_t *addresses, unsigned int count)
1712 {
1713  int r, i, req_len, actual_req_len, try_count = 0;
1714  struct usb_device *udev;
1715  struct usb_req_read_regs *req = NULL;
1716  unsigned long timeout;
1717  bool retry = false;
1718 
1719  if (count < 1) {
1720  dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1721  return -EINVAL;
1722  }
1723  if (count > USB_MAX_IOREAD16_COUNT) {
1724  dev_dbg_f(zd_usb_dev(usb),
1725  "error: count %u exceeds possible max %u\n",
1726  count, USB_MAX_IOREAD16_COUNT);
1727  return -EINVAL;
1728  }
1729  if (in_atomic()) {
1730  dev_dbg_f(zd_usb_dev(usb),
1731  "error: io in atomic context not supported\n");
1732  return -EWOULDBLOCK;
1733  }
1734  if (!usb_int_enabled(usb)) {
1735  dev_dbg_f(zd_usb_dev(usb),
1736  "error: usb interrupt not enabled\n");
1737  return -EWOULDBLOCK;
1738  }
1739 
1740  ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1742  sizeof(__le16) > sizeof(usb->req_buf));
1743  BUG_ON(sizeof(struct usb_req_read_regs) + count * sizeof(__le16) >
1744  sizeof(usb->req_buf));
1745 
1746  req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1747  req = (void *)usb->req_buf;
1748 
1750  for (i = 0; i < count; i++)
1751  req->addr[i] = cpu_to_le16((u16)addresses[i]);
1752 
1753 retry_read:
1754  try_count++;
1755  udev = zd_usb_to_usbdev(usb);
1756  prepare_read_regs_int(usb, req, count);
1757  r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
1758  if (r) {
1759  dev_dbg_f(zd_usb_dev(usb),
1760  "error in zd_ep_regs_out_msg(). Error number %d\n", r);
1761  goto error;
1762  }
1763  if (req_len != actual_req_len) {
1764  dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()\n"
1765  " req_len %d != actual_req_len %d\n",
1766  req_len, actual_req_len);
1767  r = -EIO;
1768  goto error;
1769  }
1770 
1771  timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1772  msecs_to_jiffies(50));
1773  if (!timeout) {
1774  disable_read_regs_int(usb);
1775  dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1776  r = -ETIMEDOUT;
1777  goto error;
1778  }
1779 
1780  r = get_results(usb, values, req, count, &retry);
1781  if (retry && try_count < 20) {
1782  dev_dbg_f(zd_usb_dev(usb), "read retry, tries so far: %d\n",
1783  try_count);
1784  goto retry_read;
1785  }
1786 error:
1787  return r;
1788 }
1789 
1790 static void iowrite16v_urb_complete(struct urb *urb)
1791 {
1792  struct zd_usb *usb = urb->context;
1793 
1794  if (urb->status && !usb->cmd_error)
1795  usb->cmd_error = urb->status;
1796 
1797  if (!usb->cmd_error &&
1798  urb->actual_length != urb->transfer_buffer_length)
1799  usb->cmd_error = -EIO;
1800 }
1801 
1802 static int zd_submit_waiting_urb(struct zd_usb *usb, bool last)
1803 {
1804  int r = 0;
1805  struct urb *urb = usb->urb_async_waiting;
1806 
1807  if (!urb)
1808  return 0;
1809 
1810  usb->urb_async_waiting = NULL;
1811 
1812  if (!last)
1813  urb->transfer_flags |= URB_NO_INTERRUPT;
1814 
1815  usb_anchor_urb(urb, &usb->submitted_cmds);
1816  r = usb_submit_urb(urb, GFP_KERNEL);
1817  if (r) {
1818  usb_unanchor_urb(urb);
1819  dev_dbg_f(zd_usb_dev(usb),
1820  "error in usb_submit_urb(). Error number %d\n", r);
1821  goto error;
1822  }
1823 
1824  /* fall-through with r == 0 */
1825 error:
1826  usb_free_urb(urb);
1827  return r;
1828 }
1829 
1831 {
1833  ZD_ASSERT(usb->urb_async_waiting == NULL);
1834  ZD_ASSERT(!usb->in_async);
1835 
1836  ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1837 
1838  usb->in_async = 1;
1839  usb->cmd_error = 0;
1840  usb->urb_async_waiting = NULL;
1841 }
1842 
1843 int zd_usb_iowrite16v_async_end(struct zd_usb *usb, unsigned int timeout)
1844 {
1845  int r;
1846 
1847  ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1848  ZD_ASSERT(usb->in_async);
1849 
1850  /* Submit last iowrite16v URB */
1851  r = zd_submit_waiting_urb(usb, true);
1852  if (r) {
1853  dev_dbg_f(zd_usb_dev(usb),
1854  "error in zd_submit_waiting_usb(). "
1855  "Error number %d\n", r);
1856 
1858  goto error;
1859  }
1860 
1861  if (timeout)
1863  timeout);
1864  if (!timeout) {
1866  if (usb->cmd_error == -ENOENT) {
1867  dev_dbg_f(zd_usb_dev(usb), "timed out");
1868  r = -ETIMEDOUT;
1869  goto error;
1870  }
1871  }
1872 
1873  r = usb->cmd_error;
1874 error:
1875  usb->in_async = 0;
1876  return r;
1877 }
1878 
1879 int zd_usb_iowrite16v_async(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1880  unsigned int count)
1881 {
1882  int r;
1883  struct usb_device *udev;
1884  struct usb_req_write_regs *req = NULL;
1885  int i, req_len;
1886  struct urb *urb;
1887  struct usb_host_endpoint *ep;
1888 
1889  ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1890  ZD_ASSERT(usb->in_async);
1891 
1892  if (count == 0)
1893  return 0;
1894  if (count > USB_MAX_IOWRITE16_COUNT) {
1895  dev_dbg_f(zd_usb_dev(usb),
1896  "error: count %u exceeds possible max %u\n",
1897  count, USB_MAX_IOWRITE16_COUNT);
1898  return -EINVAL;
1899  }
1900  if (in_atomic()) {
1901  dev_dbg_f(zd_usb_dev(usb),
1902  "error: io in atomic context not supported\n");
1903  return -EWOULDBLOCK;
1904  }
1905 
1906  udev = zd_usb_to_usbdev(usb);
1907 
1908  ep = usb_pipe_endpoint(udev, usb_sndintpipe(udev, EP_REGS_OUT));
1909  if (!ep)
1910  return -ENOENT;
1911 
1912  urb = usb_alloc_urb(0, GFP_KERNEL);
1913  if (!urb)
1914  return -ENOMEM;
1915 
1916  req_len = sizeof(struct usb_req_write_regs) +
1917  count * sizeof(struct reg_data);
1918  req = kmalloc(req_len, GFP_KERNEL);
1919  if (!req) {
1920  r = -ENOMEM;
1921  goto error;
1922  }
1923 
1925  for (i = 0; i < count; i++) {
1926  struct reg_data *rw = &req->reg_writes[i];
1927  rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1928  rw->value = cpu_to_le16(ioreqs[i].value);
1929  }
1930 
1931  /* In USB 2.0 mode endpoint is interrupt type. However in USB 1.1 mode
1932  * endpoint is bulk. Select correct type URB by endpoint descriptor.
1933  */
1934  if (usb_endpoint_xfer_int(&ep->desc))
1935  usb_fill_int_urb(urb, udev, usb_sndintpipe(udev, EP_REGS_OUT),
1936  req, req_len, iowrite16v_urb_complete, usb,
1937  ep->desc.bInterval);
1938  else
1939  usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1940  req, req_len, iowrite16v_urb_complete, usb);
1941 
1942  urb->transfer_flags |= URB_FREE_BUFFER;
1943 
1944  /* Submit previous URB */
1945  r = zd_submit_waiting_urb(usb, false);
1946  if (r) {
1947  dev_dbg_f(zd_usb_dev(usb),
1948  "error in zd_submit_waiting_usb(). "
1949  "Error number %d\n", r);
1950  goto error;
1951  }
1952 
1953  /* Delay submit so that URB_NO_INTERRUPT flag can be set for all URBs
1954  * of currect batch except for very last.
1955  */
1956  usb->urb_async_waiting = urb;
1957  return 0;
1958 error:
1959  usb_free_urb(urb);
1960  return r;
1961 }
1962 
1963 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1964  unsigned int count)
1965 {
1966  int r;
1967 
1969  r = zd_usb_iowrite16v_async(usb, ioreqs, count);
1970  if (r) {
1972  return r;
1973  }
1974  return zd_usb_iowrite16v_async_end(usb, 50 /* ms */);
1975 }
1976 
1977 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1978 {
1979  int r;
1980  struct usb_device *udev;
1981  struct usb_req_rfwrite *req = NULL;
1982  int i, req_len, actual_req_len;
1983  u16 bit_value_template;
1984 
1985  if (in_atomic()) {
1986  dev_dbg_f(zd_usb_dev(usb),
1987  "error: io in atomic context not supported\n");
1988  return -EWOULDBLOCK;
1989  }
1990  if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1991  dev_dbg_f(zd_usb_dev(usb),
1992  "error: bits %d are smaller than"
1993  " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1995  return -EINVAL;
1996  }
1997  if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1998  dev_dbg_f(zd_usb_dev(usb),
1999  "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
2001  return -EINVAL;
2002  }
2003 #ifdef DEBUG
2004  if (value & (~0UL << bits)) {
2005  dev_dbg_f(zd_usb_dev(usb),
2006  "error: value %#09x has bits >= %d set\n",
2007  value, bits);
2008  return -EINVAL;
2009  }
2010 #endif /* DEBUG */
2011 
2012  dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
2013 
2014  r = zd_usb_ioread16(usb, &bit_value_template, ZD_CR203);
2015  if (r) {
2016  dev_dbg_f(zd_usb_dev(usb),
2017  "error %d: Couldn't read ZD_CR203\n", r);
2018  return r;
2019  }
2020  bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
2021 
2022  ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
2023  BUILD_BUG_ON(sizeof(struct usb_req_rfwrite) +
2024  USB_MAX_RFWRITE_BIT_COUNT * sizeof(__le16) >
2025  sizeof(usb->req_buf));
2026  BUG_ON(sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16) >
2027  sizeof(usb->req_buf));
2028 
2029  req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
2030  req = (void *)usb->req_buf;
2031 
2033  /* 1: 3683a, but not used in ZYDAS driver */
2034  req->value = cpu_to_le16(2);
2035  req->bits = cpu_to_le16(bits);
2036 
2037  for (i = 0; i < bits; i++) {
2038  u16 bv = bit_value_template;
2039  if (value & (1 << (bits-1-i)))
2040  bv |= RF_DATA;
2041  req->bit_values[i] = cpu_to_le16(bv);
2042  }
2043 
2044  udev = zd_usb_to_usbdev(usb);
2045  r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
2046  if (r) {
2047  dev_dbg_f(zd_usb_dev(usb),
2048  "error in zd_ep_regs_out_msg(). Error number %d\n", r);
2049  goto out;
2050  }
2051  if (req_len != actual_req_len) {
2052  dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()"
2053  " req_len %d != actual_req_len %d\n",
2054  req_len, actual_req_len);
2055  r = -EIO;
2056  goto out;
2057  }
2058 
2059  /* FALL-THROUGH with r == 0 */
2060 out:
2061  return r;
2062 }