LLVM API Documentation
00001 //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run 00011 // both before and after the DAG is legalized. 00012 // 00013 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is 00014 // primarily intended to handle simplification opportunities that are implicit 00015 // in the LLVM IR and exposed by the various codegen lowering phases. 00016 // 00017 //===----------------------------------------------------------------------===// 00018 00019 #include "llvm/CodeGen/SelectionDAG.h" 00020 #include "llvm/ADT/SmallPtrSet.h" 00021 #include "llvm/ADT/SetVector.h" 00022 #include "llvm/ADT/Statistic.h" 00023 #include "llvm/Analysis/AliasAnalysis.h" 00024 #include "llvm/CodeGen/MachineFrameInfo.h" 00025 #include "llvm/CodeGen/MachineFunction.h" 00026 #include "llvm/IR/DataLayout.h" 00027 #include "llvm/IR/DerivedTypes.h" 00028 #include "llvm/IR/Function.h" 00029 #include "llvm/IR/LLVMContext.h" 00030 #include "llvm/Support/CommandLine.h" 00031 #include "llvm/Support/Debug.h" 00032 #include "llvm/Support/ErrorHandling.h" 00033 #include "llvm/Support/MathExtras.h" 00034 #include "llvm/Support/raw_ostream.h" 00035 #include "llvm/Target/TargetLowering.h" 00036 #include "llvm/Target/TargetMachine.h" 00037 #include "llvm/Target/TargetOptions.h" 00038 #include "llvm/Target/TargetRegisterInfo.h" 00039 #include "llvm/Target/TargetSubtargetInfo.h" 00040 #include <algorithm> 00041 using namespace llvm; 00042 00043 #define DEBUG_TYPE "dagcombine" 00044 00045 STATISTIC(NodesCombined , "Number of dag nodes combined"); 00046 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); 00047 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); 00048 STATISTIC(OpsNarrowed , "Number of load/op/store narrowed"); 00049 STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int"); 00050 STATISTIC(SlicedLoads, "Number of load sliced"); 00051 00052 namespace { 00053 static cl::opt<bool> 00054 CombinerAA("combiner-alias-analysis", cl::Hidden, 00055 cl::desc("Enable DAG combiner alias-analysis heuristics")); 00056 00057 static cl::opt<bool> 00058 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, 00059 cl::desc("Enable DAG combiner's use of IR alias analysis")); 00060 00061 static cl::opt<bool> 00062 UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), 00063 cl::desc("Enable DAG combiner's use of TBAA")); 00064 00065 #ifndef NDEBUG 00066 static cl::opt<std::string> 00067 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, 00068 cl::desc("Only use DAG-combiner alias analysis in this" 00069 " function")); 00070 #endif 00071 00072 /// Hidden option to stress test load slicing, i.e., when this option 00073 /// is enabled, load slicing bypasses most of its profitability guards. 00074 static cl::opt<bool> 00075 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, 00076 cl::desc("Bypass the profitability model of load " 00077 "slicing"), 00078 cl::init(false)); 00079 00080 static cl::opt<bool> 00081 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), 00082 cl::desc("DAG combiner may split indexing from loads")); 00083 00084 //------------------------------ DAGCombiner ---------------------------------// 00085 00086 class DAGCombiner { 00087 SelectionDAG &DAG; 00088 const TargetLowering &TLI; 00089 CombineLevel Level; 00090 CodeGenOpt::Level OptLevel; 00091 bool LegalOperations; 00092 bool LegalTypes; 00093 bool ForCodeSize; 00094 00095 /// \brief Worklist of all of the nodes that need to be simplified. 00096 /// 00097 /// This must behave as a stack -- new nodes to process are pushed onto the 00098 /// back and when processing we pop off of the back. 00099 /// 00100 /// The worklist will not contain duplicates but may contain null entries 00101 /// due to nodes being deleted from the underlying DAG. 00102 SmallVector<SDNode *, 64> Worklist; 00103 00104 /// \brief Mapping from an SDNode to its position on the worklist. 00105 /// 00106 /// This is used to find and remove nodes from the worklist (by nulling 00107 /// them) when they are deleted from the underlying DAG. It relies on 00108 /// stable indices of nodes within the worklist. 00109 DenseMap<SDNode *, unsigned> WorklistMap; 00110 00111 /// \brief Set of nodes which have been combined (at least once). 00112 /// 00113 /// This is used to allow us to reliably add any operands of a DAG node 00114 /// which have not yet been combined to the worklist. 00115 SmallPtrSet<SDNode *, 64> CombinedNodes; 00116 00117 // AA - Used for DAG load/store alias analysis. 00118 AliasAnalysis &AA; 00119 00120 /// When an instruction is simplified, add all users of the instruction to 00121 /// the work lists because they might get more simplified now. 00122 void AddUsersToWorklist(SDNode *N) { 00123 for (SDNode *Node : N->uses()) 00124 AddToWorklist(Node); 00125 } 00126 00127 /// Call the node-specific routine that folds each particular type of node. 00128 SDValue visit(SDNode *N); 00129 00130 public: 00131 /// Add to the worklist making sure its instance is at the back (next to be 00132 /// processed.) 00133 void AddToWorklist(SDNode *N) { 00134 // Skip handle nodes as they can't usefully be combined and confuse the 00135 // zero-use deletion strategy. 00136 if (N->getOpcode() == ISD::HANDLENODE) 00137 return; 00138 00139 if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) 00140 Worklist.push_back(N); 00141 } 00142 00143 /// Remove all instances of N from the worklist. 00144 void removeFromWorklist(SDNode *N) { 00145 CombinedNodes.erase(N); 00146 00147 auto It = WorklistMap.find(N); 00148 if (It == WorklistMap.end()) 00149 return; // Not in the worklist. 00150 00151 // Null out the entry rather than erasing it to avoid a linear operation. 00152 Worklist[It->second] = nullptr; 00153 WorklistMap.erase(It); 00154 } 00155 00156 void deleteAndRecombine(SDNode *N); 00157 bool recursivelyDeleteUnusedNodes(SDNode *N); 00158 00159 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 00160 bool AddTo = true); 00161 00162 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { 00163 return CombineTo(N, &Res, 1, AddTo); 00164 } 00165 00166 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, 00167 bool AddTo = true) { 00168 SDValue To[] = { Res0, Res1 }; 00169 return CombineTo(N, To, 2, AddTo); 00170 } 00171 00172 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); 00173 00174 private: 00175 00176 /// Check the specified integer node value to see if it can be simplified or 00177 /// if things it uses can be simplified by bit propagation. 00178 /// If so, return true. 00179 bool SimplifyDemandedBits(SDValue Op) { 00180 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits(); 00181 APInt Demanded = APInt::getAllOnesValue(BitWidth); 00182 return SimplifyDemandedBits(Op, Demanded); 00183 } 00184 00185 bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded); 00186 00187 bool CombineToPreIndexedLoadStore(SDNode *N); 00188 bool CombineToPostIndexedLoadStore(SDNode *N); 00189 SDValue SplitIndexingFromLoad(LoadSDNode *LD); 00190 bool SliceUpLoad(SDNode *N); 00191 00192 /// \brief Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed 00193 /// load. 00194 /// 00195 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. 00196 /// \param InVecVT type of the input vector to EVE with bitcasts resolved. 00197 /// \param EltNo index of the vector element to load. 00198 /// \param OriginalLoad load that EVE came from to be replaced. 00199 /// \returns EVE on success SDValue() on failure. 00200 SDValue ReplaceExtractVectorEltOfLoadWithNarrowedLoad( 00201 SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad); 00202 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); 00203 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); 00204 SDValue SExtPromoteOperand(SDValue Op, EVT PVT); 00205 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); 00206 SDValue PromoteIntBinOp(SDValue Op); 00207 SDValue PromoteIntShiftOp(SDValue Op); 00208 SDValue PromoteExtend(SDValue Op); 00209 bool PromoteLoad(SDValue Op); 00210 00211 void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 00212 SDValue Trunc, SDValue ExtLoad, SDLoc DL, 00213 ISD::NodeType ExtType); 00214 00215 /// Call the node-specific routine that knows how to fold each 00216 /// particular type of node. If that doesn't do anything, try the 00217 /// target-specific DAG combines. 00218 SDValue combine(SDNode *N); 00219 00220 // Visitation implementation - Implement dag node combining for different 00221 // node types. The semantics are as follows: 00222 // Return Value: 00223 // SDValue.getNode() == 0 - No change was made 00224 // SDValue.getNode() == N - N was replaced, is dead and has been handled. 00225 // otherwise - N should be replaced by the returned Operand. 00226 // 00227 SDValue visitTokenFactor(SDNode *N); 00228 SDValue visitMERGE_VALUES(SDNode *N); 00229 SDValue visitADD(SDNode *N); 00230 SDValue visitSUB(SDNode *N); 00231 SDValue visitADDC(SDNode *N); 00232 SDValue visitSUBC(SDNode *N); 00233 SDValue visitADDE(SDNode *N); 00234 SDValue visitSUBE(SDNode *N); 00235 SDValue visitMUL(SDNode *N); 00236 SDValue visitSDIV(SDNode *N); 00237 SDValue visitUDIV(SDNode *N); 00238 SDValue visitSREM(SDNode *N); 00239 SDValue visitUREM(SDNode *N); 00240 SDValue visitMULHU(SDNode *N); 00241 SDValue visitMULHS(SDNode *N); 00242 SDValue visitSMUL_LOHI(SDNode *N); 00243 SDValue visitUMUL_LOHI(SDNode *N); 00244 SDValue visitSMULO(SDNode *N); 00245 SDValue visitUMULO(SDNode *N); 00246 SDValue visitSDIVREM(SDNode *N); 00247 SDValue visitUDIVREM(SDNode *N); 00248 SDValue visitAND(SDNode *N); 00249 SDValue visitOR(SDNode *N); 00250 SDValue visitXOR(SDNode *N); 00251 SDValue SimplifyVBinOp(SDNode *N); 00252 SDValue SimplifyVUnaryOp(SDNode *N); 00253 SDValue visitSHL(SDNode *N); 00254 SDValue visitSRA(SDNode *N); 00255 SDValue visitSRL(SDNode *N); 00256 SDValue visitRotate(SDNode *N); 00257 SDValue visitCTLZ(SDNode *N); 00258 SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); 00259 SDValue visitCTTZ(SDNode *N); 00260 SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); 00261 SDValue visitCTPOP(SDNode *N); 00262 SDValue visitSELECT(SDNode *N); 00263 SDValue visitVSELECT(SDNode *N); 00264 SDValue visitSELECT_CC(SDNode *N); 00265 SDValue visitSETCC(SDNode *N); 00266 SDValue visitSIGN_EXTEND(SDNode *N); 00267 SDValue visitZERO_EXTEND(SDNode *N); 00268 SDValue visitANY_EXTEND(SDNode *N); 00269 SDValue visitSIGN_EXTEND_INREG(SDNode *N); 00270 SDValue visitTRUNCATE(SDNode *N); 00271 SDValue visitBITCAST(SDNode *N); 00272 SDValue visitBUILD_PAIR(SDNode *N); 00273 SDValue visitFADD(SDNode *N); 00274 SDValue visitFSUB(SDNode *N); 00275 SDValue visitFMUL(SDNode *N); 00276 SDValue visitFMA(SDNode *N); 00277 SDValue visitFDIV(SDNode *N); 00278 SDValue visitFREM(SDNode *N); 00279 SDValue visitFCOPYSIGN(SDNode *N); 00280 SDValue visitSINT_TO_FP(SDNode *N); 00281 SDValue visitUINT_TO_FP(SDNode *N); 00282 SDValue visitFP_TO_SINT(SDNode *N); 00283 SDValue visitFP_TO_UINT(SDNode *N); 00284 SDValue visitFP_ROUND(SDNode *N); 00285 SDValue visitFP_ROUND_INREG(SDNode *N); 00286 SDValue visitFP_EXTEND(SDNode *N); 00287 SDValue visitFNEG(SDNode *N); 00288 SDValue visitFABS(SDNode *N); 00289 SDValue visitFCEIL(SDNode *N); 00290 SDValue visitFTRUNC(SDNode *N); 00291 SDValue visitFFLOOR(SDNode *N); 00292 SDValue visitBRCOND(SDNode *N); 00293 SDValue visitBR_CC(SDNode *N); 00294 SDValue visitLOAD(SDNode *N); 00295 SDValue visitSTORE(SDNode *N); 00296 SDValue visitINSERT_VECTOR_ELT(SDNode *N); 00297 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); 00298 SDValue visitBUILD_VECTOR(SDNode *N); 00299 SDValue visitCONCAT_VECTORS(SDNode *N); 00300 SDValue visitEXTRACT_SUBVECTOR(SDNode *N); 00301 SDValue visitVECTOR_SHUFFLE(SDNode *N); 00302 SDValue visitINSERT_SUBVECTOR(SDNode *N); 00303 00304 SDValue XformToShuffleWithZero(SDNode *N); 00305 SDValue ReassociateOps(unsigned Opc, SDLoc DL, SDValue LHS, SDValue RHS); 00306 00307 SDValue visitShiftByConstant(SDNode *N, ConstantSDNode *Amt); 00308 00309 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); 00310 SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N); 00311 SDValue SimplifySelect(SDLoc DL, SDValue N0, SDValue N1, SDValue N2); 00312 SDValue SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, SDValue N2, 00313 SDValue N3, ISD::CondCode CC, 00314 bool NotExtCompare = false); 00315 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, 00316 SDLoc DL, bool foldBooleans = true); 00317 00318 bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 00319 SDValue &CC) const; 00320 bool isOneUseSetCC(SDValue N) const; 00321 00322 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 00323 unsigned HiOp); 00324 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); 00325 SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); 00326 SDValue BuildSDIV(SDNode *N); 00327 SDValue BuildSDIVPow2(SDNode *N); 00328 SDValue BuildUDIV(SDNode *N); 00329 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 00330 bool DemandHighBits = true); 00331 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); 00332 SDNode *MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, 00333 SDValue InnerPos, SDValue InnerNeg, 00334 unsigned PosOpcode, unsigned NegOpcode, 00335 SDLoc DL); 00336 SDNode *MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL); 00337 SDValue ReduceLoadWidth(SDNode *N); 00338 SDValue ReduceLoadOpStoreWidth(SDNode *N); 00339 SDValue TransformFPLoadStorePair(SDNode *N); 00340 SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); 00341 SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N); 00342 00343 SDValue GetDemandedBits(SDValue V, const APInt &Mask); 00344 00345 /// Walk up chain skipping non-aliasing memory nodes, 00346 /// looking for aliasing nodes and adding them to the Aliases vector. 00347 void GatherAllAliases(SDNode *N, SDValue OriginalChain, 00348 SmallVectorImpl<SDValue> &Aliases); 00349 00350 /// Return true if there is any possibility that the two addresses overlap. 00351 bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const; 00352 00353 /// Walk up chain skipping non-aliasing memory nodes, looking for a better 00354 /// chain (aliasing node.) 00355 SDValue FindBetterChain(SDNode *N, SDValue Chain); 00356 00357 /// Merge consecutive store operations into a wide store. 00358 /// This optimization uses wide integers or vectors when possible. 00359 /// \return True if some memory operations were changed. 00360 bool MergeConsecutiveStores(StoreSDNode *N); 00361 00362 /// \brief Try to transform a truncation where C is a constant: 00363 /// (trunc (and X, C)) -> (and (trunc X), (trunc C)) 00364 /// 00365 /// \p N needs to be a truncation and its first operand an AND. Other 00366 /// requirements are checked by the function (e.g. that trunc is 00367 /// single-use) and if missed an empty SDValue is returned. 00368 SDValue distributeTruncateThroughAnd(SDNode *N); 00369 00370 public: 00371 DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL) 00372 : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes), 00373 OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) { 00374 AttributeSet FnAttrs = 00375 DAG.getMachineFunction().getFunction()->getAttributes(); 00376 ForCodeSize = 00377 FnAttrs.hasAttribute(AttributeSet::FunctionIndex, 00378 Attribute::OptimizeForSize) || 00379 FnAttrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize); 00380 } 00381 00382 /// Runs the dag combiner on all nodes in the work list 00383 void Run(CombineLevel AtLevel); 00384 00385 SelectionDAG &getDAG() const { return DAG; } 00386 00387 /// Returns a type large enough to hold any valid shift amount - before type 00388 /// legalization these can be huge. 00389 EVT getShiftAmountTy(EVT LHSTy) { 00390 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 00391 if (LHSTy.isVector()) 00392 return LHSTy; 00393 return LegalTypes ? TLI.getScalarShiftAmountTy(LHSTy) 00394 : TLI.getPointerTy(); 00395 } 00396 00397 /// This method returns true if we are running before type legalization or 00398 /// if the specified VT is legal. 00399 bool isTypeLegal(const EVT &VT) { 00400 if (!LegalTypes) return true; 00401 return TLI.isTypeLegal(VT); 00402 } 00403 00404 /// Convenience wrapper around TargetLowering::getSetCCResultType 00405 EVT getSetCCResultType(EVT VT) const { 00406 return TLI.getSetCCResultType(*DAG.getContext(), VT); 00407 } 00408 }; 00409 } 00410 00411 00412 namespace { 00413 /// This class is a DAGUpdateListener that removes any deleted 00414 /// nodes from the worklist. 00415 class WorklistRemover : public SelectionDAG::DAGUpdateListener { 00416 DAGCombiner &DC; 00417 public: 00418 explicit WorklistRemover(DAGCombiner &dc) 00419 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} 00420 00421 void NodeDeleted(SDNode *N, SDNode *E) override { 00422 DC.removeFromWorklist(N); 00423 } 00424 }; 00425 } 00426 00427 //===----------------------------------------------------------------------===// 00428 // TargetLowering::DAGCombinerInfo implementation 00429 //===----------------------------------------------------------------------===// 00430 00431 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { 00432 ((DAGCombiner*)DC)->AddToWorklist(N); 00433 } 00434 00435 void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) { 00436 ((DAGCombiner*)DC)->removeFromWorklist(N); 00437 } 00438 00439 SDValue TargetLowering::DAGCombinerInfo:: 00440 CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) { 00441 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); 00442 } 00443 00444 SDValue TargetLowering::DAGCombinerInfo:: 00445 CombineTo(SDNode *N, SDValue Res, bool AddTo) { 00446 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); 00447 } 00448 00449 00450 SDValue TargetLowering::DAGCombinerInfo:: 00451 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { 00452 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); 00453 } 00454 00455 void TargetLowering::DAGCombinerInfo:: 00456 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 00457 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); 00458 } 00459 00460 //===----------------------------------------------------------------------===// 00461 // Helper Functions 00462 //===----------------------------------------------------------------------===// 00463 00464 void DAGCombiner::deleteAndRecombine(SDNode *N) { 00465 removeFromWorklist(N); 00466 00467 // If the operands of this node are only used by the node, they will now be 00468 // dead. Make sure to re-visit them and recursively delete dead nodes. 00469 for (const SDValue &Op : N->ops()) 00470 // For an operand generating multiple values, one of the values may 00471 // become dead allowing further simplification (e.g. split index 00472 // arithmetic from an indexed load). 00473 if (Op->hasOneUse() || Op->getNumValues() > 1) 00474 AddToWorklist(Op.getNode()); 00475 00476 DAG.DeleteNode(N); 00477 } 00478 00479 /// Return 1 if we can compute the negated form of the specified expression for 00480 /// the same cost as the expression itself, or 2 if we can compute the negated 00481 /// form more cheaply than the expression itself. 00482 static char isNegatibleForFree(SDValue Op, bool LegalOperations, 00483 const TargetLowering &TLI, 00484 const TargetOptions *Options, 00485 unsigned Depth = 0) { 00486 // fneg is removable even if it has multiple uses. 00487 if (Op.getOpcode() == ISD::FNEG) return 2; 00488 00489 // Don't allow anything with multiple uses. 00490 if (!Op.hasOneUse()) return 0; 00491 00492 // Don't recurse exponentially. 00493 if (Depth > 6) return 0; 00494 00495 switch (Op.getOpcode()) { 00496 default: return false; 00497 case ISD::ConstantFP: 00498 // Don't invert constant FP values after legalize. The negated constant 00499 // isn't necessarily legal. 00500 return LegalOperations ? 0 : 1; 00501 case ISD::FADD: 00502 // FIXME: determine better conditions for this xform. 00503 if (!Options->UnsafeFPMath) return 0; 00504 00505 // After operation legalization, it might not be legal to create new FSUBs. 00506 if (LegalOperations && 00507 !TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) 00508 return 0; 00509 00510 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 00511 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, 00512 Options, Depth + 1)) 00513 return V; 00514 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 00515 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, 00516 Depth + 1); 00517 case ISD::FSUB: 00518 // We can't turn -(A-B) into B-A when we honor signed zeros. 00519 if (!Options->UnsafeFPMath) return 0; 00520 00521 // fold (fneg (fsub A, B)) -> (fsub B, A) 00522 return 1; 00523 00524 case ISD::FMUL: 00525 case ISD::FDIV: 00526 if (Options->HonorSignDependentRoundingFPMath()) return 0; 00527 00528 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 00529 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, 00530 Options, Depth + 1)) 00531 return V; 00532 00533 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, 00534 Depth + 1); 00535 00536 case ISD::FP_EXTEND: 00537 case ISD::FP_ROUND: 00538 case ISD::FSIN: 00539 return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options, 00540 Depth + 1); 00541 } 00542 } 00543 00544 /// If isNegatibleForFree returns true, return the newly negated expression. 00545 static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG, 00546 bool LegalOperations, unsigned Depth = 0) { 00547 const TargetOptions &Options = DAG.getTarget().Options; 00548 // fneg is removable even if it has multiple uses. 00549 if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0); 00550 00551 // Don't allow anything with multiple uses. 00552 assert(Op.hasOneUse() && "Unknown reuse!"); 00553 00554 assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree"); 00555 switch (Op.getOpcode()) { 00556 default: llvm_unreachable("Unknown code"); 00557 case ISD::ConstantFP: { 00558 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 00559 V.changeSign(); 00560 return DAG.getConstantFP(V, Op.getValueType()); 00561 } 00562 case ISD::FADD: 00563 // FIXME: determine better conditions for this xform. 00564 assert(Options.UnsafeFPMath); 00565 00566 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 00567 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, 00568 DAG.getTargetLoweringInfo(), &Options, Depth+1)) 00569 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 00570 GetNegatedExpression(Op.getOperand(0), DAG, 00571 LegalOperations, Depth+1), 00572 Op.getOperand(1)); 00573 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 00574 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 00575 GetNegatedExpression(Op.getOperand(1), DAG, 00576 LegalOperations, Depth+1), 00577 Op.getOperand(0)); 00578 case ISD::FSUB: 00579 // We can't turn -(A-B) into B-A when we honor signed zeros. 00580 assert(Options.UnsafeFPMath); 00581 00582 // fold (fneg (fsub 0, B)) -> B 00583 if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0))) 00584 if (N0CFP->getValueAPF().isZero()) 00585 return Op.getOperand(1); 00586 00587 // fold (fneg (fsub A, B)) -> (fsub B, A) 00588 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 00589 Op.getOperand(1), Op.getOperand(0)); 00590 00591 case ISD::FMUL: 00592 case ISD::FDIV: 00593 assert(!Options.HonorSignDependentRoundingFPMath()); 00594 00595 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 00596 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, 00597 DAG.getTargetLoweringInfo(), &Options, Depth+1)) 00598 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 00599 GetNegatedExpression(Op.getOperand(0), DAG, 00600 LegalOperations, Depth+1), 00601 Op.getOperand(1)); 00602 00603 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 00604 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 00605 Op.getOperand(0), 00606 GetNegatedExpression(Op.getOperand(1), DAG, 00607 LegalOperations, Depth+1)); 00608 00609 case ISD::FP_EXTEND: 00610 case ISD::FSIN: 00611 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 00612 GetNegatedExpression(Op.getOperand(0), DAG, 00613 LegalOperations, Depth+1)); 00614 case ISD::FP_ROUND: 00615 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), 00616 GetNegatedExpression(Op.getOperand(0), DAG, 00617 LegalOperations, Depth+1), 00618 Op.getOperand(1)); 00619 } 00620 } 00621 00622 // Return true if this node is a setcc, or is a select_cc 00623 // that selects between the target values used for true and false, making it 00624 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to 00625 // the appropriate nodes based on the type of node we are checking. This 00626 // simplifies life a bit for the callers. 00627 bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 00628 SDValue &CC) const { 00629 if (N.getOpcode() == ISD::SETCC) { 00630 LHS = N.getOperand(0); 00631 RHS = N.getOperand(1); 00632 CC = N.getOperand(2); 00633 return true; 00634 } 00635 00636 if (N.getOpcode() != ISD::SELECT_CC || 00637 !TLI.isConstTrueVal(N.getOperand(2).getNode()) || 00638 !TLI.isConstFalseVal(N.getOperand(3).getNode())) 00639 return false; 00640 00641 LHS = N.getOperand(0); 00642 RHS = N.getOperand(1); 00643 CC = N.getOperand(4); 00644 return true; 00645 } 00646 00647 /// Return true if this is a SetCC-equivalent operation with only one use. 00648 /// If this is true, it allows the users to invert the operation for free when 00649 /// it is profitable to do so. 00650 bool DAGCombiner::isOneUseSetCC(SDValue N) const { 00651 SDValue N0, N1, N2; 00652 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) 00653 return true; 00654 return false; 00655 } 00656 00657 /// Returns true if N is a BUILD_VECTOR node whose 00658 /// elements are all the same constant or undefined. 00659 static bool isConstantSplatVector(SDNode *N, APInt& SplatValue) { 00660 BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(N); 00661 if (!C) 00662 return false; 00663 00664 APInt SplatUndef; 00665 unsigned SplatBitSize; 00666 bool HasAnyUndefs; 00667 EVT EltVT = N->getValueType(0).getVectorElementType(); 00668 return (C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 00669 HasAnyUndefs) && 00670 EltVT.getSizeInBits() >= SplatBitSize); 00671 } 00672 00673 // \brief Returns the SDNode if it is a constant BuildVector or constant. 00674 static SDNode *isConstantBuildVectorOrConstantInt(SDValue N) { 00675 if (isa<ConstantSDNode>(N)) 00676 return N.getNode(); 00677 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 00678 if (BV && BV->isConstant()) 00679 return BV; 00680 return nullptr; 00681 } 00682 00683 // \brief Returns the SDNode if it is a constant splat BuildVector or constant 00684 // int. 00685 static ConstantSDNode *isConstOrConstSplat(SDValue N) { 00686 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 00687 return CN; 00688 00689 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 00690 BitVector UndefElements; 00691 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 00692 00693 // BuildVectors can truncate their operands. Ignore that case here. 00694 // FIXME: We blindly ignore splats which include undef which is overly 00695 // pessimistic. 00696 if (CN && UndefElements.none() && 00697 CN->getValueType(0) == N.getValueType().getScalarType()) 00698 return CN; 00699 } 00700 00701 return nullptr; 00702 } 00703 00704 // \brief Returns the SDNode if it is a constant splat BuildVector or constant 00705 // float. 00706 static ConstantFPSDNode *isConstOrConstSplatFP(SDValue N) { 00707 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 00708 return CN; 00709 00710 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 00711 BitVector UndefElements; 00712 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 00713 00714 if (CN && UndefElements.none()) 00715 return CN; 00716 } 00717 00718 return nullptr; 00719 } 00720 00721 SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDLoc DL, 00722 SDValue N0, SDValue N1) { 00723 EVT VT = N0.getValueType(); 00724 if (N0.getOpcode() == Opc) { 00725 if (SDNode *L = isConstantBuildVectorOrConstantInt(N0.getOperand(1))) { 00726 if (SDNode *R = isConstantBuildVectorOrConstantInt(N1)) { 00727 // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2)) 00728 SDValue OpNode = DAG.FoldConstantArithmetic(Opc, VT, L, R); 00729 if (!OpNode.getNode()) 00730 return SDValue(); 00731 return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); 00732 } 00733 if (N0.hasOneUse()) { 00734 // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one 00735 // use 00736 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1); 00737 if (!OpNode.getNode()) 00738 return SDValue(); 00739 AddToWorklist(OpNode.getNode()); 00740 return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); 00741 } 00742 } 00743 } 00744 00745 if (N1.getOpcode() == Opc) { 00746 if (SDNode *R = isConstantBuildVectorOrConstantInt(N1.getOperand(1))) { 00747 if (SDNode *L = isConstantBuildVectorOrConstantInt(N0)) { 00748 // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2)) 00749 SDValue OpNode = DAG.FoldConstantArithmetic(Opc, VT, R, L); 00750 if (!OpNode.getNode()) 00751 return SDValue(); 00752 return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode); 00753 } 00754 if (N1.hasOneUse()) { 00755 // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one 00756 // use 00757 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N1.getOperand(0), N0); 00758 if (!OpNode.getNode()) 00759 return SDValue(); 00760 AddToWorklist(OpNode.getNode()); 00761 return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1)); 00762 } 00763 } 00764 } 00765 00766 return SDValue(); 00767 } 00768 00769 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 00770 bool AddTo) { 00771 assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); 00772 ++NodesCombined; 00773 DEBUG(dbgs() << "\nReplacing.1 "; 00774 N->dump(&DAG); 00775 dbgs() << "\nWith: "; 00776 To[0].getNode()->dump(&DAG); 00777 dbgs() << " and " << NumTo-1 << " other values\n"; 00778 for (unsigned i = 0, e = NumTo; i != e; ++i) 00779 assert((!To[i].getNode() || 00780 N->getValueType(i) == To[i].getValueType()) && 00781 "Cannot combine value to value of different type!")); 00782 WorklistRemover DeadNodes(*this); 00783 DAG.ReplaceAllUsesWith(N, To); 00784 if (AddTo) { 00785 // Push the new nodes and any users onto the worklist 00786 for (unsigned i = 0, e = NumTo; i != e; ++i) { 00787 if (To[i].getNode()) { 00788 AddToWorklist(To[i].getNode()); 00789 AddUsersToWorklist(To[i].getNode()); 00790 } 00791 } 00792 } 00793 00794 // Finally, if the node is now dead, remove it from the graph. The node 00795 // may not be dead if the replacement process recursively simplified to 00796 // something else needing this node. 00797 if (N->use_empty()) 00798 deleteAndRecombine(N); 00799 return SDValue(N, 0); 00800 } 00801 00802 void DAGCombiner:: 00803 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 00804 // Replace all uses. If any nodes become isomorphic to other nodes and 00805 // are deleted, make sure to remove them from our worklist. 00806 WorklistRemover DeadNodes(*this); 00807 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); 00808 00809 // Push the new node and any (possibly new) users onto the worklist. 00810 AddToWorklist(TLO.New.getNode()); 00811 AddUsersToWorklist(TLO.New.getNode()); 00812 00813 // Finally, if the node is now dead, remove it from the graph. The node 00814 // may not be dead if the replacement process recursively simplified to 00815 // something else needing this node. 00816 if (TLO.Old.getNode()->use_empty()) 00817 deleteAndRecombine(TLO.Old.getNode()); 00818 } 00819 00820 /// Check the specified integer node value to see if it can be simplified or if 00821 /// things it uses can be simplified by bit propagation. If so, return true. 00822 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) { 00823 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 00824 APInt KnownZero, KnownOne; 00825 if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) 00826 return false; 00827 00828 // Revisit the node. 00829 AddToWorklist(Op.getNode()); 00830 00831 // Replace the old value with the new one. 00832 ++NodesCombined; 00833 DEBUG(dbgs() << "\nReplacing.2 "; 00834 TLO.Old.getNode()->dump(&DAG); 00835 dbgs() << "\nWith: "; 00836 TLO.New.getNode()->dump(&DAG); 00837 dbgs() << '\n'); 00838 00839 CommitTargetLoweringOpt(TLO); 00840 return true; 00841 } 00842 00843 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { 00844 SDLoc dl(Load); 00845 EVT VT = Load->getValueType(0); 00846 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0)); 00847 00848 DEBUG(dbgs() << "\nReplacing.9 "; 00849 Load->dump(&DAG); 00850 dbgs() << "\nWith: "; 00851 Trunc.getNode()->dump(&DAG); 00852 dbgs() << '\n'); 00853 WorklistRemover DeadNodes(*this); 00854 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); 00855 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); 00856 deleteAndRecombine(Load); 00857 AddToWorklist(Trunc.getNode()); 00858 } 00859 00860 SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { 00861 Replace = false; 00862 SDLoc dl(Op); 00863 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 00864 EVT MemVT = LD->getMemoryVT(); 00865 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) 00866 ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD 00867 : ISD::EXTLOAD) 00868 : LD->getExtensionType(); 00869 Replace = true; 00870 return DAG.getExtLoad(ExtType, dl, PVT, 00871 LD->getChain(), LD->getBasePtr(), 00872 MemVT, LD->getMemOperand()); 00873 } 00874 00875 unsigned Opc = Op.getOpcode(); 00876 switch (Opc) { 00877 default: break; 00878 case ISD::AssertSext: 00879 return DAG.getNode(ISD::AssertSext, dl, PVT, 00880 SExtPromoteOperand(Op.getOperand(0), PVT), 00881 Op.getOperand(1)); 00882 case ISD::AssertZext: 00883 return DAG.getNode(ISD::AssertZext, dl, PVT, 00884 ZExtPromoteOperand(Op.getOperand(0), PVT), 00885 Op.getOperand(1)); 00886 case ISD::Constant: { 00887 unsigned ExtOpc = 00888 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 00889 return DAG.getNode(ExtOpc, dl, PVT, Op); 00890 } 00891 } 00892 00893 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) 00894 return SDValue(); 00895 return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op); 00896 } 00897 00898 SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { 00899 if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) 00900 return SDValue(); 00901 EVT OldVT = Op.getValueType(); 00902 SDLoc dl(Op); 00903 bool Replace = false; 00904 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 00905 if (!NewOp.getNode()) 00906 return SDValue(); 00907 AddToWorklist(NewOp.getNode()); 00908 00909 if (Replace) 00910 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 00911 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp, 00912 DAG.getValueType(OldVT)); 00913 } 00914 00915 SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { 00916 EVT OldVT = Op.getValueType(); 00917 SDLoc dl(Op); 00918 bool Replace = false; 00919 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 00920 if (!NewOp.getNode()) 00921 return SDValue(); 00922 AddToWorklist(NewOp.getNode()); 00923 00924 if (Replace) 00925 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 00926 return DAG.getZeroExtendInReg(NewOp, dl, OldVT); 00927 } 00928 00929 /// Promote the specified integer binary operation if the target indicates it is 00930 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 00931 /// i32 since i16 instructions are longer. 00932 SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { 00933 if (!LegalOperations) 00934 return SDValue(); 00935 00936 EVT VT = Op.getValueType(); 00937 if (VT.isVector() || !VT.isInteger()) 00938 return SDValue(); 00939 00940 // If operation type is 'undesirable', e.g. i16 on x86, consider 00941 // promoting it. 00942 unsigned Opc = Op.getOpcode(); 00943 if (TLI.isTypeDesirableForOp(Opc, VT)) 00944 return SDValue(); 00945 00946 EVT PVT = VT; 00947 // Consult target whether it is a good idea to promote this operation and 00948 // what's the right type to promote it to. 00949 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 00950 assert(PVT != VT && "Don't know what type to promote to!"); 00951 00952 bool Replace0 = false; 00953 SDValue N0 = Op.getOperand(0); 00954 SDValue NN0 = PromoteOperand(N0, PVT, Replace0); 00955 if (!NN0.getNode()) 00956 return SDValue(); 00957 00958 bool Replace1 = false; 00959 SDValue N1 = Op.getOperand(1); 00960 SDValue NN1; 00961 if (N0 == N1) 00962 NN1 = NN0; 00963 else { 00964 NN1 = PromoteOperand(N1, PVT, Replace1); 00965 if (!NN1.getNode()) 00966 return SDValue(); 00967 } 00968 00969 AddToWorklist(NN0.getNode()); 00970 if (NN1.getNode()) 00971 AddToWorklist(NN1.getNode()); 00972 00973 if (Replace0) 00974 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); 00975 if (Replace1) 00976 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); 00977 00978 DEBUG(dbgs() << "\nPromoting "; 00979 Op.getNode()->dump(&DAG)); 00980 SDLoc dl(Op); 00981 return DAG.getNode(ISD::TRUNCATE, dl, VT, 00982 DAG.getNode(Opc, dl, PVT, NN0, NN1)); 00983 } 00984 return SDValue(); 00985 } 00986 00987 /// Promote the specified integer shift operation if the target indicates it is 00988 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 00989 /// i32 since i16 instructions are longer. 00990 SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { 00991 if (!LegalOperations) 00992 return SDValue(); 00993 00994 EVT VT = Op.getValueType(); 00995 if (VT.isVector() || !VT.isInteger()) 00996 return SDValue(); 00997 00998 // If operation type is 'undesirable', e.g. i16 on x86, consider 00999 // promoting it. 01000 unsigned Opc = Op.getOpcode(); 01001 if (TLI.isTypeDesirableForOp(Opc, VT)) 01002 return SDValue(); 01003 01004 EVT PVT = VT; 01005 // Consult target whether it is a good idea to promote this operation and 01006 // what's the right type to promote it to. 01007 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 01008 assert(PVT != VT && "Don't know what type to promote to!"); 01009 01010 bool Replace = false; 01011 SDValue N0 = Op.getOperand(0); 01012 if (Opc == ISD::SRA) 01013 N0 = SExtPromoteOperand(Op.getOperand(0), PVT); 01014 else if (Opc == ISD::SRL) 01015 N0 = ZExtPromoteOperand(Op.getOperand(0), PVT); 01016 else 01017 N0 = PromoteOperand(N0, PVT, Replace); 01018 if (!N0.getNode()) 01019 return SDValue(); 01020 01021 AddToWorklist(N0.getNode()); 01022 if (Replace) 01023 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); 01024 01025 DEBUG(dbgs() << "\nPromoting "; 01026 Op.getNode()->dump(&DAG)); 01027 SDLoc dl(Op); 01028 return DAG.getNode(ISD::TRUNCATE, dl, VT, 01029 DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1))); 01030 } 01031 return SDValue(); 01032 } 01033 01034 SDValue DAGCombiner::PromoteExtend(SDValue Op) { 01035 if (!LegalOperations) 01036 return SDValue(); 01037 01038 EVT VT = Op.getValueType(); 01039 if (VT.isVector() || !VT.isInteger()) 01040 return SDValue(); 01041 01042 // If operation type is 'undesirable', e.g. i16 on x86, consider 01043 // promoting it. 01044 unsigned Opc = Op.getOpcode(); 01045 if (TLI.isTypeDesirableForOp(Opc, VT)) 01046 return SDValue(); 01047 01048 EVT PVT = VT; 01049 // Consult target whether it is a good idea to promote this operation and 01050 // what's the right type to promote it to. 01051 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 01052 assert(PVT != VT && "Don't know what type to promote to!"); 01053 // fold (aext (aext x)) -> (aext x) 01054 // fold (aext (zext x)) -> (zext x) 01055 // fold (aext (sext x)) -> (sext x) 01056 DEBUG(dbgs() << "\nPromoting "; 01057 Op.getNode()->dump(&DAG)); 01058 return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); 01059 } 01060 return SDValue(); 01061 } 01062 01063 bool DAGCombiner::PromoteLoad(SDValue Op) { 01064 if (!LegalOperations) 01065 return false; 01066 01067 EVT VT = Op.getValueType(); 01068 if (VT.isVector() || !VT.isInteger()) 01069 return false; 01070 01071 // If operation type is 'undesirable', e.g. i16 on x86, consider 01072 // promoting it. 01073 unsigned Opc = Op.getOpcode(); 01074 if (TLI.isTypeDesirableForOp(Opc, VT)) 01075 return false; 01076 01077 EVT PVT = VT; 01078 // Consult target whether it is a good idea to promote this operation and 01079 // what's the right type to promote it to. 01080 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 01081 assert(PVT != VT && "Don't know what type to promote to!"); 01082 01083 SDLoc dl(Op); 01084 SDNode *N = Op.getNode(); 01085 LoadSDNode *LD = cast<LoadSDNode>(N); 01086 EVT MemVT = LD->getMemoryVT(); 01087 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) 01088 ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD 01089 : ISD::EXTLOAD) 01090 : LD->getExtensionType(); 01091 SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT, 01092 LD->getChain(), LD->getBasePtr(), 01093 MemVT, LD->getMemOperand()); 01094 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD); 01095 01096 DEBUG(dbgs() << "\nPromoting "; 01097 N->dump(&DAG); 01098 dbgs() << "\nTo: "; 01099 Result.getNode()->dump(&DAG); 01100 dbgs() << '\n'); 01101 WorklistRemover DeadNodes(*this); 01102 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 01103 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); 01104 deleteAndRecombine(N); 01105 AddToWorklist(Result.getNode()); 01106 return true; 01107 } 01108 return false; 01109 } 01110 01111 /// \brief Recursively delete a node which has no uses and any operands for 01112 /// which it is the only use. 01113 /// 01114 /// Note that this both deletes the nodes and removes them from the worklist. 01115 /// It also adds any nodes who have had a user deleted to the worklist as they 01116 /// may now have only one use and subject to other combines. 01117 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { 01118 if (!N->use_empty()) 01119 return false; 01120 01121 SmallSetVector<SDNode *, 16> Nodes; 01122 Nodes.insert(N); 01123 do { 01124 N = Nodes.pop_back_val(); 01125 if (!N) 01126 continue; 01127 01128 if (N->use_empty()) { 01129 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 01130 Nodes.insert(N->getOperand(i).getNode()); 01131 01132 removeFromWorklist(N); 01133 DAG.DeleteNode(N); 01134 } else { 01135 AddToWorklist(N); 01136 } 01137 } while (!Nodes.empty()); 01138 return true; 01139 } 01140 01141 //===----------------------------------------------------------------------===// 01142 // Main DAG Combiner implementation 01143 //===----------------------------------------------------------------------===// 01144 01145 void DAGCombiner::Run(CombineLevel AtLevel) { 01146 // set the instance variables, so that the various visit routines may use it. 01147 Level = AtLevel; 01148 LegalOperations = Level >= AfterLegalizeVectorOps; 01149 LegalTypes = Level >= AfterLegalizeTypes; 01150 01151 // Add all the dag nodes to the worklist. 01152 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 01153 E = DAG.allnodes_end(); I != E; ++I) 01154 AddToWorklist(I); 01155 01156 // Create a dummy node (which is not added to allnodes), that adds a reference 01157 // to the root node, preventing it from being deleted, and tracking any 01158 // changes of the root. 01159 HandleSDNode Dummy(DAG.getRoot()); 01160 01161 // while the worklist isn't empty, find a node and 01162 // try and combine it. 01163 while (!WorklistMap.empty()) { 01164 SDNode *N; 01165 // The Worklist holds the SDNodes in order, but it may contain null entries. 01166 do { 01167 N = Worklist.pop_back_val(); 01168 } while (!N); 01169 01170 bool GoodWorklistEntry = WorklistMap.erase(N); 01171 (void)GoodWorklistEntry; 01172 assert(GoodWorklistEntry && 01173 "Found a worklist entry without a corresponding map entry!"); 01174 01175 // If N has no uses, it is dead. Make sure to revisit all N's operands once 01176 // N is deleted from the DAG, since they too may now be dead or may have a 01177 // reduced number of uses, allowing other xforms. 01178 if (recursivelyDeleteUnusedNodes(N)) 01179 continue; 01180 01181 WorklistRemover DeadNodes(*this); 01182 01183 // If this combine is running after legalizing the DAG, re-legalize any 01184 // nodes pulled off the worklist. 01185 if (Level == AfterLegalizeDAG) { 01186 SmallSetVector<SDNode *, 16> UpdatedNodes; 01187 bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); 01188 01189 for (SDNode *LN : UpdatedNodes) { 01190 AddToWorklist(LN); 01191 AddUsersToWorklist(LN); 01192 } 01193 if (!NIsValid) 01194 continue; 01195 } 01196 01197 DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); 01198 01199 // Add any operands of the new node which have not yet been combined to the 01200 // worklist as well. Because the worklist uniques things already, this 01201 // won't repeatedly process the same operand. 01202 CombinedNodes.insert(N); 01203 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 01204 if (!CombinedNodes.count(N->getOperand(i).getNode())) 01205 AddToWorklist(N->getOperand(i).getNode()); 01206 01207 SDValue RV = combine(N); 01208 01209 if (!RV.getNode()) 01210 continue; 01211 01212 ++NodesCombined; 01213 01214 // If we get back the same node we passed in, rather than a new node or 01215 // zero, we know that the node must have defined multiple values and 01216 // CombineTo was used. Since CombineTo takes care of the worklist 01217 // mechanics for us, we have no work to do in this case. 01218 if (RV.getNode() == N) 01219 continue; 01220 01221 assert(N->getOpcode() != ISD::DELETED_NODE && 01222 RV.getNode()->getOpcode() != ISD::DELETED_NODE && 01223 "Node was deleted but visit returned new node!"); 01224 01225 DEBUG(dbgs() << " ... into: "; 01226 RV.getNode()->dump(&DAG)); 01227 01228 // Transfer debug value. 01229 DAG.TransferDbgValues(SDValue(N, 0), RV); 01230 if (N->getNumValues() == RV.getNode()->getNumValues()) 01231 DAG.ReplaceAllUsesWith(N, RV.getNode()); 01232 else { 01233 assert(N->getValueType(0) == RV.getValueType() && 01234 N->getNumValues() == 1 && "Type mismatch"); 01235 SDValue OpV = RV; 01236 DAG.ReplaceAllUsesWith(N, &OpV); 01237 } 01238 01239 // Push the new node and any users onto the worklist 01240 AddToWorklist(RV.getNode()); 01241 AddUsersToWorklist(RV.getNode()); 01242 01243 // Finally, if the node is now dead, remove it from the graph. The node 01244 // may not be dead if the replacement process recursively simplified to 01245 // something else needing this node. This will also take care of adding any 01246 // operands which have lost a user to the worklist. 01247 recursivelyDeleteUnusedNodes(N); 01248 } 01249 01250 // If the root changed (e.g. it was a dead load, update the root). 01251 DAG.setRoot(Dummy.getValue()); 01252 DAG.RemoveDeadNodes(); 01253 } 01254 01255 SDValue DAGCombiner::visit(SDNode *N) { 01256 switch (N->getOpcode()) { 01257 default: break; 01258 case ISD::TokenFactor: return visitTokenFactor(N); 01259 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); 01260 case ISD::ADD: return visitADD(N); 01261 case ISD::SUB: return visitSUB(N); 01262 case ISD::ADDC: return visitADDC(N); 01263 case ISD::SUBC: return visitSUBC(N); 01264 case ISD::ADDE: return visitADDE(N); 01265 case ISD::SUBE: return visitSUBE(N); 01266 case ISD::MUL: return visitMUL(N); 01267 case ISD::SDIV: return visitSDIV(N); 01268 case ISD::UDIV: return visitUDIV(N); 01269 case ISD::SREM: return visitSREM(N); 01270 case ISD::UREM: return visitUREM(N); 01271 case ISD::MULHU: return visitMULHU(N); 01272 case ISD::MULHS: return visitMULHS(N); 01273 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); 01274 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); 01275 case ISD::SMULO: return visitSMULO(N); 01276 case ISD::UMULO: return visitUMULO(N); 01277 case ISD::SDIVREM: return visitSDIVREM(N); 01278 case ISD::UDIVREM: return visitUDIVREM(N); 01279 case ISD::AND: return visitAND(N); 01280 case ISD::OR: return visitOR(N); 01281 case ISD::XOR: return visitXOR(N); 01282 case ISD::SHL: return visitSHL(N); 01283 case ISD::SRA: return visitSRA(N); 01284 case ISD::SRL: return visitSRL(N); 01285 case ISD::ROTR: 01286 case ISD::ROTL: return visitRotate(N); 01287 case ISD::CTLZ: return visitCTLZ(N); 01288 case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N); 01289 case ISD::CTTZ: return visitCTTZ(N); 01290 case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N); 01291 case ISD::CTPOP: return visitCTPOP(N); 01292 case ISD::SELECT: return visitSELECT(N); 01293 case ISD::VSELECT: return visitVSELECT(N); 01294 case ISD::SELECT_CC: return visitSELECT_CC(N); 01295 case ISD::SETCC: return visitSETCC(N); 01296 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); 01297 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); 01298 case ISD::ANY_EXTEND: return visitANY_EXTEND(N); 01299 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); 01300 case ISD::TRUNCATE: return visitTRUNCATE(N); 01301 case ISD::BITCAST: return visitBITCAST(N); 01302 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); 01303 case ISD::FADD: return visitFADD(N); 01304 case ISD::FSUB: return visitFSUB(N); 01305 case ISD::FMUL: return visitFMUL(N); 01306 case ISD::FMA: return visitFMA(N); 01307 case ISD::FDIV: return visitFDIV(N); 01308 case ISD::FREM: return visitFREM(N); 01309 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); 01310 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); 01311 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); 01312 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); 01313 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); 01314 case ISD::FP_ROUND: return visitFP_ROUND(N); 01315 case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N); 01316 case ISD::FP_EXTEND: return visitFP_EXTEND(N); 01317 case ISD::FNEG: return visitFNEG(N); 01318 case ISD::FABS: return visitFABS(N); 01319 case ISD::FFLOOR: return visitFFLOOR(N); 01320 case ISD::FCEIL: return visitFCEIL(N); 01321 case ISD::FTRUNC: return visitFTRUNC(N); 01322 case ISD::BRCOND: return visitBRCOND(N); 01323 case ISD::BR_CC: return visitBR_CC(N); 01324 case ISD::LOAD: return visitLOAD(N); 01325 case ISD::STORE: return visitSTORE(N); 01326 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); 01327 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); 01328 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); 01329 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); 01330 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); 01331 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); 01332 case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N); 01333 } 01334 return SDValue(); 01335 } 01336 01337 SDValue DAGCombiner::combine(SDNode *N) { 01338 SDValue RV = visit(N); 01339 01340 // If nothing happened, try a target-specific DAG combine. 01341 if (!RV.getNode()) { 01342 assert(N->getOpcode() != ISD::DELETED_NODE && 01343 "Node was deleted but visit returned NULL!"); 01344 01345 if (N->getOpcode() >= ISD::BUILTIN_OP_END || 01346 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { 01347 01348 // Expose the DAG combiner to the target combiner impls. 01349 TargetLowering::DAGCombinerInfo 01350 DagCombineInfo(DAG, Level, false, this); 01351 01352 RV = TLI.PerformDAGCombine(N, DagCombineInfo); 01353 } 01354 } 01355 01356 // If nothing happened still, try promoting the operation. 01357 if (!RV.getNode()) { 01358 switch (N->getOpcode()) { 01359 default: break; 01360 case ISD::ADD: 01361 case ISD::SUB: 01362 case ISD::MUL: 01363 case ISD::AND: 01364 case ISD::OR: 01365 case ISD::XOR: 01366 RV = PromoteIntBinOp(SDValue(N, 0)); 01367 break; 01368 case ISD::SHL: 01369 case ISD::SRA: 01370 case ISD::SRL: 01371 RV = PromoteIntShiftOp(SDValue(N, 0)); 01372 break; 01373 case ISD::SIGN_EXTEND: 01374 case ISD::ZERO_EXTEND: 01375 case ISD::ANY_EXTEND: 01376 RV = PromoteExtend(SDValue(N, 0)); 01377 break; 01378 case ISD::LOAD: 01379 if (PromoteLoad(SDValue(N, 0))) 01380 RV = SDValue(N, 0); 01381 break; 01382 } 01383 } 01384 01385 // If N is a commutative binary node, try commuting it to enable more 01386 // sdisel CSE. 01387 if (!RV.getNode() && SelectionDAG::isCommutativeBinOp(N->getOpcode()) && 01388 N->getNumValues() == 1) { 01389 SDValue N0 = N->getOperand(0); 01390 SDValue N1 = N->getOperand(1); 01391 01392 // Constant operands are canonicalized to RHS. 01393 if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) { 01394 SDValue Ops[] = {N1, N0}; 01395 SDNode *CSENode; 01396 if (const BinaryWithFlagsSDNode *BinNode = 01397 dyn_cast<BinaryWithFlagsSDNode>(N)) { 01398 CSENode = DAG.getNodeIfExists( 01399 N->getOpcode(), N->getVTList(), Ops, BinNode->hasNoUnsignedWrap(), 01400 BinNode->hasNoSignedWrap(), BinNode->isExact()); 01401 } else { 01402 CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops); 01403 } 01404 if (CSENode) 01405 return SDValue(CSENode, 0); 01406 } 01407 } 01408 01409 return RV; 01410 } 01411 01412 /// Given a node, return its input chain if it has one, otherwise return a null 01413 /// sd operand. 01414 static SDValue getInputChainForNode(SDNode *N) { 01415 if (unsigned NumOps = N->getNumOperands()) { 01416 if (N->getOperand(0).getValueType() == MVT::Other) 01417 return N->getOperand(0); 01418 if (N->getOperand(NumOps-1).getValueType() == MVT::Other) 01419 return N->getOperand(NumOps-1); 01420 for (unsigned i = 1; i < NumOps-1; ++i) 01421 if (N->getOperand(i).getValueType() == MVT::Other) 01422 return N->getOperand(i); 01423 } 01424 return SDValue(); 01425 } 01426 01427 SDValue DAGCombiner::visitTokenFactor(SDNode *N) { 01428 // If N has two operands, where one has an input chain equal to the other, 01429 // the 'other' chain is redundant. 01430 if (N->getNumOperands() == 2) { 01431 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) 01432 return N->getOperand(0); 01433 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) 01434 return N->getOperand(1); 01435 } 01436 01437 SmallVector<SDNode *, 8> TFs; // List of token factors to visit. 01438 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor. 01439 SmallPtrSet<SDNode*, 16> SeenOps; 01440 bool Changed = false; // If we should replace this token factor. 01441 01442 // Start out with this token factor. 01443 TFs.push_back(N); 01444 01445 // Iterate through token factors. The TFs grows when new token factors are 01446 // encountered. 01447 for (unsigned i = 0; i < TFs.size(); ++i) { 01448 SDNode *TF = TFs[i]; 01449 01450 // Check each of the operands. 01451 for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) { 01452 SDValue Op = TF->getOperand(i); 01453 01454 switch (Op.getOpcode()) { 01455 case ISD::EntryToken: 01456 // Entry tokens don't need to be added to the list. They are 01457 // rededundant. 01458 Changed = true; 01459 break; 01460 01461 case ISD::TokenFactor: 01462 if (Op.hasOneUse() && 01463 std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) { 01464 // Queue up for processing. 01465 TFs.push_back(Op.getNode()); 01466 // Clean up in case the token factor is removed. 01467 AddToWorklist(Op.getNode()); 01468 Changed = true; 01469 break; 01470 } 01471 // Fall thru 01472 01473 default: 01474 // Only add if it isn't already in the list. 01475 if (SeenOps.insert(Op.getNode())) 01476 Ops.push_back(Op); 01477 else 01478 Changed = true; 01479 break; 01480 } 01481 } 01482 } 01483 01484 SDValue Result; 01485 01486 // If we've change things around then replace token factor. 01487 if (Changed) { 01488 if (Ops.empty()) { 01489 // The entry token is the only possible outcome. 01490 Result = DAG.getEntryNode(); 01491 } else { 01492 // New and improved token factor. 01493 Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Ops); 01494 } 01495 01496 // Don't add users to work list. 01497 return CombineTo(N, Result, false); 01498 } 01499 01500 return Result; 01501 } 01502 01503 /// MERGE_VALUES can always be eliminated. 01504 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { 01505 WorklistRemover DeadNodes(*this); 01506 // Replacing results may cause a different MERGE_VALUES to suddenly 01507 // be CSE'd with N, and carry its uses with it. Iterate until no 01508 // uses remain, to ensure that the node can be safely deleted. 01509 // First add the users of this node to the work list so that they 01510 // can be tried again once they have new operands. 01511 AddUsersToWorklist(N); 01512 do { 01513 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 01514 DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i)); 01515 } while (!N->use_empty()); 01516 deleteAndRecombine(N); 01517 return SDValue(N, 0); // Return N so it doesn't get rechecked! 01518 } 01519 01520 SDValue DAGCombiner::visitADD(SDNode *N) { 01521 SDValue N0 = N->getOperand(0); 01522 SDValue N1 = N->getOperand(1); 01523 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 01524 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 01525 EVT VT = N0.getValueType(); 01526 01527 // fold vector ops 01528 if (VT.isVector()) { 01529 SDValue FoldedVOp = SimplifyVBinOp(N); 01530 if (FoldedVOp.getNode()) return FoldedVOp; 01531 01532 // fold (add x, 0) -> x, vector edition 01533 if (ISD::isBuildVectorAllZeros(N1.getNode())) 01534 return N0; 01535 if (ISD::isBuildVectorAllZeros(N0.getNode())) 01536 return N1; 01537 } 01538 01539 // fold (add x, undef) -> undef 01540 if (N0.getOpcode() == ISD::UNDEF) 01541 return N0; 01542 if (N1.getOpcode() == ISD::UNDEF) 01543 return N1; 01544 // fold (add c1, c2) -> c1+c2 01545 if (N0C && N1C) 01546 return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C); 01547 // canonicalize constant to RHS 01548 if (N0C && !N1C) 01549 return DAG.getNode(ISD::ADD, SDLoc(N), VT, N1, N0); 01550 // fold (add x, 0) -> x 01551 if (N1C && N1C->isNullValue()) 01552 return N0; 01553 // fold (add Sym, c) -> Sym+c 01554 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) 01555 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C && 01556 GA->getOpcode() == ISD::GlobalAddress) 01557 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, 01558 GA->getOffset() + 01559 (uint64_t)N1C->getSExtValue()); 01560 // fold ((c1-A)+c2) -> (c1+c2)-A 01561 if (N1C && N0.getOpcode() == ISD::SUB) 01562 if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0))) 01563 return DAG.getNode(ISD::SUB, SDLoc(N), VT, 01564 DAG.getConstant(N1C->getAPIntValue()+ 01565 N0C->getAPIntValue(), VT), 01566 N0.getOperand(1)); 01567 // reassociate add 01568 SDValue RADD = ReassociateOps(ISD::ADD, SDLoc(N), N0, N1); 01569 if (RADD.getNode()) 01570 return RADD; 01571 // fold ((0-A) + B) -> B-A 01572 if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) && 01573 cast<ConstantSDNode>(N0.getOperand(0))->isNullValue()) 01574 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, N0.getOperand(1)); 01575 // fold (A + (0-B)) -> A-B 01576 if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) && 01577 cast<ConstantSDNode>(N1.getOperand(0))->isNullValue()) 01578 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1.getOperand(1)); 01579 // fold (A+(B-A)) -> B 01580 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) 01581 return N1.getOperand(0); 01582 // fold ((B-A)+A) -> B 01583 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) 01584 return N0.getOperand(0); 01585 // fold (A+(B-(A+C))) to (B-C) 01586 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 01587 N0 == N1.getOperand(1).getOperand(0)) 01588 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0), 01589 N1.getOperand(1).getOperand(1)); 01590 // fold (A+(B-(C+A))) to (B-C) 01591 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 01592 N0 == N1.getOperand(1).getOperand(1)) 01593 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0), 01594 N1.getOperand(1).getOperand(0)); 01595 // fold (A+((B-A)+or-C)) to (B+or-C) 01596 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && 01597 N1.getOperand(0).getOpcode() == ISD::SUB && 01598 N0 == N1.getOperand(0).getOperand(1)) 01599 return DAG.getNode(N1.getOpcode(), SDLoc(N), VT, 01600 N1.getOperand(0).getOperand(0), N1.getOperand(1)); 01601 01602 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant 01603 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { 01604 SDValue N00 = N0.getOperand(0); 01605 SDValue N01 = N0.getOperand(1); 01606 SDValue N10 = N1.getOperand(0); 01607 SDValue N11 = N1.getOperand(1); 01608 01609 if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10)) 01610 return DAG.getNode(ISD::SUB, SDLoc(N), VT, 01611 DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), 01612 DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); 01613 } 01614 01615 if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0))) 01616 return SDValue(N, 0); 01617 01618 // fold (a+b) -> (a|b) iff a and b share no bits. 01619 if (VT.isInteger() && !VT.isVector()) { 01620 APInt LHSZero, LHSOne; 01621 APInt RHSZero, RHSOne; 01622 DAG.computeKnownBits(N0, LHSZero, LHSOne); 01623 01624 if (LHSZero.getBoolValue()) { 01625 DAG.computeKnownBits(N1, RHSZero, RHSOne); 01626 01627 // If all possibly-set bits on the LHS are clear on the RHS, return an OR. 01628 // If all possibly-set bits on the RHS are clear on the LHS, return an OR. 01629 if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero){ 01630 if (!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) 01631 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1); 01632 } 01633 } 01634 } 01635 01636 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) 01637 if (N1.getOpcode() == ISD::SHL && 01638 N1.getOperand(0).getOpcode() == ISD::SUB) 01639 if (ConstantSDNode *C = 01640 dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(0))) 01641 if (C->getAPIntValue() == 0) 01642 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, 01643 DAG.getNode(ISD::SHL, SDLoc(N), VT, 01644 N1.getOperand(0).getOperand(1), 01645 N1.getOperand(1))); 01646 if (N0.getOpcode() == ISD::SHL && 01647 N0.getOperand(0).getOpcode() == ISD::SUB) 01648 if (ConstantSDNode *C = 01649 dyn_cast<ConstantSDNode>(N0.getOperand(0).getOperand(0))) 01650 if (C->getAPIntValue() == 0) 01651 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, 01652 DAG.getNode(ISD::SHL, SDLoc(N), VT, 01653 N0.getOperand(0).getOperand(1), 01654 N0.getOperand(1))); 01655 01656 if (N1.getOpcode() == ISD::AND) { 01657 SDValue AndOp0 = N1.getOperand(0); 01658 ConstantSDNode *AndOp1 = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 01659 unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0); 01660 unsigned DestBits = VT.getScalarType().getSizeInBits(); 01661 01662 // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x)) 01663 // and similar xforms where the inner op is either ~0 or 0. 01664 if (NumSignBits == DestBits && AndOp1 && AndOp1->isOne()) { 01665 SDLoc DL(N); 01666 return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0); 01667 } 01668 } 01669 01670 // add (sext i1), X -> sub X, (zext i1) 01671 if (N0.getOpcode() == ISD::SIGN_EXTEND && 01672 N0.getOperand(0).getValueType() == MVT::i1 && 01673 !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) { 01674 SDLoc DL(N); 01675 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); 01676 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); 01677 } 01678 01679 return SDValue(); 01680 } 01681 01682 SDValue DAGCombiner::visitADDC(SDNode *N) { 01683 SDValue N0 = N->getOperand(0); 01684 SDValue N1 = N->getOperand(1); 01685 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 01686 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 01687 EVT VT = N0.getValueType(); 01688 01689 // If the flag result is dead, turn this into an ADD. 01690 if (!N->hasAnyUseOfValue(1)) 01691 return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1), 01692 DAG.getNode(ISD::CARRY_FALSE, 01693 SDLoc(N), MVT::Glue)); 01694 01695 // canonicalize constant to RHS. 01696 if (N0C && !N1C) 01697 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0); 01698 01699 // fold (addc x, 0) -> x + no carry out 01700 if (N1C && N1C->isNullValue()) 01701 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, 01702 SDLoc(N), MVT::Glue)); 01703 01704 // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits. 01705 APInt LHSZero, LHSOne; 01706 APInt RHSZero, RHSOne; 01707 DAG.computeKnownBits(N0, LHSZero, LHSOne); 01708 01709 if (LHSZero.getBoolValue()) { 01710 DAG.computeKnownBits(N1, RHSZero, RHSOne); 01711 01712 // If all possibly-set bits on the LHS are clear on the RHS, return an OR. 01713 // If all possibly-set bits on the RHS are clear on the LHS, return an OR. 01714 if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero) 01715 return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1), 01716 DAG.getNode(ISD::CARRY_FALSE, 01717 SDLoc(N), MVT::Glue)); 01718 } 01719 01720 return SDValue(); 01721 } 01722 01723 SDValue DAGCombiner::visitADDE(SDNode *N) { 01724 SDValue N0 = N->getOperand(0); 01725 SDValue N1 = N->getOperand(1); 01726 SDValue CarryIn = N->getOperand(2); 01727 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 01728 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 01729 01730 // canonicalize constant to RHS 01731 if (N0C && !N1C) 01732 return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), 01733 N1, N0, CarryIn); 01734 01735 // fold (adde x, y, false) -> (addc x, y) 01736 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 01737 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); 01738 01739 return SDValue(); 01740 } 01741 01742 // Since it may not be valid to emit a fold to zero for vector initializers 01743 // check if we can before folding. 01744 static SDValue tryFoldToZero(SDLoc DL, const TargetLowering &TLI, EVT VT, 01745 SelectionDAG &DAG, 01746 bool LegalOperations, bool LegalTypes) { 01747 if (!VT.isVector()) 01748 return DAG.getConstant(0, VT); 01749 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 01750 return DAG.getConstant(0, VT); 01751 return SDValue(); 01752 } 01753 01754 SDValue DAGCombiner::visitSUB(SDNode *N) { 01755 SDValue N0 = N->getOperand(0); 01756 SDValue N1 = N->getOperand(1); 01757 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode()); 01758 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); 01759 ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? nullptr : 01760 dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode()); 01761 EVT VT = N0.getValueType(); 01762 01763 // fold vector ops 01764 if (VT.isVector()) { 01765 SDValue FoldedVOp = SimplifyVBinOp(N); 01766 if (FoldedVOp.getNode()) return FoldedVOp; 01767 01768 // fold (sub x, 0) -> x, vector edition 01769 if (ISD::isBuildVectorAllZeros(N1.getNode())) 01770 return N0; 01771 } 01772 01773 // fold (sub x, x) -> 0 01774 // FIXME: Refactor this and xor and other similar operations together. 01775 if (N0 == N1) 01776 return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes); 01777 // fold (sub c1, c2) -> c1-c2 01778 if (N0C && N1C) 01779 return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C); 01780 // fold (sub x, c) -> (add x, -c) 01781 if (N1C) 01782 return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, 01783 DAG.getConstant(-N1C->getAPIntValue(), VT)); 01784 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) 01785 if (N0C && N0C->isAllOnesValue()) 01786 return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0); 01787 // fold A-(A-B) -> B 01788 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) 01789 return N1.getOperand(1); 01790 // fold (A+B)-A -> B 01791 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) 01792 return N0.getOperand(1); 01793 // fold (A+B)-B -> A 01794 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) 01795 return N0.getOperand(0); 01796 // fold C2-(A+C1) -> (C2-C1)-A 01797 if (N1.getOpcode() == ISD::ADD && N0C && N1C1) { 01798 SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(), 01799 VT); 01800 return DAG.getNode(ISD::SUB, SDLoc(N), VT, NewC, 01801 N1.getOperand(0)); 01802 } 01803 // fold ((A+(B+or-C))-B) -> A+or-C 01804 if (N0.getOpcode() == ISD::ADD && 01805 (N0.getOperand(1).getOpcode() == ISD::SUB || 01806 N0.getOperand(1).getOpcode() == ISD::ADD) && 01807 N0.getOperand(1).getOperand(0) == N1) 01808 return DAG.getNode(N0.getOperand(1).getOpcode(), SDLoc(N), VT, 01809 N0.getOperand(0), N0.getOperand(1).getOperand(1)); 01810 // fold ((A+(C+B))-B) -> A+C 01811 if (N0.getOpcode() == ISD::ADD && 01812 N0.getOperand(1).getOpcode() == ISD::ADD && 01813 N0.getOperand(1).getOperand(1) == N1) 01814 return DAG.getNode(ISD::ADD, SDLoc(N), VT, 01815 N0.getOperand(0), N0.getOperand(1).getOperand(0)); 01816 // fold ((A-(B-C))-C) -> A-B 01817 if (N0.getOpcode() == ISD::SUB && 01818 N0.getOperand(1).getOpcode() == ISD::SUB && 01819 N0.getOperand(1).getOperand(1) == N1) 01820 return DAG.getNode(ISD::SUB, SDLoc(N), VT, 01821 N0.getOperand(0), N0.getOperand(1).getOperand(0)); 01822 01823 // If either operand of a sub is undef, the result is undef 01824 if (N0.getOpcode() == ISD::UNDEF) 01825 return N0; 01826 if (N1.getOpcode() == ISD::UNDEF) 01827 return N1; 01828 01829 // If the relocation model supports it, consider symbol offsets. 01830 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) 01831 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { 01832 // fold (sub Sym, c) -> Sym-c 01833 if (N1C && GA->getOpcode() == ISD::GlobalAddress) 01834 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, 01835 GA->getOffset() - 01836 (uint64_t)N1C->getSExtValue()); 01837 // fold (sub Sym+c1, Sym+c2) -> c1-c2 01838 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) 01839 if (GA->getGlobal() == GB->getGlobal()) 01840 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), 01841 VT); 01842 } 01843 01844 return SDValue(); 01845 } 01846 01847 SDValue DAGCombiner::visitSUBC(SDNode *N) { 01848 SDValue N0 = N->getOperand(0); 01849 SDValue N1 = N->getOperand(1); 01850 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 01851 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 01852 EVT VT = N0.getValueType(); 01853 01854 // If the flag result is dead, turn this into an SUB. 01855 if (!N->hasAnyUseOfValue(1)) 01856 return CombineTo(N, DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1), 01857 DAG.getNode(ISD::CARRY_FALSE, SDLoc(N), 01858 MVT::Glue)); 01859 01860 // fold (subc x, x) -> 0 + no borrow 01861 if (N0 == N1) 01862 return CombineTo(N, DAG.getConstant(0, VT), 01863 DAG.getNode(ISD::CARRY_FALSE, SDLoc(N), 01864 MVT::Glue)); 01865 01866 // fold (subc x, 0) -> x + no borrow 01867 if (N1C && N1C->isNullValue()) 01868 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, SDLoc(N), 01869 MVT::Glue)); 01870 01871 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow 01872 if (N0C && N0C->isAllOnesValue()) 01873 return CombineTo(N, DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0), 01874 DAG.getNode(ISD::CARRY_FALSE, SDLoc(N), 01875 MVT::Glue)); 01876 01877 return SDValue(); 01878 } 01879 01880 SDValue DAGCombiner::visitSUBE(SDNode *N) { 01881 SDValue N0 = N->getOperand(0); 01882 SDValue N1 = N->getOperand(1); 01883 SDValue CarryIn = N->getOperand(2); 01884 01885 // fold (sube x, y, false) -> (subc x, y) 01886 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 01887 return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); 01888 01889 return SDValue(); 01890 } 01891 01892 SDValue DAGCombiner::visitMUL(SDNode *N) { 01893 SDValue N0 = N->getOperand(0); 01894 SDValue N1 = N->getOperand(1); 01895 EVT VT = N0.getValueType(); 01896 01897 // fold (mul x, undef) -> 0 01898 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) 01899 return DAG.getConstant(0, VT); 01900 01901 bool N0IsConst = false; 01902 bool N1IsConst = false; 01903 APInt ConstValue0, ConstValue1; 01904 // fold vector ops 01905 if (VT.isVector()) { 01906 SDValue FoldedVOp = SimplifyVBinOp(N); 01907 if (FoldedVOp.getNode()) return FoldedVOp; 01908 01909 N0IsConst = isConstantSplatVector(N0.getNode(), ConstValue0); 01910 N1IsConst = isConstantSplatVector(N1.getNode(), ConstValue1); 01911 } else { 01912 N0IsConst = dyn_cast<ConstantSDNode>(N0) != nullptr; 01913 ConstValue0 = N0IsConst ? (dyn_cast<ConstantSDNode>(N0))->getAPIntValue() 01914 : APInt(); 01915 N1IsConst = dyn_cast<ConstantSDNode>(N1) != nullptr; 01916 ConstValue1 = N1IsConst ? (dyn_cast<ConstantSDNode>(N1))->getAPIntValue() 01917 : APInt(); 01918 } 01919 01920 // fold (mul c1, c2) -> c1*c2 01921 if (N0IsConst && N1IsConst) 01922 return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0.getNode(), N1.getNode()); 01923 01924 // canonicalize constant to RHS 01925 if (N0IsConst && !N1IsConst) 01926 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); 01927 // fold (mul x, 0) -> 0 01928 if (N1IsConst && ConstValue1 == 0) 01929 return N1; 01930 // We require a splat of the entire scalar bit width for non-contiguous 01931 // bit patterns. 01932 bool IsFullSplat = 01933 ConstValue1.getBitWidth() == VT.getScalarType().getSizeInBits(); 01934 // fold (mul x, 1) -> x 01935 if (N1IsConst && ConstValue1 == 1 && IsFullSplat) 01936 return N0; 01937 // fold (mul x, -1) -> 0-x 01938 if (N1IsConst && ConstValue1.isAllOnesValue()) 01939 return DAG.getNode(ISD::SUB, SDLoc(N), VT, 01940 DAG.getConstant(0, VT), N0); 01941 // fold (mul x, (1 << c)) -> x << c 01942 if (N1IsConst && ConstValue1.isPowerOf2() && IsFullSplat) 01943 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, 01944 DAG.getConstant(ConstValue1.logBase2(), 01945 getShiftAmountTy(N0.getValueType()))); 01946 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c 01947 if (N1IsConst && (-ConstValue1).isPowerOf2() && IsFullSplat) { 01948 unsigned Log2Val = (-ConstValue1).logBase2(); 01949 // FIXME: If the input is something that is easily negated (e.g. a 01950 // single-use add), we should put the negate there. 01951 return DAG.getNode(ISD::SUB, SDLoc(N), VT, 01952 DAG.getConstant(0, VT), 01953 DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, 01954 DAG.getConstant(Log2Val, 01955 getShiftAmountTy(N0.getValueType())))); 01956 } 01957 01958 APInt Val; 01959 // (mul (shl X, c1), c2) -> (mul X, c2 << c1) 01960 if (N1IsConst && N0.getOpcode() == ISD::SHL && 01961 (isConstantSplatVector(N0.getOperand(1).getNode(), Val) || 01962 isa<ConstantSDNode>(N0.getOperand(1)))) { 01963 SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, 01964 N1, N0.getOperand(1)); 01965 AddToWorklist(C3.getNode()); 01966 return DAG.getNode(ISD::MUL, SDLoc(N), VT, 01967 N0.getOperand(0), C3); 01968 } 01969 01970 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one 01971 // use. 01972 { 01973 SDValue Sh(nullptr,0), Y(nullptr,0); 01974 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). 01975 if (N0.getOpcode() == ISD::SHL && 01976 (isConstantSplatVector(N0.getOperand(1).getNode(), Val) || 01977 isa<ConstantSDNode>(N0.getOperand(1))) && 01978 N0.getNode()->hasOneUse()) { 01979 Sh = N0; Y = N1; 01980 } else if (N1.getOpcode() == ISD::SHL && 01981 isa<ConstantSDNode>(N1.getOperand(1)) && 01982 N1.getNode()->hasOneUse()) { 01983 Sh = N1; Y = N0; 01984 } 01985 01986 if (Sh.getNode()) { 01987 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, 01988 Sh.getOperand(0), Y); 01989 return DAG.getNode(ISD::SHL, SDLoc(N), VT, 01990 Mul, Sh.getOperand(1)); 01991 } 01992 } 01993 01994 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) 01995 if (N1IsConst && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() && 01996 (isConstantSplatVector(N0.getOperand(1).getNode(), Val) || 01997 isa<ConstantSDNode>(N0.getOperand(1)))) 01998 return DAG.getNode(ISD::ADD, SDLoc(N), VT, 01999 DAG.getNode(ISD::MUL, SDLoc(N0), VT, 02000 N0.getOperand(0), N1), 02001 DAG.getNode(ISD::MUL, SDLoc(N1), VT, 02002 N0.getOperand(1), N1)); 02003 02004 // reassociate mul 02005 SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1); 02006 if (RMUL.getNode()) 02007 return RMUL; 02008 02009 return SDValue(); 02010 } 02011 02012 SDValue DAGCombiner::visitSDIV(SDNode *N) { 02013 SDValue N0 = N->getOperand(0); 02014 SDValue N1 = N->getOperand(1); 02015 ConstantSDNode *N0C = isConstOrConstSplat(N0); 02016 ConstantSDNode *N1C = isConstOrConstSplat(N1); 02017 EVT VT = N->getValueType(0); 02018 02019 // fold vector ops 02020 if (VT.isVector()) { 02021 SDValue FoldedVOp = SimplifyVBinOp(N); 02022 if (FoldedVOp.getNode()) return FoldedVOp; 02023 } 02024 02025 // fold (sdiv c1, c2) -> c1/c2 02026 if (N0C && N1C && !N1C->isNullValue()) 02027 return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C); 02028 // fold (sdiv X, 1) -> X 02029 if (N1C && N1C->getAPIntValue() == 1LL) 02030 return N0; 02031 // fold (sdiv X, -1) -> 0-X 02032 if (N1C && N1C->isAllOnesValue()) 02033 return DAG.getNode(ISD::SUB, SDLoc(N), VT, 02034 DAG.getConstant(0, VT), N0); 02035 // If we know the sign bits of both operands are zero, strength reduce to a 02036 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 02037 if (!VT.isVector()) { 02038 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 02039 return DAG.getNode(ISD::UDIV, SDLoc(N), N1.getValueType(), 02040 N0, N1); 02041 } 02042 02043 // fold (sdiv X, pow2) -> simple ops after legalize 02044 if (N1C && !N1C->isNullValue() && (N1C->getAPIntValue().isPowerOf2() || 02045 (-N1C->getAPIntValue()).isPowerOf2())) { 02046 // If dividing by powers of two is cheap, then don't perform the following 02047 // fold. 02048 if (TLI.isPow2SDivCheap()) 02049 return SDValue(); 02050 02051 // Target-specific implementation of sdiv x, pow2. 02052 SDValue Res = BuildSDIVPow2(N); 02053 if (Res.getNode()) 02054 return Res; 02055 02056 unsigned lg2 = N1C->getAPIntValue().countTrailingZeros(); 02057 02058 // Splat the sign bit into the register 02059 SDValue SGN = 02060 DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, 02061 DAG.getConstant(VT.getScalarSizeInBits() - 1, 02062 getShiftAmountTy(N0.getValueType()))); 02063 AddToWorklist(SGN.getNode()); 02064 02065 // Add (N0 < 0) ? abs2 - 1 : 0; 02066 SDValue SRL = 02067 DAG.getNode(ISD::SRL, SDLoc(N), VT, SGN, 02068 DAG.getConstant(VT.getScalarSizeInBits() - lg2, 02069 getShiftAmountTy(SGN.getValueType()))); 02070 SDValue ADD = DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, SRL); 02071 AddToWorklist(SRL.getNode()); 02072 AddToWorklist(ADD.getNode()); // Divide by pow2 02073 SDValue SRA = DAG.getNode(ISD::SRA, SDLoc(N), VT, ADD, 02074 DAG.getConstant(lg2, getShiftAmountTy(ADD.getValueType()))); 02075 02076 // If we're dividing by a positive value, we're done. Otherwise, we must 02077 // negate the result. 02078 if (N1C->getAPIntValue().isNonNegative()) 02079 return SRA; 02080 02081 AddToWorklist(SRA.getNode()); 02082 return DAG.getNode(ISD::SUB, SDLoc(N), VT, DAG.getConstant(0, VT), SRA); 02083 } 02084 02085 // if integer divide is expensive and we satisfy the requirements, emit an 02086 // alternate sequence. 02087 if (N1C && !TLI.isIntDivCheap()) { 02088 SDValue Op = BuildSDIV(N); 02089 if (Op.getNode()) return Op; 02090 } 02091 02092 // undef / X -> 0 02093 if (N0.getOpcode() == ISD::UNDEF) 02094 return DAG.getConstant(0, VT); 02095 // X / undef -> undef 02096 if (N1.getOpcode() == ISD::UNDEF) 02097 return N1; 02098 02099 return SDValue(); 02100 } 02101 02102 SDValue DAGCombiner::visitUDIV(SDNode *N) { 02103 SDValue N0 = N->getOperand(0); 02104 SDValue N1 = N->getOperand(1); 02105 ConstantSDNode *N0C = isConstOrConstSplat(N0); 02106 ConstantSDNode *N1C = isConstOrConstSplat(N1); 02107 EVT VT = N->getValueType(0); 02108 02109 // fold vector ops 02110 if (VT.isVector()) { 02111 SDValue FoldedVOp = SimplifyVBinOp(N); 02112 if (FoldedVOp.getNode()) return FoldedVOp; 02113 } 02114 02115 // fold (udiv c1, c2) -> c1/c2 02116 if (N0C && N1C && !N1C->isNullValue()) 02117 return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C); 02118 // fold (udiv x, (1 << c)) -> x >>u c 02119 if (N1C && N1C->getAPIntValue().isPowerOf2()) 02120 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, 02121 DAG.getConstant(N1C->getAPIntValue().logBase2(), 02122 getShiftAmountTy(N0.getValueType()))); 02123 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 02124 if (N1.getOpcode() == ISD::SHL) { 02125 if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) { 02126 if (SHC->getAPIntValue().isPowerOf2()) { 02127 EVT ADDVT = N1.getOperand(1).getValueType(); 02128 SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N), ADDVT, 02129 N1.getOperand(1), 02130 DAG.getConstant(SHC->getAPIntValue() 02131 .logBase2(), 02132 ADDVT)); 02133 AddToWorklist(Add.getNode()); 02134 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, Add); 02135 } 02136 } 02137 } 02138 // fold (udiv x, c) -> alternate 02139 if (N1C && !TLI.isIntDivCheap()) { 02140 SDValue Op = BuildUDIV(N); 02141 if (Op.getNode()) return Op; 02142 } 02143 02144 // undef / X -> 0 02145 if (N0.getOpcode() == ISD::UNDEF) 02146 return DAG.getConstant(0, VT); 02147 // X / undef -> undef 02148 if (N1.getOpcode() == ISD::UNDEF) 02149 return N1; 02150 02151 return SDValue(); 02152 } 02153 02154 SDValue DAGCombiner::visitSREM(SDNode *N) { 02155 SDValue N0 = N->getOperand(0); 02156 SDValue N1 = N->getOperand(1); 02157 ConstantSDNode *N0C = isConstOrConstSplat(N0); 02158 ConstantSDNode *N1C = isConstOrConstSplat(N1); 02159 EVT VT = N->getValueType(0); 02160 02161 // fold (srem c1, c2) -> c1%c2 02162 if (N0C && N1C && !N1C->isNullValue()) 02163 return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C); 02164 // If we know the sign bits of both operands are zero, strength reduce to a 02165 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 02166 if (!VT.isVector()) { 02167 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 02168 return DAG.getNode(ISD::UREM, SDLoc(N), VT, N0, N1); 02169 } 02170 02171 // If X/C can be simplified by the division-by-constant logic, lower 02172 // X%C to the equivalent of X-X/C*C. 02173 if (N1C && !N1C->isNullValue()) { 02174 SDValue Div = DAG.getNode(ISD::SDIV, SDLoc(N), VT, N0, N1); 02175 AddToWorklist(Div.getNode()); 02176 SDValue OptimizedDiv = combine(Div.getNode()); 02177 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) { 02178 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, 02179 OptimizedDiv, N1); 02180 SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul); 02181 AddToWorklist(Mul.getNode()); 02182 return Sub; 02183 } 02184 } 02185 02186 // undef % X -> 0 02187 if (N0.getOpcode() == ISD::UNDEF) 02188 return DAG.getConstant(0, VT); 02189 // X % undef -> undef 02190 if (N1.getOpcode() == ISD::UNDEF) 02191 return N1; 02192 02193 return SDValue(); 02194 } 02195 02196 SDValue DAGCombiner::visitUREM(SDNode *N) { 02197 SDValue N0 = N->getOperand(0); 02198 SDValue N1 = N->getOperand(1); 02199 ConstantSDNode *N0C = isConstOrConstSplat(N0); 02200 ConstantSDNode *N1C = isConstOrConstSplat(N1); 02201 EVT VT = N->getValueType(0); 02202 02203 // fold (urem c1, c2) -> c1%c2 02204 if (N0C && N1C && !N1C->isNullValue()) 02205 return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C); 02206 // fold (urem x, pow2) -> (and x, pow2-1) 02207 if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2()) 02208 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, 02209 DAG.getConstant(N1C->getAPIntValue()-1,VT)); 02210 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) 02211 if (N1.getOpcode() == ISD::SHL) { 02212 if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) { 02213 if (SHC->getAPIntValue().isPowerOf2()) { 02214 SDValue Add = 02215 DAG.getNode(ISD::ADD, SDLoc(N), VT, N1, 02216 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), 02217 VT)); 02218 AddToWorklist(Add.getNode()); 02219 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, Add); 02220 } 02221 } 02222 } 02223 02224 // If X/C can be simplified by the division-by-constant logic, lower 02225 // X%C to the equivalent of X-X/C*C. 02226 if (N1C && !N1C->isNullValue()) { 02227 SDValue Div = DAG.getNode(ISD::UDIV, SDLoc(N), VT, N0, N1); 02228 AddToWorklist(Div.getNode()); 02229 SDValue OptimizedDiv = combine(Div.getNode()); 02230 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) { 02231 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, 02232 OptimizedDiv, N1); 02233 SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul); 02234 AddToWorklist(Mul.getNode()); 02235 return Sub; 02236 } 02237 } 02238 02239 // undef % X -> 0 02240 if (N0.getOpcode() == ISD::UNDEF) 02241 return DAG.getConstant(0, VT); 02242 // X % undef -> undef 02243 if (N1.getOpcode() == ISD::UNDEF) 02244 return N1; 02245 02246 return SDValue(); 02247 } 02248 02249 SDValue DAGCombiner::visitMULHS(SDNode *N) { 02250 SDValue N0 = N->getOperand(0); 02251 SDValue N1 = N->getOperand(1); 02252 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 02253 EVT VT = N->getValueType(0); 02254 SDLoc DL(N); 02255 02256 // fold (mulhs x, 0) -> 0 02257 if (N1C && N1C->isNullValue()) 02258 return N1; 02259 // fold (mulhs x, 1) -> (sra x, size(x)-1) 02260 if (N1C && N1C->getAPIntValue() == 1) 02261 return DAG.getNode(ISD::SRA, SDLoc(N), N0.getValueType(), N0, 02262 DAG.getConstant(N0.getValueType().getSizeInBits() - 1, 02263 getShiftAmountTy(N0.getValueType()))); 02264 // fold (mulhs x, undef) -> 0 02265 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) 02266 return DAG.getConstant(0, VT); 02267 02268 // If the type twice as wide is legal, transform the mulhs to a wider multiply 02269 // plus a shift. 02270 if (VT.isSimple() && !VT.isVector()) { 02271 MVT Simple = VT.getSimpleVT(); 02272 unsigned SimpleSize = Simple.getSizeInBits(); 02273 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 02274 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 02275 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); 02276 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); 02277 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 02278 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 02279 DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType()))); 02280 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 02281 } 02282 } 02283 02284 return SDValue(); 02285 } 02286 02287 SDValue DAGCombiner::visitMULHU(SDNode *N) { 02288 SDValue N0 = N->getOperand(0); 02289 SDValue N1 = N->getOperand(1); 02290 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 02291 EVT VT = N->getValueType(0); 02292 SDLoc DL(N); 02293 02294 // fold (mulhu x, 0) -> 0 02295 if (N1C && N1C->isNullValue()) 02296 return N1; 02297 // fold (mulhu x, 1) -> 0 02298 if (N1C && N1C->getAPIntValue() == 1) 02299 return DAG.getConstant(0, N0.getValueType()); 02300 // fold (mulhu x, undef) -> 0 02301 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) 02302 return DAG.getConstant(0, VT); 02303 02304 // If the type twice as wide is legal, transform the mulhu to a wider multiply 02305 // plus a shift. 02306 if (VT.isSimple() && !VT.isVector()) { 02307 MVT Simple = VT.getSimpleVT(); 02308 unsigned SimpleSize = Simple.getSizeInBits(); 02309 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 02310 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 02311 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); 02312 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); 02313 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 02314 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 02315 DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType()))); 02316 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 02317 } 02318 } 02319 02320 return SDValue(); 02321 } 02322 02323 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp 02324 /// give the opcodes for the two computations that are being performed. Return 02325 /// true if a simplification was made. 02326 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 02327 unsigned HiOp) { 02328 // If the high half is not needed, just compute the low half. 02329 bool HiExists = N->hasAnyUseOfValue(1); 02330 if (!HiExists && 02331 (!LegalOperations || 02332 TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { 02333 SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 02334 return CombineTo(N, Res, Res); 02335 } 02336 02337 // If the low half is not needed, just compute the high half. 02338 bool LoExists = N->hasAnyUseOfValue(0); 02339 if (!LoExists && 02340 (!LegalOperations || 02341 TLI.isOperationLegal(HiOp, N->getValueType(1)))) { 02342 SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 02343 return CombineTo(N, Res, Res); 02344 } 02345 02346 // If both halves are used, return as it is. 02347 if (LoExists && HiExists) 02348 return SDValue(); 02349 02350 // If the two computed results can be simplified separately, separate them. 02351 if (LoExists) { 02352 SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 02353 AddToWorklist(Lo.getNode()); 02354 SDValue LoOpt = combine(Lo.getNode()); 02355 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && 02356 (!LegalOperations || 02357 TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))) 02358 return CombineTo(N, LoOpt, LoOpt); 02359 } 02360 02361 if (HiExists) { 02362 SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 02363 AddToWorklist(Hi.getNode()); 02364 SDValue HiOpt = combine(Hi.getNode()); 02365 if (HiOpt.getNode() && HiOpt != Hi && 02366 (!LegalOperations || 02367 TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))) 02368 return CombineTo(N, HiOpt, HiOpt); 02369 } 02370 02371 return SDValue(); 02372 } 02373 02374 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { 02375 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS); 02376 if (Res.getNode()) return Res; 02377 02378 EVT VT = N->getValueType(0); 02379 SDLoc DL(N); 02380 02381 // If the type twice as wide is legal, transform the mulhu to a wider multiply 02382 // plus a shift. 02383 if (VT.isSimple() && !VT.isVector()) { 02384 MVT Simple = VT.getSimpleVT(); 02385 unsigned SimpleSize = Simple.getSizeInBits(); 02386 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 02387 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 02388 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); 02389 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); 02390 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 02391 // Compute the high part as N1. 02392 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 02393 DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType()))); 02394 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 02395 // Compute the low part as N0. 02396 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 02397 return CombineTo(N, Lo, Hi); 02398 } 02399 } 02400 02401 return SDValue(); 02402 } 02403 02404 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { 02405 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU); 02406 if (Res.getNode()) return Res; 02407 02408 EVT VT = N->getValueType(0); 02409 SDLoc DL(N); 02410 02411 // If the type twice as wide is legal, transform the mulhu to a wider multiply 02412 // plus a shift. 02413 if (VT.isSimple() && !VT.isVector()) { 02414 MVT Simple = VT.getSimpleVT(); 02415 unsigned SimpleSize = Simple.getSizeInBits(); 02416 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 02417 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 02418 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); 02419 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); 02420 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 02421 // Compute the high part as N1. 02422 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 02423 DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType()))); 02424 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 02425 // Compute the low part as N0. 02426 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 02427 return CombineTo(N, Lo, Hi); 02428 } 02429 } 02430 02431 return SDValue(); 02432 } 02433 02434 SDValue DAGCombiner::visitSMULO(SDNode *N) { 02435 // (smulo x, 2) -> (saddo x, x) 02436 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) 02437 if (C2->getAPIntValue() == 2) 02438 return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(), 02439 N->getOperand(0), N->getOperand(0)); 02440 02441 return SDValue(); 02442 } 02443 02444 SDValue DAGCombiner::visitUMULO(SDNode *N) { 02445 // (umulo x, 2) -> (uaddo x, x) 02446 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) 02447 if (C2->getAPIntValue() == 2) 02448 return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(), 02449 N->getOperand(0), N->getOperand(0)); 02450 02451 return SDValue(); 02452 } 02453 02454 SDValue DAGCombiner::visitSDIVREM(SDNode *N) { 02455 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM); 02456 if (Res.getNode()) return Res; 02457 02458 return SDValue(); 02459 } 02460 02461 SDValue DAGCombiner::visitUDIVREM(SDNode *N) { 02462 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM); 02463 if (Res.getNode()) return Res; 02464 02465 return SDValue(); 02466 } 02467 02468 /// If this is a binary operator with two operands of the same opcode, try to 02469 /// simplify it. 02470 SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) { 02471 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 02472 EVT VT = N0.getValueType(); 02473 assert(N0.getOpcode() == N1.getOpcode() && "Bad input!"); 02474 02475 // Bail early if none of these transforms apply. 02476 if (N0.getNode()->getNumOperands() == 0) return SDValue(); 02477 02478 // For each of OP in AND/OR/XOR: 02479 // fold (OP (zext x), (zext y)) -> (zext (OP x, y)) 02480 // fold (OP (sext x), (sext y)) -> (sext (OP x, y)) 02481 // fold (OP (aext x), (aext y)) -> (aext (OP x, y)) 02482 // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free) 02483 // 02484 // do not sink logical op inside of a vector extend, since it may combine 02485 // into a vsetcc. 02486 EVT Op0VT = N0.getOperand(0).getValueType(); 02487 if ((N0.getOpcode() == ISD::ZERO_EXTEND || 02488 N0.getOpcode() == ISD::SIGN_EXTEND || 02489 // Avoid infinite looping with PromoteIntBinOp. 02490 (N0.getOpcode() == ISD::ANY_EXTEND && 02491 (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) || 02492 (N0.getOpcode() == ISD::TRUNCATE && 02493 (!TLI.isZExtFree(VT, Op0VT) || 02494 !TLI.isTruncateFree(Op0VT, VT)) && 02495 TLI.isTypeLegal(Op0VT))) && 02496 !VT.isVector() && 02497 Op0VT == N1.getOperand(0).getValueType() && 02498 (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) { 02499 SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0), 02500 N0.getOperand(0).getValueType(), 02501 N0.getOperand(0), N1.getOperand(0)); 02502 AddToWorklist(ORNode.getNode()); 02503 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode); 02504 } 02505 02506 // For each of OP in SHL/SRL/SRA/AND... 02507 // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z) 02508 // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z) 02509 // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z) 02510 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL || 02511 N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) && 02512 N0.getOperand(1) == N1.getOperand(1)) { 02513 SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0), 02514 N0.getOperand(0).getValueType(), 02515 N0.getOperand(0), N1.getOperand(0)); 02516 AddToWorklist(ORNode.getNode()); 02517 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, 02518 ORNode, N0.getOperand(1)); 02519 } 02520 02521 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) 02522 // Only perform this optimization after type legalization and before 02523 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by 02524 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and 02525 // we don't want to undo this promotion. 02526 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper 02527 // on scalars. 02528 if ((N0.getOpcode() == ISD::BITCAST || 02529 N0.getOpcode() == ISD::SCALAR_TO_VECTOR) && 02530 Level == AfterLegalizeTypes) { 02531 SDValue In0 = N0.getOperand(0); 02532 SDValue In1 = N1.getOperand(0); 02533 EVT In0Ty = In0.getValueType(); 02534 EVT In1Ty = In1.getValueType(); 02535 SDLoc DL(N); 02536 // If both incoming values are integers, and the original types are the 02537 // same. 02538 if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) { 02539 SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1); 02540 SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op); 02541 AddToWorklist(Op.getNode()); 02542 return BC; 02543 } 02544 } 02545 02546 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). 02547 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) 02548 // If both shuffles use the same mask, and both shuffle within a single 02549 // vector, then it is worthwhile to move the swizzle after the operation. 02550 // The type-legalizer generates this pattern when loading illegal 02551 // vector types from memory. In many cases this allows additional shuffle 02552 // optimizations. 02553 // There are other cases where moving the shuffle after the xor/and/or 02554 // is profitable even if shuffles don't perform a swizzle. 02555 // If both shuffles use the same mask, and both shuffles have the same first 02556 // or second operand, then it might still be profitable to move the shuffle 02557 // after the xor/and/or operation. 02558 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { 02559 ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0); 02560 ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1); 02561 02562 assert(N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() && 02563 "Inputs to shuffles are not the same type"); 02564 02565 // Check that both shuffles use the same mask. The masks are known to be of 02566 // the same length because the result vector type is the same. 02567 // Check also that shuffles have only one use to avoid introducing extra 02568 // instructions. 02569 if (SVN0->hasOneUse() && SVN1->hasOneUse() && 02570 SVN0->getMask().equals(SVN1->getMask())) { 02571 SDValue ShOp = N0->getOperand(1); 02572 02573 // Don't try to fold this node if it requires introducing a 02574 // build vector of all zeros that might be illegal at this stage. 02575 if (N->getOpcode() == ISD::XOR && ShOp.getOpcode() != ISD::UNDEF) { 02576 if (!LegalTypes) 02577 ShOp = DAG.getConstant(0, VT); 02578 else 02579 ShOp = SDValue(); 02580 } 02581 02582 // (AND (shuf (A, C), shuf (B, C)) -> shuf (AND (A, B), C) 02583 // (OR (shuf (A, C), shuf (B, C)) -> shuf (OR (A, B), C) 02584 // (XOR (shuf (A, C), shuf (B, C)) -> shuf (XOR (A, B), V_0) 02585 if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { 02586 SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 02587 N0->getOperand(0), N1->getOperand(0)); 02588 AddToWorklist(NewNode.getNode()); 02589 return DAG.getVectorShuffle(VT, SDLoc(N), NewNode, ShOp, 02590 &SVN0->getMask()[0]); 02591 } 02592 02593 // Don't try to fold this node if it requires introducing a 02594 // build vector of all zeros that might be illegal at this stage. 02595 ShOp = N0->getOperand(0); 02596 if (N->getOpcode() == ISD::XOR && ShOp.getOpcode() != ISD::UNDEF) { 02597 if (!LegalTypes) 02598 ShOp = DAG.getConstant(0, VT); 02599 else 02600 ShOp = SDValue(); 02601 } 02602 02603 // (AND (shuf (C, A), shuf (C, B)) -> shuf (C, AND (A, B)) 02604 // (OR (shuf (C, A), shuf (C, B)) -> shuf (C, OR (A, B)) 02605 // (XOR (shuf (C, A), shuf (C, B)) -> shuf (V_0, XOR (A, B)) 02606 if (N0->getOperand(0) == N1->getOperand(0) && ShOp.getNode()) { 02607 SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 02608 N0->getOperand(1), N1->getOperand(1)); 02609 AddToWorklist(NewNode.getNode()); 02610 return DAG.getVectorShuffle(VT, SDLoc(N), ShOp, NewNode, 02611 &SVN0->getMask()[0]); 02612 } 02613 } 02614 } 02615 02616 return SDValue(); 02617 } 02618 02619 SDValue DAGCombiner::visitAND(SDNode *N) { 02620 SDValue N0 = N->getOperand(0); 02621 SDValue N1 = N->getOperand(1); 02622 SDValue LL, LR, RL, RR, CC0, CC1; 02623 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 02624 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 02625 EVT VT = N1.getValueType(); 02626 unsigned BitWidth = VT.getScalarType().getSizeInBits(); 02627 02628 // fold vector ops 02629 if (VT.isVector()) { 02630 SDValue FoldedVOp = SimplifyVBinOp(N); 02631 if (FoldedVOp.getNode()) return FoldedVOp; 02632 02633 // fold (and x, 0) -> 0, vector edition 02634 if (ISD::isBuildVectorAllZeros(N0.getNode())) 02635 // do not return N0, because undef node may exist in N0 02636 return DAG.getConstant( 02637 APInt::getNullValue( 02638 N0.getValueType().getScalarType().getSizeInBits()), 02639 N0.getValueType()); 02640 if (ISD::isBuildVectorAllZeros(N1.getNode())) 02641 // do not return N1, because undef node may exist in N1 02642 return DAG.getConstant( 02643 APInt::getNullValue( 02644 N1.getValueType().getScalarType().getSizeInBits()), 02645 N1.getValueType()); 02646 02647 // fold (and x, -1) -> x, vector edition 02648 if (ISD::isBuildVectorAllOnes(N0.getNode())) 02649 return N1; 02650 if (ISD::isBuildVectorAllOnes(N1.getNode())) 02651 return N0; 02652 } 02653 02654 // fold (and x, undef) -> 0 02655 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) 02656 return DAG.getConstant(0, VT); 02657 // fold (and c1, c2) -> c1&c2 02658 if (N0C && N1C) 02659 return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C); 02660 // canonicalize constant to RHS 02661 if (N0C && !N1C) 02662 return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); 02663 // fold (and x, -1) -> x 02664 if (N1C && N1C->isAllOnesValue()) 02665 return N0; 02666 // if (and x, c) is known to be zero, return 0 02667 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 02668 APInt::getAllOnesValue(BitWidth))) 02669 return DAG.getConstant(0, VT); 02670 // reassociate and 02671 SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1); 02672 if (RAND.getNode()) 02673 return RAND; 02674 // fold (and (or x, C), D) -> D if (C & D) == D 02675 if (N1C && N0.getOpcode() == ISD::OR) 02676 if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) 02677 if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue()) 02678 return N1; 02679 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. 02680 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 02681 SDValue N0Op0 = N0.getOperand(0); 02682 APInt Mask = ~N1C->getAPIntValue(); 02683 Mask = Mask.trunc(N0Op0.getValueSizeInBits()); 02684 if (DAG.MaskedValueIsZero(N0Op0, Mask)) { 02685 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), 02686 N0.getValueType(), N0Op0); 02687 02688 // Replace uses of the AND with uses of the Zero extend node. 02689 CombineTo(N, Zext); 02690 02691 // We actually want to replace all uses of the any_extend with the 02692 // zero_extend, to avoid duplicating things. This will later cause this 02693 // AND to be folded. 02694 CombineTo(N0.getNode(), Zext); 02695 return SDValue(N, 0); // Return N so it doesn't get rechecked! 02696 } 02697 } 02698 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> 02699 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must 02700 // already be zero by virtue of the width of the base type of the load. 02701 // 02702 // the 'X' node here can either be nothing or an extract_vector_elt to catch 02703 // more cases. 02704 if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 02705 N0.getOperand(0).getOpcode() == ISD::LOAD) || 02706 N0.getOpcode() == ISD::LOAD) { 02707 LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? 02708 N0 : N0.getOperand(0) ); 02709 02710 // Get the constant (if applicable) the zero'th operand is being ANDed with. 02711 // This can be a pure constant or a vector splat, in which case we treat the 02712 // vector as a scalar and use the splat value. 02713 APInt Constant = APInt::getNullValue(1); 02714 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { 02715 Constant = C->getAPIntValue(); 02716 } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { 02717 APInt SplatValue, SplatUndef; 02718 unsigned SplatBitSize; 02719 bool HasAnyUndefs; 02720 bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, 02721 SplatBitSize, HasAnyUndefs); 02722 if (IsSplat) { 02723 // Undef bits can contribute to a possible optimisation if set, so 02724 // set them. 02725 SplatValue |= SplatUndef; 02726 02727 // The splat value may be something like "0x00FFFFFF", which means 0 for 02728 // the first vector value and FF for the rest, repeating. We need a mask 02729 // that will apply equally to all members of the vector, so AND all the 02730 // lanes of the constant together. 02731 EVT VT = Vector->getValueType(0); 02732 unsigned BitWidth = VT.getVectorElementType().getSizeInBits(); 02733 02734 // If the splat value has been compressed to a bitlength lower 02735 // than the size of the vector lane, we need to re-expand it to 02736 // the lane size. 02737 if (BitWidth > SplatBitSize) 02738 for (SplatValue = SplatValue.zextOrTrunc(BitWidth); 02739 SplatBitSize < BitWidth; 02740 SplatBitSize = SplatBitSize * 2) 02741 SplatValue |= SplatValue.shl(SplatBitSize); 02742 02743 Constant = APInt::getAllOnesValue(BitWidth); 02744 for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i) 02745 Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth); 02746 } 02747 } 02748 02749 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is 02750 // actually legal and isn't going to get expanded, else this is a false 02751 // optimisation. 02752 bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, 02753 Load->getMemoryVT()); 02754 02755 // Resize the constant to the same size as the original memory access before 02756 // extension. If it is still the AllOnesValue then this AND is completely 02757 // unneeded. 02758 Constant = 02759 Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits()); 02760 02761 bool B; 02762 switch (Load->getExtensionType()) { 02763 default: B = false; break; 02764 case ISD::EXTLOAD: B = CanZextLoadProfitably; break; 02765 case ISD::ZEXTLOAD: 02766 case ISD::NON_EXTLOAD: B = true; break; 02767 } 02768 02769 if (B && Constant.isAllOnesValue()) { 02770 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to 02771 // preserve semantics once we get rid of the AND. 02772 SDValue NewLoad(Load, 0); 02773 if (Load->getExtensionType() == ISD::EXTLOAD) { 02774 NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, 02775 Load->getValueType(0), SDLoc(Load), 02776 Load->getChain(), Load->getBasePtr(), 02777 Load->getOffset(), Load->getMemoryVT(), 02778 Load->getMemOperand()); 02779 // Replace uses of the EXTLOAD with the new ZEXTLOAD. 02780 if (Load->getNumValues() == 3) { 02781 // PRE/POST_INC loads have 3 values. 02782 SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), 02783 NewLoad.getValue(2) }; 02784 CombineTo(Load, To, 3, true); 02785 } else { 02786 CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); 02787 } 02788 } 02789 02790 // Fold the AND away, taking care not to fold to the old load node if we 02791 // replaced it. 02792 CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); 02793 02794 return SDValue(N, 0); // Return N so it doesn't get rechecked! 02795 } 02796 } 02797 // fold (and (setcc x), (setcc y)) -> (setcc (and x, y)) 02798 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ 02799 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); 02800 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); 02801 02802 if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 && 02803 LL.getValueType().isInteger()) { 02804 // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0) 02805 if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) { 02806 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0), 02807 LR.getValueType(), LL, RL); 02808 AddToWorklist(ORNode.getNode()); 02809 return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1); 02810 } 02811 // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1) 02812 if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) { 02813 SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0), 02814 LR.getValueType(), LL, RL); 02815 AddToWorklist(ANDNode.getNode()); 02816 return DAG.getSetCC(SDLoc(N), VT, ANDNode, LR, Op1); 02817 } 02818 // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1) 02819 if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) { 02820 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0), 02821 LR.getValueType(), LL, RL); 02822 AddToWorklist(ORNode.getNode()); 02823 return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1); 02824 } 02825 } 02826 // Simplify (and (setne X, 0), (setne X, -1)) -> (setuge (add X, 1), 2) 02827 if (LL == RL && isa<ConstantSDNode>(LR) && isa<ConstantSDNode>(RR) && 02828 Op0 == Op1 && LL.getValueType().isInteger() && 02829 Op0 == ISD::SETNE && ((cast<ConstantSDNode>(LR)->isNullValue() && 02830 cast<ConstantSDNode>(RR)->isAllOnesValue()) || 02831 (cast<ConstantSDNode>(LR)->isAllOnesValue() && 02832 cast<ConstantSDNode>(RR)->isNullValue()))) { 02833 SDValue ADDNode = DAG.getNode(ISD::ADD, SDLoc(N0), LL.getValueType(), 02834 LL, DAG.getConstant(1, LL.getValueType())); 02835 AddToWorklist(ADDNode.getNode()); 02836 return DAG.getSetCC(SDLoc(N), VT, ADDNode, 02837 DAG.getConstant(2, LL.getValueType()), ISD::SETUGE); 02838 } 02839 // canonicalize equivalent to ll == rl 02840 if (LL == RR && LR == RL) { 02841 Op1 = ISD::getSetCCSwappedOperands(Op1); 02842 std::swap(RL, RR); 02843 } 02844 if (LL == RL && LR == RR) { 02845 bool isInteger = LL.getValueType().isInteger(); 02846 ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger); 02847 if (Result != ISD::SETCC_INVALID && 02848 (!LegalOperations || 02849 (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) && 02850 TLI.isOperationLegal(ISD::SETCC, 02851 getSetCCResultType(N0.getSimpleValueType()))))) 02852 return DAG.getSetCC(SDLoc(N), N0.getValueType(), 02853 LL, LR, Result); 02854 } 02855 } 02856 02857 // Simplify: (and (op x...), (op y...)) -> (op (and x, y)) 02858 if (N0.getOpcode() == N1.getOpcode()) { 02859 SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N); 02860 if (Tmp.getNode()) return Tmp; 02861 } 02862 02863 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) 02864 // fold (and (sra)) -> (and (srl)) when possible. 02865 if (!VT.isVector() && 02866 SimplifyDemandedBits(SDValue(N, 0))) 02867 return SDValue(N, 0); 02868 02869 // fold (zext_inreg (extload x)) -> (zextload x) 02870 if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) { 02871 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 02872 EVT MemVT = LN0->getMemoryVT(); 02873 // If we zero all the possible extended bits, then we can turn this into 02874 // a zextload if we are running before legalize or the operation is legal. 02875 unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits(); 02876 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, 02877 BitWidth - MemVT.getScalarType().getSizeInBits())) && 02878 ((!LegalOperations && !LN0->isVolatile()) || 02879 TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) { 02880 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, 02881 LN0->getChain(), LN0->getBasePtr(), 02882 MemVT, LN0->getMemOperand()); 02883 AddToWorklist(N); 02884 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 02885 return SDValue(N, 0); // Return N so it doesn't get rechecked! 02886 } 02887 } 02888 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use 02889 if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 02890 N0.hasOneUse()) { 02891 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 02892 EVT MemVT = LN0->getMemoryVT(); 02893 // If we zero all the possible extended bits, then we can turn this into 02894 // a zextload if we are running before legalize or the operation is legal. 02895 unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits(); 02896 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, 02897 BitWidth - MemVT.getScalarType().getSizeInBits())) && 02898 ((!LegalOperations && !LN0->isVolatile()) || 02899 TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) { 02900 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, 02901 LN0->getChain(), LN0->getBasePtr(), 02902 MemVT, LN0->getMemOperand()); 02903 AddToWorklist(N); 02904 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 02905 return SDValue(N, 0); // Return N so it doesn't get rechecked! 02906 } 02907 } 02908 02909 // fold (and (load x), 255) -> (zextload x, i8) 02910 // fold (and (extload x, i16), 255) -> (zextload x, i8) 02911 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) 02912 if (N1C && (N0.getOpcode() == ISD::LOAD || 02913 (N0.getOpcode() == ISD::ANY_EXTEND && 02914 N0.getOperand(0).getOpcode() == ISD::LOAD))) { 02915 bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND; 02916 LoadSDNode *LN0 = HasAnyExt 02917 ? cast<LoadSDNode>(N0.getOperand(0)) 02918 : cast<LoadSDNode>(N0); 02919 if (LN0->getExtensionType() != ISD::SEXTLOAD && 02920 LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) { 02921 uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits(); 02922 if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){ 02923 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 02924 EVT LoadedVT = LN0->getMemoryVT(); 02925 02926 if (ExtVT == LoadedVT && 02927 (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) { 02928 EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT; 02929 02930 SDValue NewLoad = 02931 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy, 02932 LN0->getChain(), LN0->getBasePtr(), ExtVT, 02933 LN0->getMemOperand()); 02934 AddToWorklist(N); 02935 CombineTo(LN0, NewLoad, NewLoad.getValue(1)); 02936 return SDValue(N, 0); // Return N so it doesn't get rechecked! 02937 } 02938 02939 // Do not change the width of a volatile load. 02940 // Do not generate loads of non-round integer types since these can 02941 // be expensive (and would be wrong if the type is not byte sized). 02942 if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() && 02943 (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) { 02944 EVT PtrType = LN0->getOperand(1).getValueType(); 02945 02946 unsigned Alignment = LN0->getAlignment(); 02947 SDValue NewPtr = LN0->getBasePtr(); 02948 02949 // For big endian targets, we need to add an offset to the pointer 02950 // to load the correct bytes. For little endian systems, we merely 02951 // need to read fewer bytes from the same pointer. 02952 if (TLI.isBigEndian()) { 02953 unsigned LVTStoreBytes = LoadedVT.getStoreSize(); 02954 unsigned EVTStoreBytes = ExtVT.getStoreSize(); 02955 unsigned PtrOff = LVTStoreBytes - EVTStoreBytes; 02956 NewPtr = DAG.getNode(ISD::ADD, SDLoc(LN0), PtrType, 02957 NewPtr, DAG.getConstant(PtrOff, PtrType)); 02958 Alignment = MinAlign(Alignment, PtrOff); 02959 } 02960 02961 AddToWorklist(NewPtr.getNode()); 02962 02963 EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT; 02964 SDValue Load = 02965 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy, 02966 LN0->getChain(), NewPtr, 02967 LN0->getPointerInfo(), 02968 ExtVT, LN0->isVolatile(), LN0->isNonTemporal(), 02969 LN0->isInvariant(), Alignment, LN0->getAAInfo()); 02970 AddToWorklist(N); 02971 CombineTo(LN0, Load, Load.getValue(1)); 02972 return SDValue(N, 0); // Return N so it doesn't get rechecked! 02973 } 02974 } 02975 } 02976 } 02977 02978 if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && 02979 VT.getSizeInBits() <= 64) { 02980 if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 02981 APInt ADDC = ADDI->getAPIntValue(); 02982 if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 02983 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal 02984 // immediate for an add, but it is legal if its top c2 bits are set, 02985 // transform the ADD so the immediate doesn't need to be materialized 02986 // in a register. 02987 if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { 02988 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 02989 SRLI->getZExtValue()); 02990 if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { 02991 ADDC |= Mask; 02992 if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 02993 SDValue NewAdd = 02994 DAG.getNode(ISD::ADD, SDLoc(N0), VT, 02995 N0.getOperand(0), DAG.getConstant(ADDC, VT)); 02996 CombineTo(N0.getNode(), NewAdd); 02997 return SDValue(N, 0); // Return N so it doesn't get rechecked! 02998 } 02999 } 03000 } 03001 } 03002 } 03003 } 03004 03005 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) 03006 if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { 03007 SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 03008 N0.getOperand(1), false); 03009 if (BSwap.getNode()) 03010 return BSwap; 03011 } 03012 03013 return SDValue(); 03014 } 03015 03016 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16. 03017 SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 03018 bool DemandHighBits) { 03019 if (!LegalOperations) 03020 return SDValue(); 03021 03022 EVT VT = N->getValueType(0); 03023 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) 03024 return SDValue(); 03025 if (!TLI.isOperationLegal(ISD::BSWAP, VT)) 03026 return SDValue(); 03027 03028 // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00) 03029 bool LookPassAnd0 = false; 03030 bool LookPassAnd1 = false; 03031 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) 03032 std::swap(N0, N1); 03033 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) 03034 std::swap(N0, N1); 03035 if (N0.getOpcode() == ISD::AND) { 03036 if (!N0.getNode()->hasOneUse()) 03037 return SDValue(); 03038 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 03039 if (!N01C || N01C->getZExtValue() != 0xFF00) 03040 return SDValue(); 03041 N0 = N0.getOperand(0); 03042 LookPassAnd0 = true; 03043 } 03044 03045 if (N1.getOpcode() == ISD::AND) { 03046 if (!N1.getNode()->hasOneUse()) 03047 return SDValue(); 03048 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 03049 if (!N11C || N11C->getZExtValue() != 0xFF) 03050 return SDValue(); 03051 N1 = N1.getOperand(0); 03052 LookPassAnd1 = true; 03053 } 03054 03055 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) 03056 std::swap(N0, N1); 03057 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) 03058 return SDValue(); 03059 if (!N0.getNode()->hasOneUse() || 03060 !N1.getNode()->hasOneUse()) 03061 return SDValue(); 03062 03063 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 03064 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 03065 if (!N01C || !N11C) 03066 return SDValue(); 03067 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) 03068 return SDValue(); 03069 03070 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) 03071 SDValue N00 = N0->getOperand(0); 03072 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { 03073 if (!N00.getNode()->hasOneUse()) 03074 return SDValue(); 03075 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); 03076 if (!N001C || N001C->getZExtValue() != 0xFF) 03077 return SDValue(); 03078 N00 = N00.getOperand(0); 03079 LookPassAnd0 = true; 03080 } 03081 03082 SDValue N10 = N1->getOperand(0); 03083 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { 03084 if (!N10.getNode()->hasOneUse()) 03085 return SDValue(); 03086 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); 03087 if (!N101C || N101C->getZExtValue() != 0xFF00) 03088 return SDValue(); 03089 N10 = N10.getOperand(0); 03090 LookPassAnd1 = true; 03091 } 03092 03093 if (N00 != N10) 03094 return SDValue(); 03095 03096 // Make sure everything beyond the low halfword gets set to zero since the SRL 03097 // 16 will clear the top bits. 03098 unsigned OpSizeInBits = VT.getSizeInBits(); 03099 if (DemandHighBits && OpSizeInBits > 16) { 03100 // If the left-shift isn't masked out then the only way this is a bswap is 03101 // if all bits beyond the low 8 are 0. In that case the entire pattern 03102 // reduces to a left shift anyway: leave it for other parts of the combiner. 03103 if (!LookPassAnd0) 03104 return SDValue(); 03105 03106 // However, if the right shift isn't masked out then it might be because 03107 // it's not needed. See if we can spot that too. 03108 if (!LookPassAnd1 && 03109 !DAG.MaskedValueIsZero( 03110 N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) 03111 return SDValue(); 03112 } 03113 03114 SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); 03115 if (OpSizeInBits > 16) 03116 Res = DAG.getNode(ISD::SRL, SDLoc(N), VT, Res, 03117 DAG.getConstant(OpSizeInBits-16, getShiftAmountTy(VT))); 03118 return Res; 03119 } 03120 03121 /// Return true if the specified node is an element that makes up a 32-bit 03122 /// packed halfword byteswap. 03123 /// ((x & 0x000000ff) << 8) | 03124 /// ((x & 0x0000ff00) >> 8) | 03125 /// ((x & 0x00ff0000) << 8) | 03126 /// ((x & 0xff000000) >> 8) 03127 static bool isBSwapHWordElement(SDValue N, SmallVectorImpl<SDNode *> &Parts) { 03128 if (!N.getNode()->hasOneUse()) 03129 return false; 03130 03131 unsigned Opc = N.getOpcode(); 03132 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) 03133 return false; 03134 03135 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 03136 if (!N1C) 03137 return false; 03138 03139 unsigned Num; 03140 switch (N1C->getZExtValue()) { 03141 default: 03142 return false; 03143 case 0xFF: Num = 0; break; 03144 case 0xFF00: Num = 1; break; 03145 case 0xFF0000: Num = 2; break; 03146 case 0xFF000000: Num = 3; break; 03147 } 03148 03149 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). 03150 SDValue N0 = N.getOperand(0); 03151 if (Opc == ISD::AND) { 03152 if (Num == 0 || Num == 2) { 03153 // (x >> 8) & 0xff 03154 // (x >> 8) & 0xff0000 03155 if (N0.getOpcode() != ISD::SRL) 03156 return false; 03157 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 03158 if (!C || C->getZExtValue() != 8) 03159 return false; 03160 } else { 03161 // (x << 8) & 0xff00 03162 // (x << 8) & 0xff000000 03163 if (N0.getOpcode() != ISD::SHL) 03164 return false; 03165 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 03166 if (!C || C->getZExtValue() != 8) 03167 return false; 03168 } 03169 } else if (Opc == ISD::SHL) { 03170 // (x & 0xff) << 8 03171 // (x & 0xff0000) << 8 03172 if (Num != 0 && Num != 2) 03173 return false; 03174 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 03175 if (!C || C->getZExtValue() != 8) 03176 return false; 03177 } else { // Opc == ISD::SRL 03178 // (x & 0xff00) >> 8 03179 // (x & 0xff000000) >> 8 03180 if (Num != 1 && Num != 3) 03181 return false; 03182 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 03183 if (!C || C->getZExtValue() != 8) 03184 return false; 03185 } 03186 03187 if (Parts[Num]) 03188 return false; 03189 03190 Parts[Num] = N0.getOperand(0).getNode(); 03191 return true; 03192 } 03193 03194 /// Match a 32-bit packed halfword bswap. That is 03195 /// ((x & 0x000000ff) << 8) | 03196 /// ((x & 0x0000ff00) >> 8) | 03197 /// ((x & 0x00ff0000) << 8) | 03198 /// ((x & 0xff000000) >> 8) 03199 /// => (rotl (bswap x), 16) 03200 SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { 03201 if (!LegalOperations) 03202 return SDValue(); 03203 03204 EVT VT = N->getValueType(0); 03205 if (VT != MVT::i32) 03206 return SDValue(); 03207 if (!TLI.isOperationLegal(ISD::BSWAP, VT)) 03208 return SDValue(); 03209 03210 SmallVector<SDNode*,4> Parts(4, (SDNode*)nullptr); 03211 // Look for either 03212 // (or (or (and), (and)), (or (and), (and))) 03213 // (or (or (or (and), (and)), (and)), (and)) 03214 if (N0.getOpcode() != ISD::OR) 03215 return SDValue(); 03216 SDValue N00 = N0.getOperand(0); 03217 SDValue N01 = N0.getOperand(1); 03218 03219 if (N1.getOpcode() == ISD::OR && 03220 N00.getNumOperands() == 2 && N01.getNumOperands() == 2) { 03221 // (or (or (and), (and)), (or (and), (and))) 03222 SDValue N000 = N00.getOperand(0); 03223 if (!isBSwapHWordElement(N000, Parts)) 03224 return SDValue(); 03225 03226 SDValue N001 = N00.getOperand(1); 03227 if (!isBSwapHWordElement(N001, Parts)) 03228 return SDValue(); 03229 SDValue N010 = N01.getOperand(0); 03230 if (!isBSwapHWordElement(N010, Parts)) 03231 return SDValue(); 03232 SDValue N011 = N01.getOperand(1); 03233 if (!isBSwapHWordElement(N011, Parts)) 03234 return SDValue(); 03235 } else { 03236 // (or (or (or (and), (and)), (and)), (and)) 03237 if (!isBSwapHWordElement(N1, Parts)) 03238 return SDValue(); 03239 if (!isBSwapHWordElement(N01, Parts)) 03240 return SDValue(); 03241 if (N00.getOpcode() != ISD::OR) 03242 return SDValue(); 03243 SDValue N000 = N00.getOperand(0); 03244 if (!isBSwapHWordElement(N000, Parts)) 03245 return SDValue(); 03246 SDValue N001 = N00.getOperand(1); 03247 if (!isBSwapHWordElement(N001, Parts)) 03248 return SDValue(); 03249 } 03250 03251 // Make sure the parts are all coming from the same node. 03252 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) 03253 return SDValue(); 03254 03255 SDValue BSwap = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, 03256 SDValue(Parts[0],0)); 03257 03258 // Result of the bswap should be rotated by 16. If it's not legal, then 03259 // do (x << 16) | (x >> 16). 03260 SDValue ShAmt = DAG.getConstant(16, getShiftAmountTy(VT)); 03261 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) 03262 return DAG.getNode(ISD::ROTL, SDLoc(N), VT, BSwap, ShAmt); 03263 if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) 03264 return DAG.getNode(ISD::ROTR, SDLoc(N), VT, BSwap, ShAmt); 03265 return DAG.getNode(ISD::OR, SDLoc(N), VT, 03266 DAG.getNode(ISD::SHL, SDLoc(N), VT, BSwap, ShAmt), 03267 DAG.getNode(ISD::SRL, SDLoc(N), VT, BSwap, ShAmt)); 03268 } 03269 03270 SDValue DAGCombiner::visitOR(SDNode *N) { 03271 SDValue N0 = N->getOperand(0); 03272 SDValue N1 = N->getOperand(1); 03273 SDValue LL, LR, RL, RR, CC0, CC1; 03274 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 03275 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 03276 EVT VT = N1.getValueType(); 03277 03278 // fold vector ops 03279 if (VT.isVector()) { 03280 SDValue FoldedVOp = SimplifyVBinOp(N); 03281 if (FoldedVOp.getNode()) return FoldedVOp; 03282 03283 // fold (or x, 0) -> x, vector edition 03284 if (ISD::isBuildVectorAllZeros(N0.getNode())) 03285 return N1; 03286 if (ISD::isBuildVectorAllZeros(N1.getNode())) 03287 return N0; 03288 03289 // fold (or x, -1) -> -1, vector edition 03290 if (ISD::isBuildVectorAllOnes(N0.getNode())) 03291 // do not return N0, because undef node may exist in N0 03292 return DAG.getConstant( 03293 APInt::getAllOnesValue( 03294 N0.getValueType().getScalarType().getSizeInBits()), 03295 N0.getValueType()); 03296 if (ISD::isBuildVectorAllOnes(N1.getNode())) 03297 // do not return N1, because undef node may exist in N1 03298 return DAG.getConstant( 03299 APInt::getAllOnesValue( 03300 N1.getValueType().getScalarType().getSizeInBits()), 03301 N1.getValueType()); 03302 03303 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask1) 03304 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf B, A, Mask2) 03305 // Do this only if the resulting shuffle is legal. 03306 if (isa<ShuffleVectorSDNode>(N0) && 03307 isa<ShuffleVectorSDNode>(N1) && 03308 // Avoid folding a node with illegal type. 03309 TLI.isTypeLegal(VT) && 03310 N0->getOperand(1) == N1->getOperand(1) && 03311 ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode())) { 03312 bool CanFold = true; 03313 unsigned NumElts = VT.getVectorNumElements(); 03314 const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0); 03315 const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1); 03316 // We construct two shuffle masks: 03317 // - Mask1 is a shuffle mask for a shuffle with N0 as the first operand 03318 // and N1 as the second operand. 03319 // - Mask2 is a shuffle mask for a shuffle with N1 as the first operand 03320 // and N0 as the second operand. 03321 // We do this because OR is commutable and therefore there might be 03322 // two ways to fold this node into a shuffle. 03323 SmallVector<int,4> Mask1; 03324 SmallVector<int,4> Mask2; 03325 03326 for (unsigned i = 0; i != NumElts && CanFold; ++i) { 03327 int M0 = SV0->getMaskElt(i); 03328 int M1 = SV1->getMaskElt(i); 03329 03330 // Both shuffle indexes are undef. Propagate Undef. 03331 if (M0 < 0 && M1 < 0) { 03332 Mask1.push_back(M0); 03333 Mask2.push_back(M0); 03334 continue; 03335 } 03336 03337 if (M0 < 0 || M1 < 0 || 03338 (M0 < (int)NumElts && M1 < (int)NumElts) || 03339 (M0 >= (int)NumElts && M1 >= (int)NumElts)) { 03340 CanFold = false; 03341 break; 03342 } 03343 03344 Mask1.push_back(M0 < (int)NumElts ? M0 : M1 + NumElts); 03345 Mask2.push_back(M1 < (int)NumElts ? M1 : M0 + NumElts); 03346 } 03347 03348 if (CanFold) { 03349 // Fold this sequence only if the resulting shuffle is 'legal'. 03350 if (TLI.isShuffleMaskLegal(Mask1, VT)) 03351 return DAG.getVectorShuffle(VT, SDLoc(N), N0->getOperand(0), 03352 N1->getOperand(0), &Mask1[0]); 03353 if (TLI.isShuffleMaskLegal(Mask2, VT)) 03354 return DAG.getVectorShuffle(VT, SDLoc(N), N1->getOperand(0), 03355 N0->getOperand(0), &Mask2[0]); 03356 } 03357 } 03358 } 03359 03360 // fold (or x, undef) -> -1 03361 if (!LegalOperations && 03362 (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) { 03363 EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT; 03364 return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT); 03365 } 03366 // fold (or c1, c2) -> c1|c2 03367 if (N0C && N1C) 03368 return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C); 03369 // canonicalize constant to RHS 03370 if (N0C && !N1C) 03371 return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); 03372 // fold (or x, 0) -> x 03373 if (N1C && N1C->isNullValue()) 03374 return N0; 03375 // fold (or x, -1) -> -1 03376 if (N1C && N1C->isAllOnesValue()) 03377 return N1; 03378 // fold (or x, c) -> c iff (x & ~c) == 0 03379 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) 03380 return N1; 03381 03382 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) 03383 SDValue BSwap = MatchBSwapHWord(N, N0, N1); 03384 if (BSwap.getNode()) 03385 return BSwap; 03386 BSwap = MatchBSwapHWordLow(N, N0, N1); 03387 if (BSwap.getNode()) 03388 return BSwap; 03389 03390 // reassociate or 03391 SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1); 03392 if (ROR.getNode()) 03393 return ROR; 03394 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) 03395 // iff (c1 & c2) == 0. 03396 if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 03397 isa<ConstantSDNode>(N0.getOperand(1))) { 03398 ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1)); 03399 if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0) { 03400 SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1); 03401 if (!COR.getNode()) 03402 return SDValue(); 03403 return DAG.getNode(ISD::AND, SDLoc(N), VT, 03404 DAG.getNode(ISD::OR, SDLoc(N0), VT, 03405 N0.getOperand(0), N1), COR); 03406 } 03407 } 03408 // fold (or (setcc x), (setcc y)) -> (setcc (or x, y)) 03409 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ 03410 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); 03411 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); 03412 03413 if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 && 03414 LL.getValueType().isInteger()) { 03415 // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0) 03416 // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0) 03417 if (cast<ConstantSDNode>(LR)->isNullValue() && 03418 (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) { 03419 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR), 03420 LR.getValueType(), LL, RL); 03421 AddToWorklist(ORNode.getNode()); 03422 return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1); 03423 } 03424 // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1) 03425 // fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1) 03426 if (cast<ConstantSDNode>(LR)->isAllOnesValue() && 03427 (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) { 03428 SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR), 03429 LR.getValueType(), LL, RL); 03430 AddToWorklist(ANDNode.getNode()); 03431 return DAG.getSetCC(SDLoc(N), VT, ANDNode, LR, Op1); 03432 } 03433 } 03434 // canonicalize equivalent to ll == rl 03435 if (LL == RR && LR == RL) { 03436 Op1 = ISD::getSetCCSwappedOperands(Op1); 03437 std::swap(RL, RR); 03438 } 03439 if (LL == RL && LR == RR) { 03440 bool isInteger = LL.getValueType().isInteger(); 03441 ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger); 03442 if (Result != ISD::SETCC_INVALID && 03443 (!LegalOperations || 03444 (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) && 03445 TLI.isOperationLegal(ISD::SETCC, 03446 getSetCCResultType(N0.getValueType()))))) 03447 return DAG.getSetCC(SDLoc(N), N0.getValueType(), 03448 LL, LR, Result); 03449 } 03450 } 03451 03452 // Simplify: (or (op x...), (op y...)) -> (op (or x, y)) 03453 if (N0.getOpcode() == N1.getOpcode()) { 03454 SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N); 03455 if (Tmp.getNode()) return Tmp; 03456 } 03457 03458 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible. 03459 if (N0.getOpcode() == ISD::AND && 03460 N1.getOpcode() == ISD::AND && 03461 N0.getOperand(1).getOpcode() == ISD::Constant && 03462 N1.getOperand(1).getOpcode() == ISD::Constant && 03463 // Don't increase # computations. 03464 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 03465 // We can only do this xform if we know that bits from X that are set in C2 03466 // but not in C1 are already zero. Likewise for Y. 03467 const APInt &LHSMask = 03468 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 03469 const APInt &RHSMask = 03470 cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue(); 03471 03472 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && 03473 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { 03474 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 03475 N0.getOperand(0), N1.getOperand(0)); 03476 return DAG.getNode(ISD::AND, SDLoc(N), VT, X, 03477 DAG.getConstant(LHSMask | RHSMask, VT)); 03478 } 03479 } 03480 03481 // See if this is some rotate idiom. 03482 if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N))) 03483 return SDValue(Rot, 0); 03484 03485 // Simplify the operands using demanded-bits information. 03486 if (!VT.isVector() && 03487 SimplifyDemandedBits(SDValue(N, 0))) 03488 return SDValue(N, 0); 03489 03490 return SDValue(); 03491 } 03492 03493 /// Match "(X shl/srl V1) & V2" where V2 may not be present. 03494 static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) { 03495 if (Op.getOpcode() == ISD::AND) { 03496 if (isa<ConstantSDNode>(Op.getOperand(1))) { 03497 Mask = Op.getOperand(1); 03498 Op = Op.getOperand(0); 03499 } else { 03500 return false; 03501 } 03502 } 03503 03504 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { 03505 Shift = Op; 03506 return true; 03507 } 03508 03509 return false; 03510 } 03511 03512 // Return true if we can prove that, whenever Neg and Pos are both in the 03513 // range [0, OpSize), Neg == (Pos == 0 ? 0 : OpSize - Pos). This means that 03514 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits: 03515 // 03516 // (or (shift1 X, Neg), (shift2 X, Pos)) 03517 // 03518 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate 03519 // in direction shift1 by Neg. The range [0, OpSize) means that we only need 03520 // to consider shift amounts with defined behavior. 03521 static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned OpSize) { 03522 // If OpSize is a power of 2 then: 03523 // 03524 // (a) (Pos == 0 ? 0 : OpSize - Pos) == (OpSize - Pos) & (OpSize - 1) 03525 // (b) Neg == Neg & (OpSize - 1) whenever Neg is in [0, OpSize). 03526 // 03527 // So if OpSize is a power of 2 and Neg is (and Neg', OpSize-1), we check 03528 // for the stronger condition: 03529 // 03530 // Neg & (OpSize - 1) == (OpSize - Pos) & (OpSize - 1) [A] 03531 // 03532 // for all Neg and Pos. Since Neg & (OpSize - 1) == Neg' & (OpSize - 1) 03533 // we can just replace Neg with Neg' for the rest of the function. 03534 // 03535 // In other cases we check for the even stronger condition: 03536 // 03537 // Neg == OpSize - Pos [B] 03538 // 03539 // for all Neg and Pos. Note that the (or ...) then invokes undefined 03540 // behavior if Pos == 0 (and consequently Neg == OpSize). 03541 // 03542 // We could actually use [A] whenever OpSize is a power of 2, but the 03543 // only extra cases that it would match are those uninteresting ones 03544 // where Neg and Pos are never in range at the same time. E.g. for 03545 // OpSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) 03546 // as well as (sub 32, Pos), but: 03547 // 03548 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) 03549 // 03550 // always invokes undefined behavior for 32-bit X. 03551 // 03552 // Below, Mask == OpSize - 1 when using [A] and is all-ones otherwise. 03553 unsigned MaskLoBits = 0; 03554 if (Neg.getOpcode() == ISD::AND && 03555 isPowerOf2_64(OpSize) && 03556 Neg.getOperand(1).getOpcode() == ISD::Constant && 03557 cast<ConstantSDNode>(Neg.getOperand(1))->getAPIntValue() == OpSize - 1) { 03558 Neg = Neg.getOperand(0); 03559 MaskLoBits = Log2_64(OpSize); 03560 } 03561 03562 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. 03563 if (Neg.getOpcode() != ISD::SUB) 03564 return 0; 03565 ConstantSDNode *NegC = dyn_cast<ConstantSDNode>(Neg.getOperand(0)); 03566 if (!NegC) 03567 return 0; 03568 SDValue NegOp1 = Neg.getOperand(1); 03569 03570 // On the RHS of [A], if Pos is Pos' & (OpSize - 1), just replace Pos with 03571 // Pos'. The truncation is redundant for the purpose of the equality. 03572 if (MaskLoBits && 03573 Pos.getOpcode() == ISD::AND && 03574 Pos.getOperand(1).getOpcode() == ISD::Constant && 03575 cast<ConstantSDNode>(Pos.getOperand(1))->getAPIntValue() == OpSize - 1) 03576 Pos = Pos.getOperand(0); 03577 03578 // The condition we need is now: 03579 // 03580 // (NegC - NegOp1) & Mask == (OpSize - Pos) & Mask 03581 // 03582 // If NegOp1 == Pos then we need: 03583 // 03584 // OpSize & Mask == NegC & Mask 03585 // 03586 // (because "x & Mask" is a truncation and distributes through subtraction). 03587 APInt Width; 03588 if (Pos == NegOp1) 03589 Width = NegC->getAPIntValue(); 03590 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. 03591 // Then the condition we want to prove becomes: 03592 // 03593 // (NegC - NegOp1) & Mask == (OpSize - (NegOp1 + PosC)) & Mask 03594 // 03595 // which, again because "x & Mask" is a truncation, becomes: 03596 // 03597 // NegC & Mask == (OpSize - PosC) & Mask 03598 // OpSize & Mask == (NegC + PosC) & Mask 03599 else if (Pos.getOpcode() == ISD::ADD && 03600 Pos.getOperand(0) == NegOp1 && 03601 Pos.getOperand(1).getOpcode() == ISD::Constant) 03602 Width = (cast<ConstantSDNode>(Pos.getOperand(1))->getAPIntValue() + 03603 NegC->getAPIntValue()); 03604 else 03605 return false; 03606 03607 // Now we just need to check that OpSize & Mask == Width & Mask. 03608 if (MaskLoBits) 03609 // Opsize & Mask is 0 since Mask is Opsize - 1. 03610 return Width.getLoBits(MaskLoBits) == 0; 03611 return Width == OpSize; 03612 } 03613 03614 // A subroutine of MatchRotate used once we have found an OR of two opposite 03615 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces 03616 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the 03617 // former being preferred if supported. InnerPos and InnerNeg are Pos and 03618 // Neg with outer conversions stripped away. 03619 SDNode *DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, 03620 SDValue Neg, SDValue InnerPos, 03621 SDValue InnerNeg, unsigned PosOpcode, 03622 unsigned NegOpcode, SDLoc DL) { 03623 // fold (or (shl x, (*ext y)), 03624 // (srl x, (*ext (sub 32, y)))) -> 03625 // (rotl x, y) or (rotr x, (sub 32, y)) 03626 // 03627 // fold (or (shl x, (*ext (sub 32, y))), 03628 // (srl x, (*ext y))) -> 03629 // (rotr x, y) or (rotl x, (sub 32, y)) 03630 EVT VT = Shifted.getValueType(); 03631 if (matchRotateSub(InnerPos, InnerNeg, VT.getSizeInBits())) { 03632 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); 03633 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, 03634 HasPos ? Pos : Neg).getNode(); 03635 } 03636 03637 return nullptr; 03638 } 03639 03640 // MatchRotate - Handle an 'or' of two operands. If this is one of the many 03641 // idioms for rotate, and if the target supports rotation instructions, generate 03642 // a rot[lr]. 03643 SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL) { 03644 // Must be a legal type. Expanded 'n promoted things won't work with rotates. 03645 EVT VT = LHS.getValueType(); 03646 if (!TLI.isTypeLegal(VT)) return nullptr; 03647 03648 // The target must have at least one rotate flavor. 03649 bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT); 03650 bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT); 03651 if (!HasROTL && !HasROTR) return nullptr; 03652 03653 // Match "(X shl/srl V1) & V2" where V2 may not be present. 03654 SDValue LHSShift; // The shift. 03655 SDValue LHSMask; // AND value if any. 03656 if (!MatchRotateHalf(LHS, LHSShift, LHSMask)) 03657 return nullptr; // Not part of a rotate. 03658 03659 SDValue RHSShift; // The shift. 03660 SDValue RHSMask; // AND value if any. 03661 if (!MatchRotateHalf(RHS, RHSShift, RHSMask)) 03662 return nullptr; // Not part of a rotate. 03663 03664 if (LHSShift.getOperand(0) != RHSShift.getOperand(0)) 03665 return nullptr; // Not shifting the same value. 03666 03667 if (LHSShift.getOpcode() == RHSShift.getOpcode()) 03668 return nullptr; // Shifts must disagree. 03669 03670 // Canonicalize shl to left side in a shl/srl pair. 03671 if (RHSShift.getOpcode() == ISD::SHL) { 03672 std::swap(LHS, RHS); 03673 std::swap(LHSShift, RHSShift); 03674 std::swap(LHSMask , RHSMask ); 03675 } 03676 03677 unsigned OpSizeInBits = VT.getSizeInBits(); 03678 SDValue LHSShiftArg = LHSShift.getOperand(0); 03679 SDValue LHSShiftAmt = LHSShift.getOperand(1); 03680 SDValue RHSShiftArg = RHSShift.getOperand(0); 03681 SDValue RHSShiftAmt = RHSShift.getOperand(1); 03682 03683 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) 03684 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) 03685 if (LHSShiftAmt.getOpcode() == ISD::Constant && 03686 RHSShiftAmt.getOpcode() == ISD::Constant) { 03687 uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue(); 03688 uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue(); 03689 if ((LShVal + RShVal) != OpSizeInBits) 03690 return nullptr; 03691 03692 SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, 03693 LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt); 03694 03695 // If there is an AND of either shifted operand, apply it to the result. 03696 if (LHSMask.getNode() || RHSMask.getNode()) { 03697 APInt Mask = APInt::getAllOnesValue(OpSizeInBits); 03698 03699 if (LHSMask.getNode()) { 03700 APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal); 03701 Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits; 03702 } 03703 if (RHSMask.getNode()) { 03704 APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal); 03705 Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits; 03706 } 03707 03708 Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT)); 03709 } 03710 03711 return Rot.getNode(); 03712 } 03713 03714 // If there is a mask here, and we have a variable shift, we can't be sure 03715 // that we're masking out the right stuff. 03716 if (LHSMask.getNode() || RHSMask.getNode()) 03717 return nullptr; 03718 03719 // If the shift amount is sign/zext/any-extended just peel it off. 03720 SDValue LExtOp0 = LHSShiftAmt; 03721 SDValue RExtOp0 = RHSShiftAmt; 03722 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 03723 LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 03724 LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 03725 LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && 03726 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 03727 RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 03728 RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 03729 RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { 03730 LExtOp0 = LHSShiftAmt.getOperand(0); 03731 RExtOp0 = RHSShiftAmt.getOperand(0); 03732 } 03733 03734 SDNode *TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, 03735 LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL); 03736 if (TryL) 03737 return TryL; 03738 03739 SDNode *TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, 03740 RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL); 03741 if (TryR) 03742 return TryR; 03743 03744 return nullptr; 03745 } 03746 03747 SDValue DAGCombiner::visitXOR(SDNode *N) { 03748 SDValue N0 = N->getOperand(0); 03749 SDValue N1 = N->getOperand(1); 03750 SDValue LHS, RHS, CC; 03751 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 03752 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 03753 EVT VT = N0.getValueType(); 03754 03755 // fold vector ops 03756 if (VT.isVector()) { 03757 SDValue FoldedVOp = SimplifyVBinOp(N); 03758 if (FoldedVOp.getNode()) return FoldedVOp; 03759 03760 // fold (xor x, 0) -> x, vector edition 03761 if (ISD::isBuildVectorAllZeros(N0.getNode())) 03762 return N1; 03763 if (ISD::isBuildVectorAllZeros(N1.getNode())) 03764 return N0; 03765 } 03766 03767 // fold (xor undef, undef) -> 0. This is a common idiom (misuse). 03768 if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF) 03769 return DAG.getConstant(0, VT); 03770 // fold (xor x, undef) -> undef 03771 if (N0.getOpcode() == ISD::UNDEF) 03772 return N0; 03773 if (N1.getOpcode() == ISD::UNDEF) 03774 return N1; 03775 // fold (xor c1, c2) -> c1^c2 03776 if (N0C && N1C) 03777 return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C); 03778 // canonicalize constant to RHS 03779 if (N0C && !N1C) 03780 return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0); 03781 // fold (xor x, 0) -> x 03782 if (N1C && N1C->isNullValue()) 03783 return N0; 03784 // reassociate xor 03785 SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1); 03786 if (RXOR.getNode()) 03787 return RXOR; 03788 03789 // fold !(x cc y) -> (x !cc y) 03790 if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) { 03791 bool isInt = LHS.getValueType().isInteger(); 03792 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 03793 isInt); 03794 03795 if (!LegalOperations || 03796 TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { 03797 switch (N0.getOpcode()) { 03798 default: 03799 llvm_unreachable("Unhandled SetCC Equivalent!"); 03800 case ISD::SETCC: 03801 return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC); 03802 case ISD::SELECT_CC: 03803 return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2), 03804 N0.getOperand(3), NotCC); 03805 } 03806 } 03807 } 03808 03809 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) 03810 if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND && 03811 N0.getNode()->hasOneUse() && 03812 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ 03813 SDValue V = N0.getOperand(0); 03814 V = DAG.getNode(ISD::XOR, SDLoc(N0), V.getValueType(), V, 03815 DAG.getConstant(1, V.getValueType())); 03816 AddToWorklist(V.getNode()); 03817 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V); 03818 } 03819 03820 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc 03821 if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 && 03822 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { 03823 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 03824 if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) { 03825 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; 03826 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS 03827 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS 03828 AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); 03829 return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); 03830 } 03831 } 03832 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants 03833 if (N1C && N1C->isAllOnesValue() && 03834 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { 03835 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 03836 if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) { 03837 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; 03838 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS 03839 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS 03840 AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); 03841 return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); 03842 } 03843 } 03844 // fold (xor (and x, y), y) -> (and (not x), y) 03845 if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 03846 N0->getOperand(1) == N1) { 03847 SDValue X = N0->getOperand(0); 03848 SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); 03849 AddToWorklist(NotX.getNode()); 03850 return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1); 03851 } 03852 // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2)) 03853 if (N1C && N0.getOpcode() == ISD::XOR) { 03854 ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 03855 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 03856 if (N00C) 03857 return DAG.getNode(ISD::XOR, SDLoc(N), VT, N0.getOperand(1), 03858 DAG.getConstant(N1C->getAPIntValue() ^ 03859 N00C->getAPIntValue(), VT)); 03860 if (N01C) 03861 return DAG.getNode(ISD::XOR, SDLoc(N), VT, N0.getOperand(0), 03862 DAG.getConstant(N1C->getAPIntValue() ^ 03863 N01C->getAPIntValue(), VT)); 03864 } 03865 // fold (xor x, x) -> 0 03866 if (N0 == N1) 03867 return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes); 03868 03869 // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) 03870 if (N0.getOpcode() == N1.getOpcode()) { 03871 SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N); 03872 if (Tmp.getNode()) return Tmp; 03873 } 03874 03875 // Simplify the expression using non-local knowledge. 03876 if (!VT.isVector() && 03877 SimplifyDemandedBits(SDValue(N, 0))) 03878 return SDValue(N, 0); 03879 03880 return SDValue(); 03881 } 03882 03883 /// Handle transforms common to the three shifts, when the shift amount is a 03884 /// constant. 03885 SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) { 03886 // We can't and shouldn't fold opaque constants. 03887 if (Amt->isOpaque()) 03888 return SDValue(); 03889 03890 SDNode *LHS = N->getOperand(0).getNode(); 03891 if (!LHS->hasOneUse()) return SDValue(); 03892 03893 // We want to pull some binops through shifts, so that we have (and (shift)) 03894 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of 03895 // thing happens with address calculations, so it's important to canonicalize 03896 // it. 03897 bool HighBitSet = false; // Can we transform this if the high bit is set? 03898 03899 switch (LHS->getOpcode()) { 03900 default: return SDValue(); 03901 case ISD::OR: 03902 case ISD::XOR: 03903 HighBitSet = false; // We can only transform sra if the high bit is clear. 03904 break; 03905 case ISD::AND: 03906 HighBitSet = true; // We can only transform sra if the high bit is set. 03907 break; 03908 case ISD::ADD: 03909 if (N->getOpcode() != ISD::SHL) 03910 return SDValue(); // only shl(add) not sr[al](add). 03911 HighBitSet = false; // We can only transform sra if the high bit is clear. 03912 break; 03913 } 03914 03915 // We require the RHS of the binop to be a constant and not opaque as well. 03916 ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1)); 03917 if (!BinOpCst || BinOpCst->isOpaque()) return SDValue(); 03918 03919 // FIXME: disable this unless the input to the binop is a shift by a constant. 03920 // If it is not a shift, it pessimizes some common cases like: 03921 // 03922 // void foo(int *X, int i) { X[i & 1235] = 1; } 03923 // int bar(int *X, int i) { return X[i & 255]; } 03924 SDNode *BinOpLHSVal = LHS->getOperand(0).getNode(); 03925 if ((BinOpLHSVal->getOpcode() != ISD::SHL && 03926 BinOpLHSVal->getOpcode() != ISD::SRA && 03927 BinOpLHSVal->getOpcode() != ISD::SRL) || 03928 !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1))) 03929 return SDValue(); 03930 03931 EVT VT = N->getValueType(0); 03932 03933 // If this is a signed shift right, and the high bit is modified by the 03934 // logical operation, do not perform the transformation. The highBitSet 03935 // boolean indicates the value of the high bit of the constant which would 03936 // cause it to be modified for this operation. 03937 if (N->getOpcode() == ISD::SRA) { 03938 bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative(); 03939 if (BinOpRHSSignSet != HighBitSet) 03940 return SDValue(); 03941 } 03942 03943 if (!TLI.isDesirableToCommuteWithShift(LHS)) 03944 return SDValue(); 03945 03946 // Fold the constants, shifting the binop RHS by the shift amount. 03947 SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)), 03948 N->getValueType(0), 03949 LHS->getOperand(1), N->getOperand(1)); 03950 assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"); 03951 03952 // Create the new shift. 03953 SDValue NewShift = DAG.getNode(N->getOpcode(), 03954 SDLoc(LHS->getOperand(0)), 03955 VT, LHS->getOperand(0), N->getOperand(1)); 03956 03957 // Create the new binop. 03958 return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS); 03959 } 03960 03961 SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { 03962 assert(N->getOpcode() == ISD::TRUNCATE); 03963 assert(N->getOperand(0).getOpcode() == ISD::AND); 03964 03965 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) 03966 if (N->hasOneUse() && N->getOperand(0).hasOneUse()) { 03967 SDValue N01 = N->getOperand(0).getOperand(1); 03968 03969 if (ConstantSDNode *N01C = isConstOrConstSplat(N01)) { 03970 EVT TruncVT = N->getValueType(0); 03971 SDValue N00 = N->getOperand(0).getOperand(0); 03972 APInt TruncC = N01C->getAPIntValue(); 03973 TruncC = TruncC.trunc(TruncVT.getScalarSizeInBits()); 03974 03975 return DAG.getNode(ISD::AND, SDLoc(N), TruncVT, 03976 DAG.getNode(ISD::TRUNCATE, SDLoc(N), TruncVT, N00), 03977 DAG.getConstant(TruncC, TruncVT)); 03978 } 03979 } 03980 03981 return SDValue(); 03982 } 03983 03984 SDValue DAGCombiner::visitRotate(SDNode *N) { 03985 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). 03986 if (N->getOperand(1).getOpcode() == ISD::TRUNCATE && 03987 N->getOperand(1).getOperand(0).getOpcode() == ISD::AND) { 03988 SDValue NewOp1 = distributeTruncateThroughAnd(N->getOperand(1).getNode()); 03989 if (NewOp1.getNode()) 03990 return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), 03991 N->getOperand(0), NewOp1); 03992 } 03993 return SDValue(); 03994 } 03995 03996 SDValue DAGCombiner::visitSHL(SDNode *N) { 03997 SDValue N0 = N->getOperand(0); 03998 SDValue N1 = N->getOperand(1); 03999 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 04000 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 04001 EVT VT = N0.getValueType(); 04002 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 04003 04004 // fold vector ops 04005 if (VT.isVector()) { 04006 SDValue FoldedVOp = SimplifyVBinOp(N); 04007 if (FoldedVOp.getNode()) return FoldedVOp; 04008 04009 BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); 04010 // If setcc produces all-one true value then: 04011 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) 04012 if (N1CV && N1CV->isConstant()) { 04013 if (N0.getOpcode() == ISD::AND) { 04014 SDValue N00 = N0->getOperand(0); 04015 SDValue N01 = N0->getOperand(1); 04016 BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); 04017 04018 if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && 04019 TLI.getBooleanContents(N00.getOperand(0).getValueType()) == 04020 TargetLowering::ZeroOrNegativeOneBooleanContent) { 04021 SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, VT, N01CV, N1CV); 04022 if (C.getNode()) 04023 return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); 04024 } 04025 } else { 04026 N1C = isConstOrConstSplat(N1); 04027 } 04028 } 04029 } 04030 04031 // fold (shl c1, c2) -> c1<<c2 04032 if (N0C && N1C) 04033 return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C); 04034 // fold (shl 0, x) -> 0 04035 if (N0C && N0C->isNullValue()) 04036 return N0; 04037 // fold (shl x, c >= size(x)) -> undef 04038 if (N1C && N1C->getZExtValue() >= OpSizeInBits) 04039 return DAG.getUNDEF(VT); 04040 // fold (shl x, 0) -> x 04041 if (N1C && N1C->isNullValue()) 04042 return N0; 04043 // fold (shl undef, x) -> 0 04044 if (N0.getOpcode() == ISD::UNDEF) 04045 return DAG.getConstant(0, VT); 04046 // if (shl x, c) is known to be zero, return 0 04047 if (DAG.MaskedValueIsZero(SDValue(N, 0), 04048 APInt::getAllOnesValue(OpSizeInBits))) 04049 return DAG.getConstant(0, VT); 04050 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). 04051 if (N1.getOpcode() == ISD::TRUNCATE && 04052 N1.getOperand(0).getOpcode() == ISD::AND) { 04053 SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()); 04054 if (NewOp1.getNode()) 04055 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); 04056 } 04057 04058 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 04059 return SDValue(N, 0); 04060 04061 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) 04062 if (N1C && N0.getOpcode() == ISD::SHL) { 04063 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 04064 uint64_t c1 = N0C1->getZExtValue(); 04065 uint64_t c2 = N1C->getZExtValue(); 04066 if (c1 + c2 >= OpSizeInBits) 04067 return DAG.getConstant(0, VT); 04068 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0.getOperand(0), 04069 DAG.getConstant(c1 + c2, N1.getValueType())); 04070 } 04071 } 04072 04073 // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2))) 04074 // For this to be valid, the second form must not preserve any of the bits 04075 // that are shifted out by the inner shift in the first form. This means 04076 // the outer shift size must be >= the number of bits added by the ext. 04077 // As a corollary, we don't care what kind of ext it is. 04078 if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND || 04079 N0.getOpcode() == ISD::ANY_EXTEND || 04080 N0.getOpcode() == ISD::SIGN_EXTEND) && 04081 N0.getOperand(0).getOpcode() == ISD::SHL) { 04082 SDValue N0Op0 = N0.getOperand(0); 04083 if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { 04084 uint64_t c1 = N0Op0C1->getZExtValue(); 04085 uint64_t c2 = N1C->getZExtValue(); 04086 EVT InnerShiftVT = N0Op0.getValueType(); 04087 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); 04088 if (c2 >= OpSizeInBits - InnerShiftSize) { 04089 if (c1 + c2 >= OpSizeInBits) 04090 return DAG.getConstant(0, VT); 04091 return DAG.getNode(ISD::SHL, SDLoc(N0), VT, 04092 DAG.getNode(N0.getOpcode(), SDLoc(N0), VT, 04093 N0Op0->getOperand(0)), 04094 DAG.getConstant(c1 + c2, N1.getValueType())); 04095 } 04096 } 04097 } 04098 04099 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) 04100 // Only fold this if the inner zext has no other uses to avoid increasing 04101 // the total number of instructions. 04102 if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && 04103 N0.getOperand(0).getOpcode() == ISD::SRL) { 04104 SDValue N0Op0 = N0.getOperand(0); 04105 if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { 04106 uint64_t c1 = N0Op0C1->getZExtValue(); 04107 if (c1 < VT.getScalarSizeInBits()) { 04108 uint64_t c2 = N1C->getZExtValue(); 04109 if (c1 == c2) { 04110 SDValue NewOp0 = N0.getOperand(0); 04111 EVT CountVT = NewOp0.getOperand(1).getValueType(); 04112 SDValue NewSHL = DAG.getNode(ISD::SHL, SDLoc(N), NewOp0.getValueType(), 04113 NewOp0, DAG.getConstant(c2, CountVT)); 04114 AddToWorklist(NewSHL.getNode()); 04115 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); 04116 } 04117 } 04118 } 04119 } 04120 04121 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or 04122 // (and (srl x, (sub c1, c2), MASK) 04123 // Only fold this if the inner shift has no other uses -- if it does, folding 04124 // this will increase the total number of instructions. 04125 if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 04126 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 04127 uint64_t c1 = N0C1->getZExtValue(); 04128 if (c1 < OpSizeInBits) { 04129 uint64_t c2 = N1C->getZExtValue(); 04130 APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); 04131 SDValue Shift; 04132 if (c2 > c1) { 04133 Mask = Mask.shl(c2 - c1); 04134 Shift = DAG.getNode(ISD::SHL, SDLoc(N), VT, N0.getOperand(0), 04135 DAG.getConstant(c2 - c1, N1.getValueType())); 04136 } else { 04137 Mask = Mask.lshr(c1 - c2); 04138 Shift = DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), 04139 DAG.getConstant(c1 - c2, N1.getValueType())); 04140 } 04141 return DAG.getNode(ISD::AND, SDLoc(N0), VT, Shift, 04142 DAG.getConstant(Mask, VT)); 04143 } 04144 } 04145 } 04146 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) 04147 if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) { 04148 unsigned BitSize = VT.getScalarSizeInBits(); 04149 SDValue HiBitsMask = 04150 DAG.getConstant(APInt::getHighBitsSet(BitSize, 04151 BitSize - N1C->getZExtValue()), VT); 04152 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0.getOperand(0), 04153 HiBitsMask); 04154 } 04155 04156 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 04157 // Variant of version done on multiply, except mul by a power of 2 is turned 04158 // into a shift. 04159 APInt Val; 04160 if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() && 04161 (isa<ConstantSDNode>(N0.getOperand(1)) || 04162 isConstantSplatVector(N0.getOperand(1).getNode(), Val))) { 04163 SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); 04164 SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 04165 return DAG.getNode(ISD::ADD, SDLoc(N), VT, Shl0, Shl1); 04166 } 04167 04168 if (N1C) { 04169 SDValue NewSHL = visitShiftByConstant(N, N1C); 04170 if (NewSHL.getNode()) 04171 return NewSHL; 04172 } 04173 04174 return SDValue(); 04175 } 04176 04177 SDValue DAGCombiner::visitSRA(SDNode *N) { 04178 SDValue N0 = N->getOperand(0); 04179 SDValue N1 = N->getOperand(1); 04180 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 04181 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 04182 EVT VT = N0.getValueType(); 04183 unsigned OpSizeInBits = VT.getScalarType().getSizeInBits(); 04184 04185 // fold vector ops 04186 if (VT.isVector()) { 04187 SDValue FoldedVOp = SimplifyVBinOp(N); 04188 if (FoldedVOp.getNode()) return FoldedVOp; 04189 04190 N1C = isConstOrConstSplat(N1); 04191 } 04192 04193 // fold (sra c1, c2) -> (sra c1, c2) 04194 if (N0C && N1C) 04195 return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C); 04196 // fold (sra 0, x) -> 0 04197 if (N0C && N0C->isNullValue()) 04198 return N0; 04199 // fold (sra -1, x) -> -1 04200 if (N0C && N0C->isAllOnesValue()) 04201 return N0; 04202 // fold (sra x, (setge c, size(x))) -> undef 04203 if (N1C && N1C->getZExtValue() >= OpSizeInBits) 04204 return DAG.getUNDEF(VT); 04205 // fold (sra x, 0) -> x 04206 if (N1C && N1C->isNullValue()) 04207 return N0; 04208 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports 04209 // sext_inreg. 04210 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { 04211 unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); 04212 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); 04213 if (VT.isVector()) 04214 ExtVT = EVT::getVectorVT(*DAG.getContext(), 04215 ExtVT, VT.getVectorNumElements()); 04216 if ((!LegalOperations || 04217 TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT))) 04218 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 04219 N0.getOperand(0), DAG.getValueType(ExtVT)); 04220 } 04221 04222 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) 04223 if (N1C && N0.getOpcode() == ISD::SRA) { 04224 if (ConstantSDNode *C1 = isConstOrConstSplat(N0.getOperand(1))) { 04225 unsigned Sum = N1C->getZExtValue() + C1->getZExtValue(); 04226 if (Sum >= OpSizeInBits) 04227 Sum = OpSizeInBits - 1; 04228 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0), 04229 DAG.getConstant(Sum, N1.getValueType())); 04230 } 04231 } 04232 04233 // fold (sra (shl X, m), (sub result_size, n)) 04234 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for 04235 // result_size - n != m. 04236 // If truncate is free for the target sext(shl) is likely to result in better 04237 // code. 04238 if (N0.getOpcode() == ISD::SHL && N1C) { 04239 // Get the two constanst of the shifts, CN0 = m, CN = n. 04240 const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); 04241 if (N01C) { 04242 LLVMContext &Ctx = *DAG.getContext(); 04243 // Determine what the truncate's result bitsize and type would be. 04244 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); 04245 04246 if (VT.isVector()) 04247 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); 04248 04249 // Determine the residual right-shift amount. 04250 signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); 04251 04252 // If the shift is not a no-op (in which case this should be just a sign 04253 // extend already), the truncated to type is legal, sign_extend is legal 04254 // on that type, and the truncate to that type is both legal and free, 04255 // perform the transform. 04256 if ((ShiftAmt > 0) && 04257 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && 04258 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && 04259 TLI.isTruncateFree(VT, TruncVT)) { 04260 04261 SDValue Amt = DAG.getConstant(ShiftAmt, 04262 getShiftAmountTy(N0.getOperand(0).getValueType())); 04263 SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0), VT, 04264 N0.getOperand(0), Amt); 04265 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), TruncVT, 04266 Shift); 04267 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), 04268 N->getValueType(0), Trunc); 04269 } 04270 } 04271 } 04272 04273 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). 04274 if (N1.getOpcode() == ISD::TRUNCATE && 04275 N1.getOperand(0).getOpcode() == ISD::AND) { 04276 SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()); 04277 if (NewOp1.getNode()) 04278 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); 04279 } 04280 04281 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) 04282 // if c1 is equal to the number of bits the trunc removes 04283 if (N0.getOpcode() == ISD::TRUNCATE && 04284 (N0.getOperand(0).getOpcode() == ISD::SRL || 04285 N0.getOperand(0).getOpcode() == ISD::SRA) && 04286 N0.getOperand(0).hasOneUse() && 04287 N0.getOperand(0).getOperand(1).hasOneUse() && 04288 N1C) { 04289 SDValue N0Op0 = N0.getOperand(0); 04290 if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { 04291 unsigned LargeShiftVal = LargeShift->getZExtValue(); 04292 EVT LargeVT = N0Op0.getValueType(); 04293 04294 if (LargeVT.getScalarSizeInBits() - OpSizeInBits == LargeShiftVal) { 04295 SDValue Amt = 04296 DAG.getConstant(LargeShiftVal + N1C->getZExtValue(), 04297 getShiftAmountTy(N0Op0.getOperand(0).getValueType())); 04298 SDValue SRA = DAG.getNode(ISD::SRA, SDLoc(N), LargeVT, 04299 N0Op0.getOperand(0), Amt); 04300 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, SRA); 04301 } 04302 } 04303 } 04304 04305 // Simplify, based on bits shifted out of the LHS. 04306 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 04307 return SDValue(N, 0); 04308 04309 04310 // If the sign bit is known to be zero, switch this to a SRL. 04311 if (DAG.SignBitIsZero(N0)) 04312 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); 04313 04314 if (N1C) { 04315 SDValue NewSRA = visitShiftByConstant(N, N1C); 04316 if (NewSRA.getNode()) 04317 return NewSRA; 04318 } 04319 04320 return SDValue(); 04321 } 04322 04323 SDValue DAGCombiner::visitSRL(SDNode *N) { 04324 SDValue N0 = N->getOperand(0); 04325 SDValue N1 = N->getOperand(1); 04326 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 04327 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 04328 EVT VT = N0.getValueType(); 04329 unsigned OpSizeInBits = VT.getScalarType().getSizeInBits(); 04330 04331 // fold vector ops 04332 if (VT.isVector()) { 04333 SDValue FoldedVOp = SimplifyVBinOp(N); 04334 if (FoldedVOp.getNode()) return FoldedVOp; 04335 04336 N1C = isConstOrConstSplat(N1); 04337 } 04338 04339 // fold (srl c1, c2) -> c1 >>u c2 04340 if (N0C && N1C) 04341 return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C); 04342 // fold (srl 0, x) -> 0 04343 if (N0C && N0C->isNullValue()) 04344 return N0; 04345 // fold (srl x, c >= size(x)) -> undef 04346 if (N1C && N1C->getZExtValue() >= OpSizeInBits) 04347 return DAG.getUNDEF(VT); 04348 // fold (srl x, 0) -> x 04349 if (N1C && N1C->isNullValue()) 04350 return N0; 04351 // if (srl x, c) is known to be zero, return 0 04352 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 04353 APInt::getAllOnesValue(OpSizeInBits))) 04354 return DAG.getConstant(0, VT); 04355 04356 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) 04357 if (N1C && N0.getOpcode() == ISD::SRL) { 04358 if (ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1))) { 04359 uint64_t c1 = N01C->getZExtValue(); 04360 uint64_t c2 = N1C->getZExtValue(); 04361 if (c1 + c2 >= OpSizeInBits) 04362 return DAG.getConstant(0, VT); 04363 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), 04364 DAG.getConstant(c1 + c2, N1.getValueType())); 04365 } 04366 } 04367 04368 // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2))) 04369 if (N1C && N0.getOpcode() == ISD::TRUNCATE && 04370 N0.getOperand(0).getOpcode() == ISD::SRL && 04371 isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) { 04372 uint64_t c1 = 04373 cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue(); 04374 uint64_t c2 = N1C->getZExtValue(); 04375 EVT InnerShiftVT = N0.getOperand(0).getValueType(); 04376 EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType(); 04377 uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits(); 04378 // This is only valid if the OpSizeInBits + c1 = size of inner shift. 04379 if (c1 + OpSizeInBits == InnerShiftSize) { 04380 if (c1 + c2 >= InnerShiftSize) 04381 return DAG.getConstant(0, VT); 04382 return DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, 04383 DAG.getNode(ISD::SRL, SDLoc(N0), InnerShiftVT, 04384 N0.getOperand(0)->getOperand(0), 04385 DAG.getConstant(c1 + c2, ShiftCountVT))); 04386 } 04387 } 04388 04389 // fold (srl (shl x, c), c) -> (and x, cst2) 04390 if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1) { 04391 unsigned BitSize = N0.getScalarValueSizeInBits(); 04392 if (BitSize <= 64) { 04393 uint64_t ShAmt = N1C->getZExtValue() + 64 - BitSize; 04394 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0.getOperand(0), 04395 DAG.getConstant(~0ULL >> ShAmt, VT)); 04396 } 04397 } 04398 04399 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) 04400 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 04401 // Shifting in all undef bits? 04402 EVT SmallVT = N0.getOperand(0).getValueType(); 04403 unsigned BitSize = SmallVT.getScalarSizeInBits(); 04404 if (N1C->getZExtValue() >= BitSize) 04405 return DAG.getUNDEF(VT); 04406 04407 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { 04408 uint64_t ShiftAmt = N1C->getZExtValue(); 04409 SDValue SmallShift = DAG.getNode(ISD::SRL, SDLoc(N0), SmallVT, 04410 N0.getOperand(0), 04411 DAG.getConstant(ShiftAmt, getShiftAmountTy(SmallVT))); 04412 AddToWorklist(SmallShift.getNode()); 04413 APInt Mask = APInt::getAllOnesValue(OpSizeInBits).lshr(ShiftAmt); 04414 return DAG.getNode(ISD::AND, SDLoc(N), VT, 04415 DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, SmallShift), 04416 DAG.getConstant(Mask, VT)); 04417 } 04418 } 04419 04420 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign 04421 // bit, which is unmodified by sra. 04422 if (N1C && N1C->getZExtValue() + 1 == OpSizeInBits) { 04423 if (N0.getOpcode() == ISD::SRA) 04424 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); 04425 } 04426 04427 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). 04428 if (N1C && N0.getOpcode() == ISD::CTLZ && 04429 N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { 04430 APInt KnownZero, KnownOne; 04431 DAG.computeKnownBits(N0.getOperand(0), KnownZero, KnownOne); 04432 04433 // If any of the input bits are KnownOne, then the input couldn't be all 04434 // zeros, thus the result of the srl will always be zero. 04435 if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT); 04436 04437 // If all of the bits input the to ctlz node are known to be zero, then 04438 // the result of the ctlz is "32" and the result of the shift is one. 04439 APInt UnknownBits = ~KnownZero; 04440 if (UnknownBits == 0) return DAG.getConstant(1, VT); 04441 04442 // Otherwise, check to see if there is exactly one bit input to the ctlz. 04443 if ((UnknownBits & (UnknownBits - 1)) == 0) { 04444 // Okay, we know that only that the single bit specified by UnknownBits 04445 // could be set on input to the CTLZ node. If this bit is set, the SRL 04446 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair 04447 // to an SRL/XOR pair, which is likely to simplify more. 04448 unsigned ShAmt = UnknownBits.countTrailingZeros(); 04449 SDValue Op = N0.getOperand(0); 04450 04451 if (ShAmt) { 04452 Op = DAG.getNode(ISD::SRL, SDLoc(N0), VT, Op, 04453 DAG.getConstant(ShAmt, getShiftAmountTy(Op.getValueType()))); 04454 AddToWorklist(Op.getNode()); 04455 } 04456 04457 return DAG.getNode(ISD::XOR, SDLoc(N), VT, 04458 Op, DAG.getConstant(1, VT)); 04459 } 04460 } 04461 04462 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). 04463 if (N1.getOpcode() == ISD::TRUNCATE && 04464 N1.getOperand(0).getOpcode() == ISD::AND) { 04465 SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()); 04466 if (NewOp1.getNode()) 04467 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); 04468 } 04469 04470 // fold operands of srl based on knowledge that the low bits are not 04471 // demanded. 04472 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 04473 return SDValue(N, 0); 04474 04475 if (N1C) { 04476 SDValue NewSRL = visitShiftByConstant(N, N1C); 04477 if (NewSRL.getNode()) 04478 return NewSRL; 04479 } 04480 04481 // Attempt to convert a srl of a load into a narrower zero-extending load. 04482 SDValue NarrowLoad = ReduceLoadWidth(N); 04483 if (NarrowLoad.getNode()) 04484 return NarrowLoad; 04485 04486 // Here is a common situation. We want to optimize: 04487 // 04488 // %a = ... 04489 // %b = and i32 %a, 2 04490 // %c = srl i32 %b, 1 04491 // brcond i32 %c ... 04492 // 04493 // into 04494 // 04495 // %a = ... 04496 // %b = and %a, 2 04497 // %c = setcc eq %b, 0 04498 // brcond %c ... 04499 // 04500 // However when after the source operand of SRL is optimized into AND, the SRL 04501 // itself may not be optimized further. Look for it and add the BRCOND into 04502 // the worklist. 04503 if (N->hasOneUse()) { 04504 SDNode *Use = *N->use_begin(); 04505 if (Use->getOpcode() == ISD::BRCOND) 04506 AddToWorklist(Use); 04507 else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { 04508 // Also look pass the truncate. 04509 Use = *Use->use_begin(); 04510 if (Use->getOpcode() == ISD::BRCOND) 04511 AddToWorklist(Use); 04512 } 04513 } 04514 04515 return SDValue(); 04516 } 04517 04518 SDValue DAGCombiner::visitCTLZ(SDNode *N) { 04519 SDValue N0 = N->getOperand(0); 04520 EVT VT = N->getValueType(0); 04521 04522 // fold (ctlz c1) -> c2 04523 if (isa<ConstantSDNode>(N0)) 04524 return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); 04525 return SDValue(); 04526 } 04527 04528 SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { 04529 SDValue N0 = N->getOperand(0); 04530 EVT VT = N->getValueType(0); 04531 04532 // fold (ctlz_zero_undef c1) -> c2 04533 if (isa<ConstantSDNode>(N0)) 04534 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); 04535 return SDValue(); 04536 } 04537 04538 SDValue DAGCombiner::visitCTTZ(SDNode *N) { 04539 SDValue N0 = N->getOperand(0); 04540 EVT VT = N->getValueType(0); 04541 04542 // fold (cttz c1) -> c2 04543 if (isa<ConstantSDNode>(N0)) 04544 return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); 04545 return SDValue(); 04546 } 04547 04548 SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { 04549 SDValue N0 = N->getOperand(0); 04550 EVT VT = N->getValueType(0); 04551 04552 // fold (cttz_zero_undef c1) -> c2 04553 if (isa<ConstantSDNode>(N0)) 04554 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); 04555 return SDValue(); 04556 } 04557 04558 SDValue DAGCombiner::visitCTPOP(SDNode *N) { 04559 SDValue N0 = N->getOperand(0); 04560 EVT VT = N->getValueType(0); 04561 04562 // fold (ctpop c1) -> c2 04563 if (isa<ConstantSDNode>(N0)) 04564 return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); 04565 return SDValue(); 04566 } 04567 04568 SDValue DAGCombiner::visitSELECT(SDNode *N) { 04569 SDValue N0 = N->getOperand(0); 04570 SDValue N1 = N->getOperand(1); 04571 SDValue N2 = N->getOperand(2); 04572 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 04573 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 04574 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 04575 EVT VT = N->getValueType(0); 04576 EVT VT0 = N0.getValueType(); 04577 04578 // fold (select C, X, X) -> X 04579 if (N1 == N2) 04580 return N1; 04581 // fold (select true, X, Y) -> X 04582 if (N0C && !N0C->isNullValue()) 04583 return N1; 04584 // fold (select false, X, Y) -> Y 04585 if (N0C && N0C->isNullValue()) 04586 return N2; 04587 // fold (select C, 1, X) -> (or C, X) 04588 if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1) 04589 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2); 04590 // fold (select C, 0, 1) -> (xor C, 1) 04591 // We can't do this reliably if integer based booleans have different contents 04592 // to floating point based booleans. This is because we can't tell whether we 04593 // have an integer-based boolean or a floating-point-based boolean unless we 04594 // can find the SETCC that produced it and inspect its operands. This is 04595 // fairly easy if C is the SETCC node, but it can potentially be 04596 // undiscoverable (or not reasonably discoverable). For example, it could be 04597 // in another basic block or it could require searching a complicated 04598 // expression. 04599 if (VT.isInteger() && 04600 (VT0 == MVT::i1 || (VT0.isInteger() && 04601 TLI.getBooleanContents(false, false) == 04602 TLI.getBooleanContents(false, true) && 04603 TLI.getBooleanContents(false, false) == 04604 TargetLowering::ZeroOrOneBooleanContent)) && 04605 N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) { 04606 SDValue XORNode; 04607 if (VT == VT0) 04608 return DAG.getNode(ISD::XOR, SDLoc(N), VT0, 04609 N0, DAG.getConstant(1, VT0)); 04610 XORNode = DAG.getNode(ISD::XOR, SDLoc(N0), VT0, 04611 N0, DAG.getConstant(1, VT0)); 04612 AddToWorklist(XORNode.getNode()); 04613 if (VT.bitsGT(VT0)) 04614 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, XORNode); 04615 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, XORNode); 04616 } 04617 // fold (select C, 0, X) -> (and (not C), X) 04618 if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) { 04619 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); 04620 AddToWorklist(NOTNode.getNode()); 04621 return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2); 04622 } 04623 // fold (select C, X, 1) -> (or (not C), X) 04624 if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) { 04625 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); 04626 AddToWorklist(NOTNode.getNode()); 04627 return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1); 04628 } 04629 // fold (select C, X, 0) -> (and C, X) 04630 if (VT == MVT::i1 && N2C && N2C->isNullValue()) 04631 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1); 04632 // fold (select X, X, Y) -> (or X, Y) 04633 // fold (select X, 1, Y) -> (or X, Y) 04634 if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1))) 04635 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2); 04636 // fold (select X, Y, X) -> (and X, Y) 04637 // fold (select X, Y, 0) -> (and X, Y) 04638 if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0))) 04639 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1); 04640 04641 // If we can fold this based on the true/false value, do so. 04642 if (SimplifySelectOps(N, N1, N2)) 04643 return SDValue(N, 0); // Don't revisit N. 04644 04645 // fold selects based on a setcc into other things, such as min/max/abs 04646 if (N0.getOpcode() == ISD::SETCC) { 04647 if ((!LegalOperations && 04648 TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)) || 04649 TLI.isOperationLegal(ISD::SELECT_CC, VT)) 04650 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, 04651 N0.getOperand(0), N0.getOperand(1), 04652 N1, N2, N0.getOperand(2)); 04653 return SimplifySelect(SDLoc(N), N0, N1, N2); 04654 } 04655 04656 return SDValue(); 04657 } 04658 04659 static 04660 std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) { 04661 SDLoc DL(N); 04662 EVT LoVT, HiVT; 04663 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); 04664 04665 // Split the inputs. 04666 SDValue Lo, Hi, LL, LH, RL, RH; 04667 std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0); 04668 std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1); 04669 04670 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2)); 04671 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2)); 04672 04673 return std::make_pair(Lo, Hi); 04674 } 04675 04676 // This function assumes all the vselect's arguments are CONCAT_VECTOR 04677 // nodes and that the condition is a BV of ConstantSDNodes (or undefs). 04678 static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { 04679 SDLoc dl(N); 04680 SDValue Cond = N->getOperand(0); 04681 SDValue LHS = N->getOperand(1); 04682 SDValue RHS = N->getOperand(2); 04683 EVT VT = N->getValueType(0); 04684 int NumElems = VT.getVectorNumElements(); 04685 assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && 04686 RHS.getOpcode() == ISD::CONCAT_VECTORS && 04687 Cond.getOpcode() == ISD::BUILD_VECTOR); 04688 04689 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about 04690 // binary ones here. 04691 if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) 04692 return SDValue(); 04693 04694 // We're sure we have an even number of elements due to the 04695 // concat_vectors we have as arguments to vselect. 04696 // Skip BV elements until we find one that's not an UNDEF 04697 // After we find an UNDEF element, keep looping until we get to half the 04698 // length of the BV and see if all the non-undef nodes are the same. 04699 ConstantSDNode *BottomHalf = nullptr; 04700 for (int i = 0; i < NumElems / 2; ++i) { 04701 if (Cond->getOperand(i)->getOpcode() == ISD::UNDEF) 04702 continue; 04703 04704 if (BottomHalf == nullptr) 04705 BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 04706 else if (Cond->getOperand(i).getNode() != BottomHalf) 04707 return SDValue(); 04708 } 04709 04710 // Do the same for the second half of the BuildVector 04711 ConstantSDNode *TopHalf = nullptr; 04712 for (int i = NumElems / 2; i < NumElems; ++i) { 04713 if (Cond->getOperand(i)->getOpcode() == ISD::UNDEF) 04714 continue; 04715 04716 if (TopHalf == nullptr) 04717 TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 04718 else if (Cond->getOperand(i).getNode() != TopHalf) 04719 return SDValue(); 04720 } 04721 04722 assert(TopHalf && BottomHalf && 04723 "One half of the selector was all UNDEFs and the other was all the " 04724 "same value. This should have been addressed before this function."); 04725 return DAG.getNode( 04726 ISD::CONCAT_VECTORS, dl, VT, 04727 BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0), 04728 TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1)); 04729 } 04730 04731 SDValue DAGCombiner::visitVSELECT(SDNode *N) { 04732 SDValue N0 = N->getOperand(0); 04733 SDValue N1 = N->getOperand(1); 04734 SDValue N2 = N->getOperand(2); 04735 SDLoc DL(N); 04736 04737 // Canonicalize integer abs. 04738 // vselect (setg[te] X, 0), X, -X -> 04739 // vselect (setgt X, -1), X, -X -> 04740 // vselect (setl[te] X, 0), -X, X -> 04741 // Y = sra (X, size(X)-1); xor (add (X, Y), Y) 04742 if (N0.getOpcode() == ISD::SETCC) { 04743 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 04744 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 04745 bool isAbs = false; 04746 bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); 04747 04748 if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || 04749 (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && 04750 N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) 04751 isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); 04752 else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && 04753 N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) 04754 isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 04755 04756 if (isAbs) { 04757 EVT VT = LHS.getValueType(); 04758 SDValue Shift = DAG.getNode( 04759 ISD::SRA, DL, VT, LHS, 04760 DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, VT)); 04761 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); 04762 AddToWorklist(Shift.getNode()); 04763 AddToWorklist(Add.getNode()); 04764 return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); 04765 } 04766 } 04767 04768 // If the VSELECT result requires splitting and the mask is provided by a 04769 // SETCC, then split both nodes and its operands before legalization. This 04770 // prevents the type legalizer from unrolling SETCC into scalar comparisons 04771 // and enables future optimizations (e.g. min/max pattern matching on X86). 04772 if (N0.getOpcode() == ISD::SETCC) { 04773 EVT VT = N->getValueType(0); 04774 04775 // Check if any splitting is required. 04776 if (TLI.getTypeAction(*DAG.getContext(), VT) != 04777 TargetLowering::TypeSplitVector) 04778 return SDValue(); 04779 04780 SDValue Lo, Hi, CCLo, CCHi, LL, LH, RL, RH; 04781 std::tie(CCLo, CCHi) = SplitVSETCC(N0.getNode(), DAG); 04782 std::tie(LL, LH) = DAG.SplitVectorOperand(N, 1); 04783 std::tie(RL, RH) = DAG.SplitVectorOperand(N, 2); 04784 04785 Lo = DAG.getNode(N->getOpcode(), DL, LL.getValueType(), CCLo, LL, RL); 04786 Hi = DAG.getNode(N->getOpcode(), DL, LH.getValueType(), CCHi, LH, RH); 04787 04788 // Add the new VSELECT nodes to the work list in case they need to be split 04789 // again. 04790 AddToWorklist(Lo.getNode()); 04791 AddToWorklist(Hi.getNode()); 04792 04793 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 04794 } 04795 04796 // Fold (vselect (build_vector all_ones), N1, N2) -> N1 04797 if (ISD::isBuildVectorAllOnes(N0.getNode())) 04798 return N1; 04799 // Fold (vselect (build_vector all_zeros), N1, N2) -> N2 04800 if (ISD::isBuildVectorAllZeros(N0.getNode())) 04801 return N2; 04802 04803 // The ConvertSelectToConcatVector function is assuming both the above 04804 // checks for (vselect (build_vector all{ones,zeros) ...) have been made 04805 // and addressed. 04806 if (N1.getOpcode() == ISD::CONCAT_VECTORS && 04807 N2.getOpcode() == ISD::CONCAT_VECTORS && 04808 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { 04809 SDValue CV = ConvertSelectToConcatVector(N, DAG); 04810 if (CV.getNode()) 04811 return CV; 04812 } 04813 04814 return SDValue(); 04815 } 04816 04817 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { 04818 SDValue N0 = N->getOperand(0); 04819 SDValue N1 = N->getOperand(1); 04820 SDValue N2 = N->getOperand(2); 04821 SDValue N3 = N->getOperand(3); 04822 SDValue N4 = N->getOperand(4); 04823 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); 04824 04825 // fold select_cc lhs, rhs, x, x, cc -> x 04826 if (N2 == N3) 04827 return N2; 04828 04829 // Determine if the condition we're dealing with is constant 04830 SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), 04831 N0, N1, CC, SDLoc(N), false); 04832 if (SCC.getNode()) { 04833 AddToWorklist(SCC.getNode()); 04834 04835 if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) { 04836 if (!SCCC->isNullValue()) 04837 return N2; // cond always true -> true val 04838 else 04839 return N3; // cond always false -> false val 04840 } 04841 04842 // Fold to a simpler select_cc 04843 if (SCC.getOpcode() == ISD::SETCC) 04844 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(), 04845 SCC.getOperand(0), SCC.getOperand(1), N2, N3, 04846 SCC.getOperand(2)); 04847 } 04848 04849 // If we can fold this based on the true/false value, do so. 04850 if (SimplifySelectOps(N, N2, N3)) 04851 return SDValue(N, 0); // Don't revisit N. 04852 04853 // fold select_cc into other things, such as min/max/abs 04854 return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); 04855 } 04856 04857 SDValue DAGCombiner::visitSETCC(SDNode *N) { 04858 return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1), 04859 cast<CondCodeSDNode>(N->getOperand(2))->get(), 04860 SDLoc(N)); 04861 } 04862 04863 // tryToFoldExtendOfConstant - Try to fold a sext/zext/aext 04864 // dag node into a ConstantSDNode or a build_vector of constants. 04865 // This function is called by the DAGCombiner when visiting sext/zext/aext 04866 // dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). 04867 // Vector extends are not folded if operations are legal; this is to 04868 // avoid introducing illegal build_vector dag nodes. 04869 static SDNode *tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, 04870 SelectionDAG &DAG, bool LegalTypes, 04871 bool LegalOperations) { 04872 unsigned Opcode = N->getOpcode(); 04873 SDValue N0 = N->getOperand(0); 04874 EVT VT = N->getValueType(0); 04875 04876 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || 04877 Opcode == ISD::ANY_EXTEND) && "Expected EXTEND dag node in input!"); 04878 04879 // fold (sext c1) -> c1 04880 // fold (zext c1) -> c1 04881 // fold (aext c1) -> c1 04882 if (isa<ConstantSDNode>(N0)) 04883 return DAG.getNode(Opcode, SDLoc(N), VT, N0).getNode(); 04884 04885 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) 04886 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) 04887 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) 04888 EVT SVT = VT.getScalarType(); 04889 if (!(VT.isVector() && 04890 (!LegalTypes || (!LegalOperations && TLI.isTypeLegal(SVT))) && 04891 ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) 04892 return nullptr; 04893 04894 // We can fold this node into a build_vector. 04895 unsigned VTBits = SVT.getSizeInBits(); 04896 unsigned EVTBits = N0->getValueType(0).getScalarType().getSizeInBits(); 04897 unsigned ShAmt = VTBits - EVTBits; 04898 SmallVector<SDValue, 8> Elts; 04899 unsigned NumElts = N0->getNumOperands(); 04900 SDLoc DL(N); 04901 04902 for (unsigned i=0; i != NumElts; ++i) { 04903 SDValue Op = N0->getOperand(i); 04904 if (Op->getOpcode() == ISD::UNDEF) { 04905 Elts.push_back(DAG.getUNDEF(SVT)); 04906 continue; 04907 } 04908 04909 ConstantSDNode *CurrentND = cast<ConstantSDNode>(Op); 04910 const APInt &C = APInt(VTBits, CurrentND->getAPIntValue().getZExtValue()); 04911 if (Opcode == ISD::SIGN_EXTEND) 04912 Elts.push_back(DAG.getConstant(C.shl(ShAmt).ashr(ShAmt).getZExtValue(), 04913 SVT)); 04914 else 04915 Elts.push_back(DAG.getConstant(C.shl(ShAmt).lshr(ShAmt).getZExtValue(), 04916 SVT)); 04917 } 04918 04919 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Elts).getNode(); 04920 } 04921 04922 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: 04923 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" 04924 // transformation. Returns true if extension are possible and the above 04925 // mentioned transformation is profitable. 04926 static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0, 04927 unsigned ExtOpc, 04928 SmallVectorImpl<SDNode *> &ExtendNodes, 04929 const TargetLowering &TLI) { 04930 bool HasCopyToRegUses = false; 04931 bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType()); 04932 for (SDNode::use_iterator UI = N0.getNode()->use_begin(), 04933 UE = N0.getNode()->use_end(); 04934 UI != UE; ++UI) { 04935 SDNode *User = *UI; 04936 if (User == N) 04937 continue; 04938 if (UI.getUse().getResNo() != N0.getResNo()) 04939 continue; 04940 // FIXME: Only extend SETCC N, N and SETCC N, c for now. 04941 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { 04942 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); 04943 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) 04944 // Sign bits will be lost after a zext. 04945 return false; 04946 bool Add = false; 04947 for (unsigned i = 0; i != 2; ++i) { 04948 SDValue UseOp = User->getOperand(i); 04949 if (UseOp == N0) 04950 continue; 04951 if (!isa<ConstantSDNode>(UseOp)) 04952 return false; 04953 Add = true; 04954 } 04955 if (Add) 04956 ExtendNodes.push_back(User); 04957 continue; 04958 } 04959 // If truncates aren't free and there are users we can't 04960 // extend, it isn't worthwhile. 04961 if (!isTruncFree) 04962 return false; 04963 // Remember if this value is live-out. 04964 if (User->getOpcode() == ISD::CopyToReg) 04965 HasCopyToRegUses = true; 04966 } 04967 04968 if (HasCopyToRegUses) { 04969 bool BothLiveOut = false; 04970 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 04971 UI != UE; ++UI) { 04972 SDUse &Use = UI.getUse(); 04973 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { 04974 BothLiveOut = true; 04975 break; 04976 } 04977 } 04978 if (BothLiveOut) 04979 // Both unextended and extended values are live out. There had better be 04980 // a good reason for the transformation. 04981 return ExtendNodes.size(); 04982 } 04983 return true; 04984 } 04985 04986 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 04987 SDValue Trunc, SDValue ExtLoad, SDLoc DL, 04988 ISD::NodeType ExtType) { 04989 // Extend SetCC uses if necessary. 04990 for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) { 04991 SDNode *SetCC = SetCCs[i]; 04992 SmallVector<SDValue, 4> Ops; 04993 04994 for (unsigned j = 0; j != 2; ++j) { 04995 SDValue SOp = SetCC->getOperand(j); 04996 if (SOp == Trunc) 04997 Ops.push_back(ExtLoad); 04998 else 04999 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); 05000 } 05001 05002 Ops.push_back(SetCC->getOperand(2)); 05003 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 05004 } 05005 } 05006 05007 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { 05008 SDValue N0 = N->getOperand(0); 05009 EVT VT = N->getValueType(0); 05010 05011 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 05012 LegalOperations)) 05013 return SDValue(Res, 0); 05014 05015 // fold (sext (sext x)) -> (sext x) 05016 // fold (sext (aext x)) -> (sext x) 05017 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 05018 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, 05019 N0.getOperand(0)); 05020 05021 if (N0.getOpcode() == ISD::TRUNCATE) { 05022 // fold (sext (truncate (load x))) -> (sext (smaller load x)) 05023 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) 05024 SDValue NarrowLoad = ReduceLoadWidth(N0.getNode()); 05025 if (NarrowLoad.getNode()) { 05026 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 05027 if (NarrowLoad.getNode() != N0.getNode()) { 05028 CombineTo(N0.getNode(), NarrowLoad); 05029 // CombineTo deleted the truncate, if needed, but not what's under it. 05030 AddToWorklist(oye); 05031 } 05032 return SDValue(N, 0); // Return N so it doesn't get rechecked! 05033 } 05034 05035 // See if the value being truncated is already sign extended. If so, just 05036 // eliminate the trunc/sext pair. 05037 SDValue Op = N0.getOperand(0); 05038 unsigned OpBits = Op.getValueType().getScalarType().getSizeInBits(); 05039 unsigned MidBits = N0.getValueType().getScalarType().getSizeInBits(); 05040 unsigned DestBits = VT.getScalarType().getSizeInBits(); 05041 unsigned NumSignBits = DAG.ComputeNumSignBits(Op); 05042 05043 if (OpBits == DestBits) { 05044 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign 05045 // bits, it is already ready. 05046 if (NumSignBits > DestBits-MidBits) 05047 return Op; 05048 } else if (OpBits < DestBits) { 05049 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign 05050 // bits, just sext from i32. 05051 if (NumSignBits > OpBits-MidBits) 05052 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op); 05053 } else { 05054 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign 05055 // bits, just truncate to i32. 05056 if (NumSignBits > OpBits-MidBits) 05057 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); 05058 } 05059 05060 // fold (sext (truncate x)) -> (sextinreg x). 05061 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, 05062 N0.getValueType())) { 05063 if (OpBits < DestBits) 05064 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); 05065 else if (OpBits > DestBits) 05066 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); 05067 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op, 05068 DAG.getValueType(N0.getValueType())); 05069 } 05070 } 05071 05072 // fold (sext (load x)) -> (sext (truncate (sextload x))) 05073 // None of the supported targets knows how to perform load and sign extend 05074 // on vectors in one instruction. We only perform this transformation on 05075 // scalars. 05076 if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() && 05077 ISD::isUNINDEXEDLoad(N0.getNode()) && 05078 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || 05079 TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) { 05080 bool DoXform = true; 05081 SmallVector<SDNode*, 4> SetCCs; 05082 if (!N0.hasOneUse()) 05083 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI); 05084 if (DoXform) { 05085 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 05086 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 05087 LN0->getChain(), 05088 LN0->getBasePtr(), N0.getValueType(), 05089 LN0->getMemOperand()); 05090 CombineTo(N, ExtLoad); 05091 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 05092 N0.getValueType(), ExtLoad); 05093 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); 05094 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 05095 ISD::SIGN_EXTEND); 05096 return SDValue(N, 0); // Return N so it doesn't get rechecked! 05097 } 05098 } 05099 05100 // fold (sext (sextload x)) -> (sext (truncate (sextload x))) 05101 // fold (sext ( extload x)) -> (sext (truncate (sextload x))) 05102 if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && 05103 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { 05104 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 05105 EVT MemVT = LN0->getMemoryVT(); 05106 if ((!LegalOperations && !LN0->isVolatile()) || 05107 TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) { 05108 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 05109 LN0->getChain(), 05110 LN0->getBasePtr(), MemVT, 05111 LN0->getMemOperand()); 05112 CombineTo(N, ExtLoad); 05113 CombineTo(N0.getNode(), 05114 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 05115 N0.getValueType(), ExtLoad), 05116 ExtLoad.getValue(1)); 05117 return SDValue(N, 0); // Return N so it doesn't get rechecked! 05118 } 05119 } 05120 05121 // fold (sext (and/or/xor (load x), cst)) -> 05122 // (and/or/xor (sextload x), (sext cst)) 05123 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 05124 N0.getOpcode() == ISD::XOR) && 05125 isa<LoadSDNode>(N0.getOperand(0)) && 05126 N0.getOperand(1).getOpcode() == ISD::Constant && 05127 TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()) && 05128 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 05129 LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0)); 05130 if (LN0->getExtensionType() != ISD::ZEXTLOAD && LN0->isUnindexed()) { 05131 bool DoXform = true; 05132 SmallVector<SDNode*, 4> SetCCs; 05133 if (!N0.hasOneUse()) 05134 DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND, 05135 SetCCs, TLI); 05136 if (DoXform) { 05137 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT, 05138 LN0->getChain(), LN0->getBasePtr(), 05139 LN0->getMemoryVT(), 05140 LN0->getMemOperand()); 05141 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 05142 Mask = Mask.sext(VT.getSizeInBits()); 05143 SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT, 05144 ExtLoad, DAG.getConstant(Mask, VT)); 05145 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, 05146 SDLoc(N0.getOperand(0)), 05147 N0.getOperand(0).getValueType(), ExtLoad); 05148 CombineTo(N, And); 05149 CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); 05150 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 05151 ISD::SIGN_EXTEND); 05152 return SDValue(N, 0); // Return N so it doesn't get rechecked! 05153 } 05154 } 05155 } 05156 05157 if (N0.getOpcode() == ISD::SETCC) { 05158 EVT N0VT = N0.getOperand(0).getValueType(); 05159 // sext(setcc) -> sext_in_reg(vsetcc) for vectors. 05160 // Only do this before legalize for now. 05161 if (VT.isVector() && !LegalOperations && 05162 TLI.getBooleanContents(N0VT) == 05163 TargetLowering::ZeroOrNegativeOneBooleanContent) { 05164 // On some architectures (such as SSE/NEON/etc) the SETCC result type is 05165 // of the same size as the compared operands. Only optimize sext(setcc()) 05166 // if this is the case. 05167 EVT SVT = getSetCCResultType(N0VT); 05168 05169 // We know that the # elements of the results is the same as the 05170 // # elements of the compare (and the # elements of the compare result 05171 // for that matter). Check to see that they are the same size. If so, 05172 // we know that the element size of the sext'd result matches the 05173 // element size of the compare operands. 05174 if (VT.getSizeInBits() == SVT.getSizeInBits()) 05175 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 05176 N0.getOperand(1), 05177 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 05178 05179 // If the desired elements are smaller or larger than the source 05180 // elements we can use a matching integer vector type and then 05181 // truncate/sign extend 05182 EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger(); 05183 if (SVT == MatchingVectorType) { 05184 SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType, 05185 N0.getOperand(0), N0.getOperand(1), 05186 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 05187 return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT); 05188 } 05189 } 05190 05191 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), -1, 0) 05192 unsigned ElementWidth = VT.getScalarType().getSizeInBits(); 05193 SDValue NegOne = 05194 DAG.getConstant(APInt::getAllOnesValue(ElementWidth), VT); 05195 SDValue SCC = 05196 SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1), 05197 NegOne, DAG.getConstant(0, VT), 05198 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true); 05199 if (SCC.getNode()) return SCC; 05200 05201 if (!VT.isVector()) { 05202 EVT SetCCVT = getSetCCResultType(N0.getOperand(0).getValueType()); 05203 if (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, SetCCVT)) { 05204 SDLoc DL(N); 05205 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 05206 SDValue SetCC = DAG.getSetCC(DL, 05207 SetCCVT, 05208 N0.getOperand(0), N0.getOperand(1), CC); 05209 EVT SelectVT = getSetCCResultType(VT); 05210 return DAG.getSelect(DL, VT, 05211 DAG.getSExtOrTrunc(SetCC, DL, SelectVT), 05212 NegOne, DAG.getConstant(0, VT)); 05213 05214 } 05215 } 05216 } 05217 05218 // fold (sext x) -> (zext x) if the sign bit is known zero. 05219 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && 05220 DAG.SignBitIsZero(N0)) 05221 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0); 05222 05223 return SDValue(); 05224 } 05225 05226 // isTruncateOf - If N is a truncate of some other value, return true, record 05227 // the value being truncated in Op and which of Op's bits are zero in KnownZero. 05228 // This function computes KnownZero to avoid a duplicated call to 05229 // computeKnownBits in the caller. 05230 static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, 05231 APInt &KnownZero) { 05232 APInt KnownOne; 05233 if (N->getOpcode() == ISD::TRUNCATE) { 05234 Op = N->getOperand(0); 05235 DAG.computeKnownBits(Op, KnownZero, KnownOne); 05236 return true; 05237 } 05238 05239 if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 || 05240 cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE) 05241 return false; 05242 05243 SDValue Op0 = N->getOperand(0); 05244 SDValue Op1 = N->getOperand(1); 05245 assert(Op0.getValueType() == Op1.getValueType()); 05246 05247 ConstantSDNode *COp0 = dyn_cast<ConstantSDNode>(Op0); 05248 ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1); 05249 if (COp0 && COp0->isNullValue()) 05250 Op = Op1; 05251 else if (COp1 && COp1->isNullValue()) 05252 Op = Op0; 05253 else 05254 return false; 05255 05256 DAG.computeKnownBits(Op, KnownZero, KnownOne); 05257 05258 if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue()) 05259 return false; 05260 05261 return true; 05262 } 05263 05264 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { 05265 SDValue N0 = N->getOperand(0); 05266 EVT VT = N->getValueType(0); 05267 05268 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 05269 LegalOperations)) 05270 return SDValue(Res, 0); 05271 05272 // fold (zext (zext x)) -> (zext x) 05273 // fold (zext (aext x)) -> (zext x) 05274 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 05275 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, 05276 N0.getOperand(0)); 05277 05278 // fold (zext (truncate x)) -> (zext x) or 05279 // (zext (truncate x)) -> (truncate x) 05280 // This is valid when the truncated bits of x are already zero. 05281 // FIXME: We should extend this to work for vectors too. 05282 SDValue Op; 05283 APInt KnownZero; 05284 if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) { 05285 APInt TruncatedBits = 05286 (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ? 05287 APInt(Op.getValueSizeInBits(), 0) : 05288 APInt::getBitsSet(Op.getValueSizeInBits(), 05289 N0.getValueSizeInBits(), 05290 std::min(Op.getValueSizeInBits(), 05291 VT.getSizeInBits())); 05292 if (TruncatedBits == (KnownZero & TruncatedBits)) { 05293 if (VT.bitsGT(Op.getValueType())) 05294 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op); 05295 if (VT.bitsLT(Op.getValueType())) 05296 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); 05297 05298 return Op; 05299 } 05300 } 05301 05302 // fold (zext (truncate (load x))) -> (zext (smaller load x)) 05303 // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n))) 05304 if (N0.getOpcode() == ISD::TRUNCATE) { 05305 SDValue NarrowLoad = ReduceLoadWidth(N0.getNode()); 05306 if (NarrowLoad.getNode()) { 05307 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 05308 if (NarrowLoad.getNode() != N0.getNode()) { 05309 CombineTo(N0.getNode(), NarrowLoad); 05310 // CombineTo deleted the truncate, if needed, but not what's under it. 05311 AddToWorklist(oye); 05312 } 05313 return SDValue(N, 0); // Return N so it doesn't get rechecked! 05314 } 05315 } 05316 05317 // fold (zext (truncate x)) -> (and x, mask) 05318 if (N0.getOpcode() == ISD::TRUNCATE && 05319 (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) { 05320 05321 // fold (zext (truncate (load x))) -> (zext (smaller load x)) 05322 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) 05323 SDValue NarrowLoad = ReduceLoadWidth(N0.getNode()); 05324 if (NarrowLoad.getNode()) { 05325 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 05326 if (NarrowLoad.getNode() != N0.getNode()) { 05327 CombineTo(N0.getNode(), NarrowLoad); 05328 // CombineTo deleted the truncate, if needed, but not what's under it. 05329 AddToWorklist(oye); 05330 } 05331 return SDValue(N, 0); // Return N so it doesn't get rechecked! 05332 } 05333 05334 SDValue Op = N0.getOperand(0); 05335 if (Op.getValueType().bitsLT(VT)) { 05336 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op); 05337 AddToWorklist(Op.getNode()); 05338 } else if (Op.getValueType().bitsGT(VT)) { 05339 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); 05340 AddToWorklist(Op.getNode()); 05341 } 05342 return DAG.getZeroExtendInReg(Op, SDLoc(N), 05343 N0.getValueType().getScalarType()); 05344 } 05345 05346 // Fold (zext (and (trunc x), cst)) -> (and x, cst), 05347 // if either of the casts is not free. 05348 if (N0.getOpcode() == ISD::AND && 05349 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 05350 N0.getOperand(1).getOpcode() == ISD::Constant && 05351 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 05352 N0.getValueType()) || 05353 !TLI.isZExtFree(N0.getValueType(), VT))) { 05354 SDValue X = N0.getOperand(0).getOperand(0); 05355 if (X.getValueType().bitsLT(VT)) { 05356 X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X); 05357 } else if (X.getValueType().bitsGT(VT)) { 05358 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 05359 } 05360 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 05361 Mask = Mask.zext(VT.getSizeInBits()); 05362 return DAG.getNode(ISD::AND, SDLoc(N), VT, 05363 X, DAG.getConstant(Mask, VT)); 05364 } 05365 05366 // fold (zext (load x)) -> (zext (truncate (zextload x))) 05367 // None of the supported targets knows how to perform load and vector_zext 05368 // on vectors in one instruction. We only perform this transformation on 05369 // scalars. 05370 if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() && 05371 ISD::isUNINDEXEDLoad(N0.getNode()) && 05372 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || 05373 TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) { 05374 bool DoXform = true; 05375 SmallVector<SDNode*, 4> SetCCs; 05376 if (!N0.hasOneUse()) 05377 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI); 05378 if (DoXform) { 05379 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 05380 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, 05381 LN0->getChain(), 05382 LN0->getBasePtr(), N0.getValueType(), 05383 LN0->getMemOperand()); 05384 CombineTo(N, ExtLoad); 05385 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 05386 N0.getValueType(), ExtLoad); 05387 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); 05388 05389 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 05390 ISD::ZERO_EXTEND); 05391 return SDValue(N, 0); // Return N so it doesn't get rechecked! 05392 } 05393 } 05394 05395 // fold (zext (and/or/xor (load x), cst)) -> 05396 // (and/or/xor (zextload x), (zext cst)) 05397 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 05398 N0.getOpcode() == ISD::XOR) && 05399 isa<LoadSDNode>(N0.getOperand(0)) && 05400 N0.getOperand(1).getOpcode() == ISD::Constant && 05401 TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()) && 05402 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 05403 LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0)); 05404 if (LN0->getExtensionType() != ISD::SEXTLOAD && LN0->isUnindexed()) { 05405 bool DoXform = true; 05406 SmallVector<SDNode*, 4> SetCCs; 05407 if (!N0.hasOneUse()) 05408 DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND, 05409 SetCCs, TLI); 05410 if (DoXform) { 05411 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT, 05412 LN0->getChain(), LN0->getBasePtr(), 05413 LN0->getMemoryVT(), 05414 LN0->getMemOperand()); 05415 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 05416 Mask = Mask.zext(VT.getSizeInBits()); 05417 SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT, 05418 ExtLoad, DAG.getConstant(Mask, VT)); 05419 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, 05420 SDLoc(N0.getOperand(0)), 05421 N0.getOperand(0).getValueType(), ExtLoad); 05422 CombineTo(N, And); 05423 CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); 05424 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 05425 ISD::ZERO_EXTEND); 05426 return SDValue(N, 0); // Return N so it doesn't get rechecked! 05427 } 05428 } 05429 } 05430 05431 // fold (zext (zextload x)) -> (zext (truncate (zextload x))) 05432 // fold (zext ( extload x)) -> (zext (truncate (zextload x))) 05433 if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && 05434 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { 05435 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 05436 EVT MemVT = LN0->getMemoryVT(); 05437 if ((!LegalOperations && !LN0->isVolatile()) || 05438 TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) { 05439 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, 05440 LN0->getChain(), 05441 LN0->getBasePtr(), MemVT, 05442 LN0->getMemOperand()); 05443 CombineTo(N, ExtLoad); 05444 CombineTo(N0.getNode(), 05445 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), 05446 ExtLoad), 05447 ExtLoad.getValue(1)); 05448 return SDValue(N, 0); // Return N so it doesn't get rechecked! 05449 } 05450 } 05451 05452 if (N0.getOpcode() == ISD::SETCC) { 05453 if (!LegalOperations && VT.isVector() && 05454 N0.getValueType().getVectorElementType() == MVT::i1) { 05455 EVT N0VT = N0.getOperand(0).getValueType(); 05456 if (getSetCCResultType(N0VT) == N0.getValueType()) 05457 return SDValue(); 05458 05459 // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors. 05460 // Only do this before legalize for now. 05461 EVT EltVT = VT.getVectorElementType(); 05462 SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(), 05463 DAG.getConstant(1, EltVT)); 05464 if (VT.getSizeInBits() == N0VT.getSizeInBits()) 05465 // We know that the # elements of the results is the same as the 05466 // # elements of the compare (and the # elements of the compare result 05467 // for that matter). Check to see that they are the same size. If so, 05468 // we know that the element size of the sext'd result matches the 05469 // element size of the compare operands. 05470 return DAG.getNode(ISD::AND, SDLoc(N), VT, 05471 DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 05472 N0.getOperand(1), 05473 cast<CondCodeSDNode>(N0.getOperand(2))->get()), 05474 DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, 05475 OneOps)); 05476 05477 // If the desired elements are smaller or larger than the source 05478 // elements we can use a matching integer vector type and then 05479 // truncate/sign extend 05480 EVT MatchingElementType = 05481 EVT::getIntegerVT(*DAG.getContext(), 05482 N0VT.getScalarType().getSizeInBits()); 05483 EVT MatchingVectorType = 05484 EVT::getVectorVT(*DAG.getContext(), MatchingElementType, 05485 N0VT.getVectorNumElements()); 05486 SDValue VsetCC = 05487 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), 05488 N0.getOperand(1), 05489 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 05490 return DAG.getNode(ISD::AND, SDLoc(N), VT, 05491 DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT), 05492 DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, OneOps)); 05493 } 05494 05495 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 05496 SDValue SCC = 05497 SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1), 05498 DAG.getConstant(1, VT), DAG.getConstant(0, VT), 05499 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true); 05500 if (SCC.getNode()) return SCC; 05501 } 05502 05503 // (zext (shl (zext x), cst)) -> (shl (zext x), cst) 05504 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && 05505 isa<ConstantSDNode>(N0.getOperand(1)) && 05506 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 05507 N0.hasOneUse()) { 05508 SDValue ShAmt = N0.getOperand(1); 05509 unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue(); 05510 if (N0.getOpcode() == ISD::SHL) { 05511 SDValue InnerZExt = N0.getOperand(0); 05512 // If the original shl may be shifting out bits, do not perform this 05513 // transformation. 05514 unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() - 05515 InnerZExt.getOperand(0).getValueType().getSizeInBits(); 05516 if (ShAmtVal > KnownZeroBits) 05517 return SDValue(); 05518 } 05519 05520 SDLoc DL(N); 05521 05522 // Ensure that the shift amount is wide enough for the shifted value. 05523 if (VT.getSizeInBits() >= 256) 05524 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); 05525 05526 return DAG.getNode(N0.getOpcode(), DL, VT, 05527 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), 05528 ShAmt); 05529 } 05530 05531 return SDValue(); 05532 } 05533 05534 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { 05535 SDValue N0 = N->getOperand(0); 05536 EVT VT = N->getValueType(0); 05537 05538 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 05539 LegalOperations)) 05540 return SDValue(Res, 0); 05541 05542 // fold (aext (aext x)) -> (aext x) 05543 // fold (aext (zext x)) -> (zext x) 05544 // fold (aext (sext x)) -> (sext x) 05545 if (N0.getOpcode() == ISD::ANY_EXTEND || 05546 N0.getOpcode() == ISD::ZERO_EXTEND || 05547 N0.getOpcode() == ISD::SIGN_EXTEND) 05548 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 05549 05550 // fold (aext (truncate (load x))) -> (aext (smaller load x)) 05551 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) 05552 if (N0.getOpcode() == ISD::TRUNCATE) { 05553 SDValue NarrowLoad = ReduceLoadWidth(N0.getNode()); 05554 if (NarrowLoad.getNode()) { 05555 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 05556 if (NarrowLoad.getNode() != N0.getNode()) { 05557 CombineTo(N0.getNode(), NarrowLoad); 05558 // CombineTo deleted the truncate, if needed, but not what's under it. 05559 AddToWorklist(oye); 05560 } 05561 return SDValue(N, 0); // Return N so it doesn't get rechecked! 05562 } 05563 } 05564 05565 // fold (aext (truncate x)) 05566 if (N0.getOpcode() == ISD::TRUNCATE) { 05567 SDValue TruncOp = N0.getOperand(0); 05568 if (TruncOp.getValueType() == VT) 05569 return TruncOp; // x iff x size == zext size. 05570 if (TruncOp.getValueType().bitsGT(VT)) 05571 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp); 05572 return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp); 05573 } 05574 05575 // Fold (aext (and (trunc x), cst)) -> (and x, cst) 05576 // if the trunc is not free. 05577 if (N0.getOpcode() == ISD::AND && 05578 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 05579 N0.getOperand(1).getOpcode() == ISD::Constant && 05580 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 05581 N0.getValueType())) { 05582 SDValue X = N0.getOperand(0).getOperand(0); 05583 if (X.getValueType().bitsLT(VT)) { 05584 X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X); 05585 } else if (X.getValueType().bitsGT(VT)) { 05586 X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X); 05587 } 05588 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 05589 Mask = Mask.zext(VT.getSizeInBits()); 05590 return DAG.getNode(ISD::AND, SDLoc(N), VT, 05591 X, DAG.getConstant(Mask, VT)); 05592 } 05593 05594 // fold (aext (load x)) -> (aext (truncate (extload x))) 05595 // None of the supported targets knows how to perform load and any_ext 05596 // on vectors in one instruction. We only perform this transformation on 05597 // scalars. 05598 if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() && 05599 ISD::isUNINDEXEDLoad(N0.getNode()) && 05600 TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType())) { 05601 bool DoXform = true; 05602 SmallVector<SDNode*, 4> SetCCs; 05603 if (!N0.hasOneUse()) 05604 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI); 05605 if (DoXform) { 05606 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 05607 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 05608 LN0->getChain(), 05609 LN0->getBasePtr(), N0.getValueType(), 05610 LN0->getMemOperand()); 05611 CombineTo(N, ExtLoad); 05612 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 05613 N0.getValueType(), ExtLoad); 05614 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); 05615 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 05616 ISD::ANY_EXTEND); 05617 return SDValue(N, 0); // Return N so it doesn't get rechecked! 05618 } 05619 } 05620 05621 // fold (aext (zextload x)) -> (aext (truncate (zextload x))) 05622 // fold (aext (sextload x)) -> (aext (truncate (sextload x))) 05623 // fold (aext ( extload x)) -> (aext (truncate (extload x))) 05624 if (N0.getOpcode() == ISD::LOAD && 05625 !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 05626 N0.hasOneUse()) { 05627 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 05628 ISD::LoadExtType ExtType = LN0->getExtensionType(); 05629 EVT MemVT = LN0->getMemoryVT(); 05630 if (!LegalOperations || TLI.isLoadExtLegal(ExtType, MemVT)) { 05631 SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), 05632 VT, LN0->getChain(), LN0->getBasePtr(), 05633 MemVT, LN0->getMemOperand()); 05634 CombineTo(N, ExtLoad); 05635 CombineTo(N0.getNode(), 05636 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 05637 N0.getValueType(), ExtLoad), 05638 ExtLoad.getValue(1)); 05639 return SDValue(N, 0); // Return N so it doesn't get rechecked! 05640 } 05641 } 05642 05643 if (N0.getOpcode() == ISD::SETCC) { 05644 // For vectors: 05645 // aext(setcc) -> vsetcc 05646 // aext(setcc) -> truncate(vsetcc) 05647 // aext(setcc) -> aext(vsetcc) 05648 // Only do this before legalize for now. 05649 if (VT.isVector() && !LegalOperations) { 05650 EVT N0VT = N0.getOperand(0).getValueType(); 05651 // We know that the # elements of the results is the same as the 05652 // # elements of the compare (and the # elements of the compare result 05653 // for that matter). Check to see that they are the same size. If so, 05654 // we know that the element size of the sext'd result matches the 05655 // element size of the compare operands. 05656 if (VT.getSizeInBits() == N0VT.getSizeInBits()) 05657 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 05658 N0.getOperand(1), 05659 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 05660 // If the desired elements are smaller or larger than the source 05661 // elements we can use a matching integer vector type and then 05662 // truncate/any extend 05663 else { 05664 EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger(); 05665 SDValue VsetCC = 05666 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), 05667 N0.getOperand(1), 05668 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 05669 return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); 05670 } 05671 } 05672 05673 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 05674 SDValue SCC = 05675 SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1), 05676 DAG.getConstant(1, VT), DAG.getConstant(0, VT), 05677 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true); 05678 if (SCC.getNode()) 05679 return SCC; 05680 } 05681 05682 return SDValue(); 05683 } 05684 05685 /// See if the specified operand can be simplified with the knowledge that only 05686 /// the bits specified by Mask are used. If so, return the simpler operand, 05687 /// otherwise return a null SDValue. 05688 SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) { 05689 switch (V.getOpcode()) { 05690 default: break; 05691 case ISD::Constant: { 05692 const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode()); 05693 assert(CV && "Const value should be ConstSDNode."); 05694 const APInt &CVal = CV->getAPIntValue(); 05695 APInt NewVal = CVal & Mask; 05696 if (NewVal != CVal) 05697 return DAG.getConstant(NewVal, V.getValueType()); 05698 break; 05699 } 05700 case ISD::OR: 05701 case ISD::XOR: 05702 // If the LHS or RHS don't contribute bits to the or, drop them. 05703 if (DAG.MaskedValueIsZero(V.getOperand(0), Mask)) 05704 return V.getOperand(1); 05705 if (DAG.MaskedValueIsZero(V.getOperand(1), Mask)) 05706 return V.getOperand(0); 05707 break; 05708 case ISD::SRL: 05709 // Only look at single-use SRLs. 05710 if (!V.getNode()->hasOneUse()) 05711 break; 05712 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 05713 // See if we can recursively simplify the LHS. 05714 unsigned Amt = RHSC->getZExtValue(); 05715 05716 // Watch out for shift count overflow though. 05717 if (Amt >= Mask.getBitWidth()) break; 05718 APInt NewMask = Mask << Amt; 05719 SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask); 05720 if (SimplifyLHS.getNode()) 05721 return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(), 05722 SimplifyLHS, V.getOperand(1)); 05723 } 05724 } 05725 return SDValue(); 05726 } 05727 05728 /// If the result of a wider load is shifted to right of N bits and then 05729 /// truncated to a narrower type and where N is a multiple of number of bits of 05730 /// the narrower type, transform it to a narrower load from address + N / num of 05731 /// bits of new type. If the result is to be extended, also fold the extension 05732 /// to form a extending load. 05733 SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { 05734 unsigned Opc = N->getOpcode(); 05735 05736 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 05737 SDValue N0 = N->getOperand(0); 05738 EVT VT = N->getValueType(0); 05739 EVT ExtVT = VT; 05740 05741 // This transformation isn't valid for vector loads. 05742 if (VT.isVector()) 05743 return SDValue(); 05744 05745 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then 05746 // extended to VT. 05747 if (Opc == ISD::SIGN_EXTEND_INREG) { 05748 ExtType = ISD::SEXTLOAD; 05749 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 05750 } else if (Opc == ISD::SRL) { 05751 // Another special-case: SRL is basically zero-extending a narrower value. 05752 ExtType = ISD::ZEXTLOAD; 05753 N0 = SDValue(N, 0); 05754 ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 05755 if (!N01) return SDValue(); 05756 ExtVT = EVT::getIntegerVT(*DAG.getContext(), 05757 VT.getSizeInBits() - N01->getZExtValue()); 05758 } 05759 if (LegalOperations && !TLI.isLoadExtLegal(ExtType, ExtVT)) 05760 return SDValue(); 05761 05762 unsigned EVTBits = ExtVT.getSizeInBits(); 05763 05764 // Do not generate loads of non-round integer types since these can 05765 // be expensive (and would be wrong if the type is not byte sized). 05766 if (!ExtVT.isRound()) 05767 return SDValue(); 05768 05769 unsigned ShAmt = 0; 05770 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 05771 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 05772 ShAmt = N01->getZExtValue(); 05773 // Is the shift amount a multiple of size of VT? 05774 if ((ShAmt & (EVTBits-1)) == 0) { 05775 N0 = N0.getOperand(0); 05776 // Is the load width a multiple of size of VT? 05777 if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0) 05778 return SDValue(); 05779 } 05780 05781 // At this point, we must have a load or else we can't do the transform. 05782 if (!isa<LoadSDNode>(N0)) return SDValue(); 05783 05784 // Because a SRL must be assumed to *need* to zero-extend the high bits 05785 // (as opposed to anyext the high bits), we can't combine the zextload 05786 // lowering of SRL and an sextload. 05787 if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD) 05788 return SDValue(); 05789 05790 // If the shift amount is larger than the input type then we're not 05791 // accessing any of the loaded bytes. If the load was a zextload/extload 05792 // then the result of the shift+trunc is zero/undef (handled elsewhere). 05793 if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits()) 05794 return SDValue(); 05795 } 05796 } 05797 05798 // If the load is shifted left (and the result isn't shifted back right), 05799 // we can fold the truncate through the shift. 05800 unsigned ShLeftAmt = 0; 05801 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 05802 ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { 05803 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 05804 ShLeftAmt = N01->getZExtValue(); 05805 N0 = N0.getOperand(0); 05806 } 05807 } 05808 05809 // If we haven't found a load, we can't narrow it. Don't transform one with 05810 // multiple uses, this would require adding a new load. 05811 if (!isa<LoadSDNode>(N0) || !N0.hasOneUse()) 05812 return SDValue(); 05813 05814 // Don't change the width of a volatile load. 05815 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 05816 if (LN0->isVolatile()) 05817 return SDValue(); 05818 05819 // Verify that we are actually reducing a load width here. 05820 if (LN0->getMemoryVT().getSizeInBits() < EVTBits) 05821 return SDValue(); 05822 05823 // For the transform to be legal, the load must produce only two values 05824 // (the value loaded and the chain). Don't transform a pre-increment 05825 // load, for example, which produces an extra value. Otherwise the 05826 // transformation is not equivalent, and the downstream logic to replace 05827 // uses gets things wrong. 05828 if (LN0->getNumValues() > 2) 05829 return SDValue(); 05830 05831 // If the load that we're shrinking is an extload and we're not just 05832 // discarding the extension we can't simply shrink the load. Bail. 05833 // TODO: It would be possible to merge the extensions in some cases. 05834 if (LN0->getExtensionType() != ISD::NON_EXTLOAD && 05835 LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt) 05836 return SDValue(); 05837 05838 EVT PtrType = N0.getOperand(1).getValueType(); 05839 05840 if (PtrType == MVT::Untyped || PtrType.isExtended()) 05841 // It's not possible to generate a constant of extended or untyped type. 05842 return SDValue(); 05843 05844 // For big endian targets, we need to adjust the offset to the pointer to 05845 // load the correct bytes. 05846 if (TLI.isBigEndian()) { 05847 unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits(); 05848 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits(); 05849 ShAmt = LVTStoreBits - EVTStoreBits - ShAmt; 05850 } 05851 05852 uint64_t PtrOff = ShAmt / 8; 05853 unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff); 05854 SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LN0), 05855 PtrType, LN0->getBasePtr(), 05856 DAG.getConstant(PtrOff, PtrType)); 05857 AddToWorklist(NewPtr.getNode()); 05858 05859 SDValue Load; 05860 if (ExtType == ISD::NON_EXTLOAD) 05861 Load = DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr, 05862 LN0->getPointerInfo().getWithOffset(PtrOff), 05863 LN0->isVolatile(), LN0->isNonTemporal(), 05864 LN0->isInvariant(), NewAlign, LN0->getAAInfo()); 05865 else 05866 Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(),NewPtr, 05867 LN0->getPointerInfo().getWithOffset(PtrOff), 05868 ExtVT, LN0->isVolatile(), LN0->isNonTemporal(), 05869 LN0->isInvariant(), NewAlign, LN0->getAAInfo()); 05870 05871 // Replace the old load's chain with the new load's chain. 05872 WorklistRemover DeadNodes(*this); 05873 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 05874 05875 // Shift the result left, if we've swallowed a left shift. 05876 SDValue Result = Load; 05877 if (ShLeftAmt != 0) { 05878 EVT ShImmTy = getShiftAmountTy(Result.getValueType()); 05879 if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt)) 05880 ShImmTy = VT; 05881 // If the shift amount is as large as the result size (but, presumably, 05882 // no larger than the source) then the useful bits of the result are 05883 // zero; we can't simply return the shortened shift, because the result 05884 // of that operation is undefined. 05885 if (ShLeftAmt >= VT.getSizeInBits()) 05886 Result = DAG.getConstant(0, VT); 05887 else 05888 Result = DAG.getNode(ISD::SHL, SDLoc(N0), VT, 05889 Result, DAG.getConstant(ShLeftAmt, ShImmTy)); 05890 } 05891 05892 // Return the new loaded value. 05893 return Result; 05894 } 05895 05896 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { 05897 SDValue N0 = N->getOperand(0); 05898 SDValue N1 = N->getOperand(1); 05899 EVT VT = N->getValueType(0); 05900 EVT EVT = cast<VTSDNode>(N1)->getVT(); 05901 unsigned VTBits = VT.getScalarType().getSizeInBits(); 05902 unsigned EVTBits = EVT.getScalarType().getSizeInBits(); 05903 05904 // fold (sext_in_reg c1) -> c1 05905 if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF) 05906 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); 05907 05908 // If the input is already sign extended, just drop the extension. 05909 if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1) 05910 return N0; 05911 05912 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 05913 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 05914 EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) 05915 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 05916 N0.getOperand(0), N1); 05917 05918 // fold (sext_in_reg (sext x)) -> (sext x) 05919 // fold (sext_in_reg (aext x)) -> (sext x) 05920 // if x is small enough. 05921 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { 05922 SDValue N00 = N0.getOperand(0); 05923 if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits && 05924 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) 05925 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); 05926 } 05927 05928 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. 05929 if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits))) 05930 return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT); 05931 05932 // fold operands of sext_in_reg based on knowledge that the top bits are not 05933 // demanded. 05934 if (SimplifyDemandedBits(SDValue(N, 0))) 05935 return SDValue(N, 0); 05936 05937 // fold (sext_in_reg (load x)) -> (smaller sextload x) 05938 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) 05939 SDValue NarrowLoad = ReduceLoadWidth(N); 05940 if (NarrowLoad.getNode()) 05941 return NarrowLoad; 05942 05943 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) 05944 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. 05945 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. 05946 if (N0.getOpcode() == ISD::SRL) { 05947 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) 05948 if (ShAmt->getZExtValue()+EVTBits <= VTBits) { 05949 // We can turn this into an SRA iff the input to the SRL is already sign 05950 // extended enough. 05951 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); 05952 if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits) 05953 return DAG.getNode(ISD::SRA, SDLoc(N), VT, 05954 N0.getOperand(0), N0.getOperand(1)); 05955 } 05956 } 05957 05958 // fold (sext_inreg (extload x)) -> (sextload x) 05959 if (ISD::isEXTLoad(N0.getNode()) && 05960 ISD::isUNINDEXEDLoad(N0.getNode()) && 05961 EVT == cast<LoadSDNode>(N0)->getMemoryVT() && 05962 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || 05963 TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) { 05964 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 05965 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 05966 LN0->getChain(), 05967 LN0->getBasePtr(), EVT, 05968 LN0->getMemOperand()); 05969 CombineTo(N, ExtLoad); 05970 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 05971 AddToWorklist(ExtLoad.getNode()); 05972 return SDValue(N, 0); // Return N so it doesn't get rechecked! 05973 } 05974 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use 05975 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 05976 N0.hasOneUse() && 05977 EVT == cast<LoadSDNode>(N0)->getMemoryVT() && 05978 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || 05979 TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) { 05980 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 05981 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 05982 LN0->getChain(), 05983 LN0->getBasePtr(), EVT, 05984 LN0->getMemOperand()); 05985 CombineTo(N, ExtLoad); 05986 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 05987 return SDValue(N, 0); // Return N so it doesn't get rechecked! 05988 } 05989 05990 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) 05991 if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) { 05992 SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 05993 N0.getOperand(1), false); 05994 if (BSwap.getNode()) 05995 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 05996 BSwap, N1); 05997 } 05998 05999 // Fold a sext_inreg of a build_vector of ConstantSDNodes or undefs 06000 // into a build_vector. 06001 if (ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { 06002 SmallVector<SDValue, 8> Elts; 06003 unsigned NumElts = N0->getNumOperands(); 06004 unsigned ShAmt = VTBits - EVTBits; 06005 06006 for (unsigned i = 0; i != NumElts; ++i) { 06007 SDValue Op = N0->getOperand(i); 06008 if (Op->getOpcode() == ISD::UNDEF) { 06009 Elts.push_back(Op); 06010 continue; 06011 } 06012 06013 ConstantSDNode *CurrentND = cast<ConstantSDNode>(Op); 06014 const APInt &C = APInt(VTBits, CurrentND->getAPIntValue().getZExtValue()); 06015 Elts.push_back(DAG.getConstant(C.shl(ShAmt).ashr(ShAmt).getZExtValue(), 06016 Op.getValueType())); 06017 } 06018 06019 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Elts); 06020 } 06021 06022 return SDValue(); 06023 } 06024 06025 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { 06026 SDValue N0 = N->getOperand(0); 06027 EVT VT = N->getValueType(0); 06028 bool isLE = TLI.isLittleEndian(); 06029 06030 // noop truncate 06031 if (N0.getValueType() == N->getValueType(0)) 06032 return N0; 06033 // fold (truncate c1) -> c1 06034 if (isa<ConstantSDNode>(N0)) 06035 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); 06036 // fold (truncate (truncate x)) -> (truncate x) 06037 if (N0.getOpcode() == ISD::TRUNCATE) 06038 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 06039 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x 06040 if (N0.getOpcode() == ISD::ZERO_EXTEND || 06041 N0.getOpcode() == ISD::SIGN_EXTEND || 06042 N0.getOpcode() == ISD::ANY_EXTEND) { 06043 if (N0.getOperand(0).getValueType().bitsLT(VT)) 06044 // if the source is smaller than the dest, we still need an extend 06045 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, 06046 N0.getOperand(0)); 06047 if (N0.getOperand(0).getValueType().bitsGT(VT)) 06048 // if the source is larger than the dest, than we just need the truncate 06049 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 06050 // if the source and dest are the same type, we can drop both the extend 06051 // and the truncate. 06052 return N0.getOperand(0); 06053 } 06054 06055 // Fold extract-and-trunc into a narrow extract. For example: 06056 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) 06057 // i32 y = TRUNCATE(i64 x) 06058 // -- becomes -- 06059 // v16i8 b = BITCAST (v2i64 val) 06060 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) 06061 // 06062 // Note: We only run this optimization after type legalization (which often 06063 // creates this pattern) and before operation legalization after which 06064 // we need to be more careful about the vector instructions that we generate. 06065 if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 06066 LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { 06067 06068 EVT VecTy = N0.getOperand(0).getValueType(); 06069 EVT ExTy = N0.getValueType(); 06070 EVT TrTy = N->getValueType(0); 06071 06072 unsigned NumElem = VecTy.getVectorNumElements(); 06073 unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); 06074 06075 EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem); 06076 assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); 06077 06078 SDValue EltNo = N0->getOperand(1); 06079 if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { 06080 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 06081 EVT IndexTy = TLI.getVectorIdxTy(); 06082 int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); 06083 06084 SDValue V = DAG.getNode(ISD::BITCAST, SDLoc(N), 06085 NVT, N0.getOperand(0)); 06086 06087 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, 06088 SDLoc(N), TrTy, V, 06089 DAG.getConstant(Index, IndexTy)); 06090 } 06091 } 06092 06093 // trunc (select c, a, b) -> select c, (trunc a), (trunc b) 06094 if (N0.getOpcode() == ISD::SELECT) { 06095 EVT SrcVT = N0.getValueType(); 06096 if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && 06097 TLI.isTruncateFree(SrcVT, VT)) { 06098 SDLoc SL(N0); 06099 SDValue Cond = N0.getOperand(0); 06100 SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); 06101 SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); 06102 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); 06103 } 06104 } 06105 06106 // Fold a series of buildvector, bitcast, and truncate if possible. 06107 // For example fold 06108 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to 06109 // (2xi32 (buildvector x, y)). 06110 if (Level == AfterLegalizeVectorOps && VT.isVector() && 06111 N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 06112 N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && 06113 N0.getOperand(0).hasOneUse()) { 06114 06115 SDValue BuildVect = N0.getOperand(0); 06116 EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); 06117 EVT TruncVecEltTy = VT.getVectorElementType(); 06118 06119 // Check that the element types match. 06120 if (BuildVectEltTy == TruncVecEltTy) { 06121 // Now we only need to compute the offset of the truncated elements. 06122 unsigned BuildVecNumElts = BuildVect.getNumOperands(); 06123 unsigned TruncVecNumElts = VT.getVectorNumElements(); 06124 unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; 06125 06126 assert((BuildVecNumElts % TruncVecNumElts) == 0 && 06127 "Invalid number of elements"); 06128 06129 SmallVector<SDValue, 8> Opnds; 06130 for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) 06131 Opnds.push_back(BuildVect.getOperand(i)); 06132 06133 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Opnds); 06134 } 06135 } 06136 06137 // See if we can simplify the input to this truncate through knowledge that 06138 // only the low bits are being used. 06139 // For example "trunc (or (shl x, 8), y)" // -> trunc y 06140 // Currently we only perform this optimization on scalars because vectors 06141 // may have different active low bits. 06142 if (!VT.isVector()) { 06143 SDValue Shorter = 06144 GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(), 06145 VT.getSizeInBits())); 06146 if (Shorter.getNode()) 06147 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); 06148 } 06149 // fold (truncate (load x)) -> (smaller load x) 06150 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) 06151 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { 06152 SDValue Reduced = ReduceLoadWidth(N); 06153 if (Reduced.getNode()) 06154 return Reduced; 06155 // Handle the case where the load remains an extending load even 06156 // after truncation. 06157 if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { 06158 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 06159 if (!LN0->isVolatile() && 06160 LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) { 06161 SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), 06162 VT, LN0->getChain(), LN0->getBasePtr(), 06163 LN0->getMemoryVT(), 06164 LN0->getMemOperand()); 06165 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); 06166 return NewLoad; 06167 } 06168 } 06169 } 06170 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), 06171 // where ... are all 'undef'. 06172 if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { 06173 SmallVector<EVT, 8> VTs; 06174 SDValue V; 06175 unsigned Idx = 0; 06176 unsigned NumDefs = 0; 06177 06178 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { 06179 SDValue X = N0.getOperand(i); 06180 if (X.getOpcode() != ISD::UNDEF) { 06181 V = X; 06182 Idx = i; 06183 NumDefs++; 06184 } 06185 // Stop if more than one members are non-undef. 06186 if (NumDefs > 1) 06187 break; 06188 VTs.push_back(EVT::getVectorVT(*DAG.getContext(), 06189 VT.getVectorElementType(), 06190 X.getValueType().getVectorNumElements())); 06191 } 06192 06193 if (NumDefs == 0) 06194 return DAG.getUNDEF(VT); 06195 06196 if (NumDefs == 1) { 06197 assert(V.getNode() && "The single defined operand is empty!"); 06198 SmallVector<SDValue, 8> Opnds; 06199 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 06200 if (i != Idx) { 06201 Opnds.push_back(DAG.getUNDEF(VTs[i])); 06202 continue; 06203 } 06204 SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); 06205 AddToWorklist(NV.getNode()); 06206 Opnds.push_back(NV); 06207 } 06208 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); 06209 } 06210 } 06211 06212 // Simplify the operands using demanded-bits information. 06213 if (!VT.isVector() && 06214 SimplifyDemandedBits(SDValue(N, 0))) 06215 return SDValue(N, 0); 06216 06217 return SDValue(); 06218 } 06219 06220 static SDNode *getBuildPairElt(SDNode *N, unsigned i) { 06221 SDValue Elt = N->getOperand(i); 06222 if (Elt.getOpcode() != ISD::MERGE_VALUES) 06223 return Elt.getNode(); 06224 return Elt.getOperand(Elt.getResNo()).getNode(); 06225 } 06226 06227 /// build_pair (load, load) -> load 06228 /// if load locations are consecutive. 06229 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { 06230 assert(N->getOpcode() == ISD::BUILD_PAIR); 06231 06232 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); 06233 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); 06234 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() || 06235 LD1->getAddressSpace() != LD2->getAddressSpace()) 06236 return SDValue(); 06237 EVT LD1VT = LD1->getValueType(0); 06238 06239 if (ISD::isNON_EXTLoad(LD2) && 06240 LD2->hasOneUse() && 06241 // If both are volatile this would reduce the number of volatile loads. 06242 // If one is volatile it might be ok, but play conservative and bail out. 06243 !LD1->isVolatile() && 06244 !LD2->isVolatile() && 06245 DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) { 06246 unsigned Align = LD1->getAlignment(); 06247 unsigned NewAlign = TLI.getDataLayout()-> 06248 getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext())); 06249 06250 if (NewAlign <= Align && 06251 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) 06252 return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), 06253 LD1->getBasePtr(), LD1->getPointerInfo(), 06254 false, false, false, Align); 06255 } 06256 06257 return SDValue(); 06258 } 06259 06260 SDValue DAGCombiner::visitBITCAST(SDNode *N) { 06261 SDValue N0 = N->getOperand(0); 06262 EVT VT = N->getValueType(0); 06263 06264 // If the input is a BUILD_VECTOR with all constant elements, fold this now. 06265 // Only do this before legalize, since afterward the target may be depending 06266 // on the bitconvert. 06267 // First check to see if this is all constant. 06268 if (!LegalTypes && 06269 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && 06270 VT.isVector()) { 06271 bool isSimple = cast<BuildVectorSDNode>(N0)->isConstant(); 06272 06273 EVT DestEltVT = N->getValueType(0).getVectorElementType(); 06274 assert(!DestEltVT.isVector() && 06275 "Element type of vector ValueType must not be vector!"); 06276 if (isSimple) 06277 return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT); 06278 } 06279 06280 // If the input is a constant, let getNode fold it. 06281 if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) { 06282 SDValue Res = DAG.getNode(ISD::BITCAST, SDLoc(N), VT, N0); 06283 if (Res.getNode() != N) { 06284 if (!LegalOperations || 06285 TLI.isOperationLegal(Res.getNode()->getOpcode(), VT)) 06286 return Res; 06287 06288 // Folding it resulted in an illegal node, and it's too late to 06289 // do that. Clean up the old node and forego the transformation. 06290 // Ideally this won't happen very often, because instcombine 06291 // and the earlier dagcombine runs (where illegal nodes are 06292 // permitted) should have folded most of them already. 06293 deleteAndRecombine(Res.getNode()); 06294 } 06295 } 06296 06297 // (conv (conv x, t1), t2) -> (conv x, t2) 06298 if (N0.getOpcode() == ISD::BITCAST) 06299 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, 06300 N0.getOperand(0)); 06301 06302 // fold (conv (load x)) -> (load (conv*)x) 06303 // If the resultant load doesn't need a higher alignment than the original! 06304 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 06305 // Do not change the width of a volatile load. 06306 !cast<LoadSDNode>(N0)->isVolatile() && 06307 // Do not remove the cast if the types differ in endian layout. 06308 TLI.hasBigEndianPartOrdering(N0.getValueType()) == 06309 TLI.hasBigEndianPartOrdering(VT) && 06310 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) && 06311 TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) { 06312 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 06313 unsigned Align = TLI.getDataLayout()-> 06314 getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext())); 06315 unsigned OrigAlign = LN0->getAlignment(); 06316 06317 if (Align <= OrigAlign) { 06318 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), 06319 LN0->getBasePtr(), LN0->getPointerInfo(), 06320 LN0->isVolatile(), LN0->isNonTemporal(), 06321 LN0->isInvariant(), OrigAlign, 06322 LN0->getAAInfo()); 06323 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 06324 return Load; 06325 } 06326 } 06327 06328 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 06329 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 06330 // This often reduces constant pool loads. 06331 if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || 06332 (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && 06333 N0.getNode()->hasOneUse() && VT.isInteger() && 06334 !VT.isVector() && !N0.getValueType().isVector()) { 06335 SDValue NewConv = DAG.getNode(ISD::BITCAST, SDLoc(N0), VT, 06336 N0.getOperand(0)); 06337 AddToWorklist(NewConv.getNode()); 06338 06339 APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); 06340 if (N0.getOpcode() == ISD::FNEG) 06341 return DAG.getNode(ISD::XOR, SDLoc(N), VT, 06342 NewConv, DAG.getConstant(SignBit, VT)); 06343 assert(N0.getOpcode() == ISD::FABS); 06344 return DAG.getNode(ISD::AND, SDLoc(N), VT, 06345 NewConv, DAG.getConstant(~SignBit, VT)); 06346 } 06347 06348 // fold (bitconvert (fcopysign cst, x)) -> 06349 // (or (and (bitconvert x), sign), (and cst, (not sign))) 06350 // Note that we don't handle (copysign x, cst) because this can always be 06351 // folded to an fneg or fabs. 06352 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && 06353 isa<ConstantFPSDNode>(N0.getOperand(0)) && 06354 VT.isInteger() && !VT.isVector()) { 06355 unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits(); 06356 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); 06357 if (isTypeLegal(IntXVT)) { 06358 SDValue X = DAG.getNode(ISD::BITCAST, SDLoc(N0), 06359 IntXVT, N0.getOperand(1)); 06360 AddToWorklist(X.getNode()); 06361 06362 // If X has a different width than the result/lhs, sext it or truncate it. 06363 unsigned VTWidth = VT.getSizeInBits(); 06364 if (OrigXWidth < VTWidth) { 06365 X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); 06366 AddToWorklist(X.getNode()); 06367 } else if (OrigXWidth > VTWidth) { 06368 // To get the sign bit in the right place, we have to shift it right 06369 // before truncating. 06370 X = DAG.getNode(ISD::SRL, SDLoc(X), 06371 X.getValueType(), X, 06372 DAG.getConstant(OrigXWidth-VTWidth, X.getValueType())); 06373 AddToWorklist(X.getNode()); 06374 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 06375 AddToWorklist(X.getNode()); 06376 } 06377 06378 APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); 06379 X = DAG.getNode(ISD::AND, SDLoc(X), VT, 06380 X, DAG.getConstant(SignBit, VT)); 06381 AddToWorklist(X.getNode()); 06382 06383 SDValue Cst = DAG.getNode(ISD::BITCAST, SDLoc(N0), 06384 VT, N0.getOperand(0)); 06385 Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, 06386 Cst, DAG.getConstant(~SignBit, VT)); 06387 AddToWorklist(Cst.getNode()); 06388 06389 return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); 06390 } 06391 } 06392 06393 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. 06394 if (N0.getOpcode() == ISD::BUILD_PAIR) { 06395 SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT); 06396 if (CombineLD.getNode()) 06397 return CombineLD; 06398 } 06399 06400 return SDValue(); 06401 } 06402 06403 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { 06404 EVT VT = N->getValueType(0); 06405 return CombineConsecutiveLoads(N, VT); 06406 } 06407 06408 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef 06409 /// operands. DstEltVT indicates the destination element value type. 06410 SDValue DAGCombiner:: 06411 ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { 06412 EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); 06413 06414 // If this is already the right type, we're done. 06415 if (SrcEltVT == DstEltVT) return SDValue(BV, 0); 06416 06417 unsigned SrcBitSize = SrcEltVT.getSizeInBits(); 06418 unsigned DstBitSize = DstEltVT.getSizeInBits(); 06419 06420 // If this is a conversion of N elements of one type to N elements of another 06421 // type, convert each element. This handles FP<->INT cases. 06422 if (SrcBitSize == DstBitSize) { 06423 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 06424 BV->getValueType(0).getVectorNumElements()); 06425 06426 // Due to the FP element handling below calling this routine recursively, 06427 // we can end up with a scalar-to-vector node here. 06428 if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR) 06429 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT, 06430 DAG.getNode(ISD::BITCAST, SDLoc(BV), 06431 DstEltVT, BV->getOperand(0))); 06432 06433 SmallVector<SDValue, 8> Ops; 06434 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 06435 SDValue Op = BV->getOperand(i); 06436 // If the vector element type is not legal, the BUILD_VECTOR operands 06437 // are promoted and implicitly truncated. Make that explicit here. 06438 if (Op.getValueType() != SrcEltVT) 06439 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); 06440 Ops.push_back(DAG.getNode(ISD::BITCAST, SDLoc(BV), 06441 DstEltVT, Op)); 06442 AddToWorklist(Ops.back().getNode()); 06443 } 06444 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT, Ops); 06445 } 06446 06447 // Otherwise, we're growing or shrinking the elements. To avoid having to 06448 // handle annoying details of growing/shrinking FP values, we convert them to 06449 // int first. 06450 if (SrcEltVT.isFloatingPoint()) { 06451 // Convert the input float vector to a int vector where the elements are the 06452 // same sizes. 06453 assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!"); 06454 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); 06455 BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); 06456 SrcEltVT = IntVT; 06457 } 06458 06459 // Now we know the input is an integer vector. If the output is a FP type, 06460 // convert to integer first, then to FP of the right size. 06461 if (DstEltVT.isFloatingPoint()) { 06462 assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!"); 06463 EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); 06464 SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); 06465 06466 // Next, convert to FP elements of the same size. 06467 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); 06468 } 06469 06470 // Okay, we know the src/dst types are both integers of differing types. 06471 // Handling growing first. 06472 assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); 06473 if (SrcBitSize < DstBitSize) { 06474 unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; 06475 06476 SmallVector<SDValue, 8> Ops; 06477 for (unsigned i = 0, e = BV->getNumOperands(); i != e; 06478 i += NumInputsPerOutput) { 06479 bool isLE = TLI.isLittleEndian(); 06480 APInt NewBits = APInt(DstBitSize, 0); 06481 bool EltIsUndef = true; 06482 for (unsigned j = 0; j != NumInputsPerOutput; ++j) { 06483 // Shift the previously computed bits over. 06484 NewBits <<= SrcBitSize; 06485 SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); 06486 if (Op.getOpcode() == ISD::UNDEF) continue; 06487 EltIsUndef = false; 06488 06489 NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue(). 06490 zextOrTrunc(SrcBitSize).zext(DstBitSize); 06491 } 06492 06493 if (EltIsUndef) 06494 Ops.push_back(DAG.getUNDEF(DstEltVT)); 06495 else 06496 Ops.push_back(DAG.getConstant(NewBits, DstEltVT)); 06497 } 06498 06499 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); 06500 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT, Ops); 06501 } 06502 06503 // Finally, this must be the case where we are shrinking elements: each input 06504 // turns into multiple outputs. 06505 bool isS2V = ISD::isScalarToVector(BV); 06506 unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; 06507 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 06508 NumOutputsPerInput*BV->getNumOperands()); 06509 SmallVector<SDValue, 8> Ops; 06510 06511 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 06512 if (BV->getOperand(i).getOpcode() == ISD::UNDEF) { 06513 for (unsigned j = 0; j != NumOutputsPerInput; ++j) 06514 Ops.push_back(DAG.getUNDEF(DstEltVT)); 06515 continue; 06516 } 06517 06518 APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))-> 06519 getAPIntValue().zextOrTrunc(SrcBitSize); 06520 06521 for (unsigned j = 0; j != NumOutputsPerInput; ++j) { 06522 APInt ThisVal = OpVal.trunc(DstBitSize); 06523 Ops.push_back(DAG.getConstant(ThisVal, DstEltVT)); 06524 if (isS2V && i == 0 && j == 0 && ThisVal.zext(SrcBitSize) == OpVal) 06525 // Simply turn this into a SCALAR_TO_VECTOR of the new type. 06526 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT, 06527 Ops[0]); 06528 OpVal = OpVal.lshr(DstBitSize); 06529 } 06530 06531 // For big endian targets, swap the order of the pieces of each element. 06532 if (TLI.isBigEndian()) 06533 std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); 06534 } 06535 06536 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT, Ops); 06537 } 06538 06539 SDValue DAGCombiner::visitFADD(SDNode *N) { 06540 SDValue N0 = N->getOperand(0); 06541 SDValue N1 = N->getOperand(1); 06542 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 06543 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 06544 EVT VT = N->getValueType(0); 06545 const TargetOptions &Options = DAG.getTarget().Options; 06546 06547 // fold vector ops 06548 if (VT.isVector()) { 06549 SDValue FoldedVOp = SimplifyVBinOp(N); 06550 if (FoldedVOp.getNode()) return FoldedVOp; 06551 } 06552 06553 // fold (fadd c1, c2) -> c1 + c2 06554 if (N0CFP && N1CFP) 06555 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N1); 06556 06557 // canonicalize constant to RHS 06558 if (N0CFP && !N1CFP) 06559 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N0); 06560 06561 // fold (fadd A, (fneg B)) -> (fsub A, B) 06562 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && 06563 isNegatibleForFree(N1, LegalOperations, TLI, &Options) == 2) 06564 return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0, 06565 GetNegatedExpression(N1, DAG, LegalOperations)); 06566 06567 // fold (fadd (fneg A), B) -> (fsub B, A) 06568 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && 06569 isNegatibleForFree(N0, LegalOperations, TLI, &Options) == 2) 06570 return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N1, 06571 GetNegatedExpression(N0, DAG, LegalOperations)); 06572 06573 // If 'unsafe math' is enabled, fold lots of things. 06574 if (Options.UnsafeFPMath) { 06575 // No FP constant should be created after legalization as Instruction 06576 // Selection pass has a hard time dealing with FP constants. 06577 bool AllowNewConst = (Level < AfterLegalizeDAG); 06578 06579 // fold (fadd A, 0) -> A 06580 if (N1CFP && N1CFP->getValueAPF().isZero()) 06581 return N0; 06582 06583 // fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2)) 06584 if (N1CFP && N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() && 06585 isa<ConstantFPSDNode>(N0.getOperand(1))) 06586 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0.getOperand(0), 06587 DAG.getNode(ISD::FADD, SDLoc(N), VT, 06588 N0.getOperand(1), N1)); 06589 06590 // If allowed, fold (fadd (fneg x), x) -> 0.0 06591 if (AllowNewConst && N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) 06592 return DAG.getConstantFP(0.0, VT); 06593 06594 // If allowed, fold (fadd x, (fneg x)) -> 0.0 06595 if (AllowNewConst && N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) 06596 return DAG.getConstantFP(0.0, VT); 06597 06598 // We can fold chains of FADD's of the same value into multiplications. 06599 // This transform is not safe in general because we are reducing the number 06600 // of rounding steps. 06601 if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { 06602 if (N0.getOpcode() == ISD::FMUL) { 06603 ConstantFPSDNode *CFP00 = dyn_cast<ConstantFPSDNode>(N0.getOperand(0)); 06604 ConstantFPSDNode *CFP01 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); 06605 06606 // (fadd (fmul x, c), x) -> (fmul x, c+1) 06607 if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { 06608 SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT, 06609 SDValue(CFP01, 0), 06610 DAG.getConstantFP(1.0, VT)); 06611 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N1, NewCFP); 06612 } 06613 06614 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) 06615 if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && 06616 N1.getOperand(0) == N1.getOperand(1) && 06617 N0.getOperand(0) == N1.getOperand(0)) { 06618 SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT, 06619 SDValue(CFP01, 0), 06620 DAG.getConstantFP(2.0, VT)); 06621 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, 06622 N0.getOperand(0), NewCFP); 06623 } 06624 } 06625 06626 if (N1.getOpcode() == ISD::FMUL) { 06627 ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0)); 06628 ConstantFPSDNode *CFP11 = dyn_cast<ConstantFPSDNode>(N1.getOperand(1)); 06629 06630 // (fadd x, (fmul x, c)) -> (fmul x, c+1) 06631 if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { 06632 SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT, 06633 SDValue(CFP11, 0), 06634 DAG.getConstantFP(1.0, VT)); 06635 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0, NewCFP); 06636 } 06637 06638 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) 06639 if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && 06640 N0.getOperand(0) == N0.getOperand(1) && 06641 N1.getOperand(0) == N0.getOperand(0)) { 06642 SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT, 06643 SDValue(CFP11, 0), 06644 DAG.getConstantFP(2.0, VT)); 06645 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N1.getOperand(0), NewCFP); 06646 } 06647 } 06648 06649 if (N0.getOpcode() == ISD::FADD && AllowNewConst) { 06650 ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N0.getOperand(0)); 06651 // (fadd (fadd x, x), x) -> (fmul x, 3.0) 06652 if (!CFP && N0.getOperand(0) == N0.getOperand(1) && 06653 (N0.getOperand(0) == N1)) 06654 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, 06655 N1, DAG.getConstantFP(3.0, VT)); 06656 } 06657 06658 if (N1.getOpcode() == ISD::FADD && AllowNewConst) { 06659 ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0)); 06660 // (fadd x, (fadd x, x)) -> (fmul x, 3.0) 06661 if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && 06662 N1.getOperand(0) == N0) 06663 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, 06664 N0, DAG.getConstantFP(3.0, VT)); 06665 } 06666 06667 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) 06668 if (AllowNewConst && 06669 N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && 06670 N0.getOperand(0) == N0.getOperand(1) && 06671 N1.getOperand(0) == N1.getOperand(1) && 06672 N0.getOperand(0) == N1.getOperand(0)) 06673 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, 06674 N0.getOperand(0), DAG.getConstantFP(4.0, VT)); 06675 } 06676 } // enable-unsafe-fp-math 06677 06678 // FADD -> FMA combines: 06679 if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) && 06680 DAG.getTarget() 06681 .getSubtargetImpl() 06682 ->getTargetLowering() 06683 ->isFMAFasterThanFMulAndFAdd(VT) && 06684 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT))) { 06685 06686 // fold (fadd (fmul x, y), z) -> (fma x, y, z) 06687 if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse()) 06688 return DAG.getNode(ISD::FMA, SDLoc(N), VT, 06689 N0.getOperand(0), N0.getOperand(1), N1); 06690 06691 // fold (fadd x, (fmul y, z)) -> (fma y, z, x) 06692 // Note: Commutes FADD operands. 06693 if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse()) 06694 return DAG.getNode(ISD::FMA, SDLoc(N), VT, 06695 N1.getOperand(0), N1.getOperand(1), N0); 06696 } 06697 06698 return SDValue(); 06699 } 06700 06701 SDValue DAGCombiner::visitFSUB(SDNode *N) { 06702 SDValue N0 = N->getOperand(0); 06703 SDValue N1 = N->getOperand(1); 06704 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 06705 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 06706 EVT VT = N->getValueType(0); 06707 SDLoc dl(N); 06708 const TargetOptions &Options = DAG.getTarget().Options; 06709 06710 // fold vector ops 06711 if (VT.isVector()) { 06712 SDValue FoldedVOp = SimplifyVBinOp(N); 06713 if (FoldedVOp.getNode()) return FoldedVOp; 06714 } 06715 06716 // fold (fsub c1, c2) -> c1-c2 06717 if (N0CFP && N1CFP) 06718 return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0, N1); 06719 06720 // fold (fsub A, (fneg B)) -> (fadd A, B) 06721 if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) 06722 return DAG.getNode(ISD::FADD, dl, VT, N0, 06723 GetNegatedExpression(N1, DAG, LegalOperations)); 06724 06725 // If 'unsafe math' is enabled, fold lots of things. 06726 if (Options.UnsafeFPMath) { 06727 // (fsub A, 0) -> A 06728 if (N1CFP && N1CFP->getValueAPF().isZero()) 06729 return N0; 06730 06731 // (fsub 0, B) -> -B 06732 if (N0CFP && N0CFP->getValueAPF().isZero()) { 06733 if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) 06734 return GetNegatedExpression(N1, DAG, LegalOperations); 06735 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 06736 return DAG.getNode(ISD::FNEG, dl, VT, N1); 06737 } 06738 06739 // (fsub x, x) -> 0.0 06740 if (N0 == N1) 06741 return DAG.getConstantFP(0.0f, VT); 06742 06743 // (fsub x, (fadd x, y)) -> (fneg y) 06744 // (fsub x, (fadd y, x)) -> (fneg y) 06745 if (N1.getOpcode() == ISD::FADD) { 06746 SDValue N10 = N1->getOperand(0); 06747 SDValue N11 = N1->getOperand(1); 06748 06749 if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI, &Options)) 06750 return GetNegatedExpression(N11, DAG, LegalOperations); 06751 06752 if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI, &Options)) 06753 return GetNegatedExpression(N10, DAG, LegalOperations); 06754 } 06755 } 06756 06757 // FSUB -> FMA combines: 06758 if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) && 06759 DAG.getTarget().getSubtargetImpl() 06760 ->getTargetLowering() 06761 ->isFMAFasterThanFMulAndFAdd(VT) && 06762 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT))) { 06763 06764 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) 06765 if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse()) 06766 return DAG.getNode(ISD::FMA, dl, VT, 06767 N0.getOperand(0), N0.getOperand(1), 06768 DAG.getNode(ISD::FNEG, dl, VT, N1)); 06769 06770 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) 06771 // Note: Commutes FSUB operands. 06772 if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse()) 06773 return DAG.getNode(ISD::FMA, dl, VT, 06774 DAG.getNode(ISD::FNEG, dl, VT, 06775 N1.getOperand(0)), 06776 N1.getOperand(1), N0); 06777 06778 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) 06779 if (N0.getOpcode() == ISD::FNEG && 06780 N0.getOperand(0).getOpcode() == ISD::FMUL && 06781 N0->hasOneUse() && N0.getOperand(0).hasOneUse()) { 06782 SDValue N00 = N0.getOperand(0).getOperand(0); 06783 SDValue N01 = N0.getOperand(0).getOperand(1); 06784 return DAG.getNode(ISD::FMA, dl, VT, 06785 DAG.getNode(ISD::FNEG, dl, VT, N00), N01, 06786 DAG.getNode(ISD::FNEG, dl, VT, N1)); 06787 } 06788 } 06789 06790 return SDValue(); 06791 } 06792 06793 SDValue DAGCombiner::visitFMUL(SDNode *N) { 06794 SDValue N0 = N->getOperand(0); 06795 SDValue N1 = N->getOperand(1); 06796 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 06797 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 06798 EVT VT = N->getValueType(0); 06799 const TargetOptions &Options = DAG.getTarget().Options; 06800 06801 // fold vector ops 06802 if (VT.isVector()) { 06803 // This just handles C1 * C2 for vectors. Other vector folds are below. 06804 SDValue FoldedVOp = SimplifyVBinOp(N); 06805 if (FoldedVOp.getNode()) 06806 return FoldedVOp; 06807 // Canonicalize vector constant to RHS. 06808 if (N0.getOpcode() == ISD::BUILD_VECTOR && 06809 N1.getOpcode() != ISD::BUILD_VECTOR) 06810 if (auto *BV0 = dyn_cast<BuildVectorSDNode>(N0)) 06811 if (BV0->isConstant()) 06812 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); 06813 } 06814 06815 // fold (fmul c1, c2) -> c1*c2 06816 if (N0CFP && N1CFP) 06817 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0, N1); 06818 06819 // canonicalize constant to RHS 06820 if (N0CFP && !N1CFP) 06821 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N1, N0); 06822 06823 // fold (fmul A, 1.0) -> A 06824 if (N1CFP && N1CFP->isExactlyValue(1.0)) 06825 return N0; 06826 06827 if (Options.UnsafeFPMath) { 06828 // fold (fmul A, 0) -> 0 06829 if (N1CFP && N1CFP->getValueAPF().isZero()) 06830 return N1; 06831 06832 // fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2)) 06833 if (N0.getOpcode() == ISD::FMUL) { 06834 // Fold scalars or any vector constants (not just splats). 06835 // This fold is done in general by InstCombine, but extra fmul insts 06836 // may have been generated during lowering. 06837 SDValue N01 = N0.getOperand(1); 06838 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 06839 auto *BV01 = dyn_cast<BuildVectorSDNode>(N01); 06840 if ((N1CFP && isConstOrConstSplatFP(N01)) || 06841 (BV1 && BV01 && BV1->isConstant() && BV01->isConstant())) { 06842 SDLoc SL(N); 06843 SDValue MulConsts = DAG.getNode(ISD::FMUL, SL, VT, N01, N1); 06844 return DAG.getNode(ISD::FMUL, SL, VT, N0.getOperand(0), MulConsts); 06845 } 06846 } 06847 06848 // fold (fmul (fadd x, x), c) -> (fmul x, (fmul 2.0, c)) 06849 // Undo the fmul 2.0, x -> fadd x, x transformation, since if it occurs 06850 // during an early run of DAGCombiner can prevent folding with fmuls 06851 // inserted during lowering. 06852 if (N0.getOpcode() == ISD::FADD && N0.getOperand(0) == N0.getOperand(1)) { 06853 SDLoc SL(N); 06854 const SDValue Two = DAG.getConstantFP(2.0, VT); 06855 SDValue MulConsts = DAG.getNode(ISD::FMUL, SL, VT, Two, N1); 06856 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0), MulConsts); 06857 } 06858 } 06859 06860 // fold (fmul X, 2.0) -> (fadd X, X) 06861 if (N1CFP && N1CFP->isExactlyValue(+2.0)) 06862 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N0); 06863 06864 // fold (fmul X, -1.0) -> (fneg X) 06865 if (N1CFP && N1CFP->isExactlyValue(-1.0)) 06866 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 06867 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); 06868 06869 // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y) 06870 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { 06871 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { 06872 // Both can be negated for free, check to see if at least one is cheaper 06873 // negated. 06874 if (LHSNeg == 2 || RHSNeg == 2) 06875 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, 06876 GetNegatedExpression(N0, DAG, LegalOperations), 06877 GetNegatedExpression(N1, DAG, LegalOperations)); 06878 } 06879 } 06880 06881 return SDValue(); 06882 } 06883 06884 SDValue DAGCombiner::visitFMA(SDNode *N) { 06885 SDValue N0 = N->getOperand(0); 06886 SDValue N1 = N->getOperand(1); 06887 SDValue N2 = N->getOperand(2); 06888 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 06889 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 06890 EVT VT = N->getValueType(0); 06891 SDLoc dl(N); 06892 const TargetOptions &Options = DAG.getTarget().Options; 06893 06894 // Constant fold FMA. 06895 if (isa<ConstantFPSDNode>(N0) && 06896 isa<ConstantFPSDNode>(N1) && 06897 isa<ConstantFPSDNode>(N2)) { 06898 return DAG.getNode(ISD::FMA, dl, VT, N0, N1, N2); 06899 } 06900 06901 if (Options.UnsafeFPMath) { 06902 if (N0CFP && N0CFP->isZero()) 06903 return N2; 06904 if (N1CFP && N1CFP->isZero()) 06905 return N2; 06906 } 06907 if (N0CFP && N0CFP->isExactlyValue(1.0)) 06908 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); 06909 if (N1CFP && N1CFP->isExactlyValue(1.0)) 06910 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); 06911 06912 // Canonicalize (fma c, x, y) -> (fma x, c, y) 06913 if (N0CFP && !N1CFP) 06914 return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); 06915 06916 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) 06917 if (Options.UnsafeFPMath && N1CFP && 06918 N2.getOpcode() == ISD::FMUL && 06919 N0 == N2.getOperand(0) && 06920 N2.getOperand(1).getOpcode() == ISD::ConstantFP) { 06921 return DAG.getNode(ISD::FMUL, dl, VT, N0, 06922 DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1))); 06923 } 06924 06925 06926 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) 06927 if (Options.UnsafeFPMath && 06928 N0.getOpcode() == ISD::FMUL && N1CFP && 06929 N0.getOperand(1).getOpcode() == ISD::ConstantFP) { 06930 return DAG.getNode(ISD::FMA, dl, VT, 06931 N0.getOperand(0), 06932 DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1)), 06933 N2); 06934 } 06935 06936 // (fma x, 1, y) -> (fadd x, y) 06937 // (fma x, -1, y) -> (fadd (fneg x), y) 06938 if (N1CFP) { 06939 if (N1CFP->isExactlyValue(1.0)) 06940 return DAG.getNode(ISD::FADD, dl, VT, N0, N2); 06941 06942 if (N1CFP->isExactlyValue(-1.0) && 06943 (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { 06944 SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0); 06945 AddToWorklist(RHSNeg.getNode()); 06946 return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg); 06947 } 06948 } 06949 06950 // (fma x, c, x) -> (fmul x, (c+1)) 06951 if (Options.UnsafeFPMath && N1CFP && N0 == N2) 06952 return DAG.getNode(ISD::FMUL, dl, VT, N0, 06953 DAG.getNode(ISD::FADD, dl, VT, 06954 N1, DAG.getConstantFP(1.0, VT))); 06955 06956 // (fma x, c, (fneg x)) -> (fmul x, (c-1)) 06957 if (Options.UnsafeFPMath && N1CFP && 06958 N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) 06959 return DAG.getNode(ISD::FMUL, dl, VT, N0, 06960 DAG.getNode(ISD::FADD, dl, VT, 06961 N1, DAG.getConstantFP(-1.0, VT))); 06962 06963 06964 return SDValue(); 06965 } 06966 06967 SDValue DAGCombiner::visitFDIV(SDNode *N) { 06968 SDValue N0 = N->getOperand(0); 06969 SDValue N1 = N->getOperand(1); 06970 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 06971 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 06972 EVT VT = N->getValueType(0); 06973 const TargetOptions &Options = DAG.getTarget().Options; 06974 06975 // fold vector ops 06976 if (VT.isVector()) { 06977 SDValue FoldedVOp = SimplifyVBinOp(N); 06978 if (FoldedVOp.getNode()) return FoldedVOp; 06979 } 06980 06981 // fold (fdiv c1, c2) -> c1/c2 06982 if (N0CFP && N1CFP) 06983 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1); 06984 06985 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. 06986 if (N1CFP && Options.UnsafeFPMath) { 06987 // Compute the reciprocal 1.0 / c2. 06988 APFloat N1APF = N1CFP->getValueAPF(); 06989 APFloat Recip(N1APF.getSemantics(), 1); // 1.0 06990 APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); 06991 // Only do the transform if the reciprocal is a legal fp immediate that 06992 // isn't too nasty (eg NaN, denormal, ...). 06993 if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty 06994 (!LegalOperations || 06995 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM 06996 // backend)... we should handle this gracefully after Legalize. 06997 // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) || 06998 TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) || 06999 TLI.isFPImmLegal(Recip, VT))) 07000 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0, 07001 DAG.getConstantFP(Recip, VT)); 07002 } 07003 07004 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) 07005 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { 07006 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { 07007 // Both can be negated for free, check to see if at least one is cheaper 07008 // negated. 07009 if (LHSNeg == 2 || RHSNeg == 2) 07010 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, 07011 GetNegatedExpression(N0, DAG, LegalOperations), 07012 GetNegatedExpression(N1, DAG, LegalOperations)); 07013 } 07014 } 07015 07016 return SDValue(); 07017 } 07018 07019 SDValue DAGCombiner::visitFREM(SDNode *N) { 07020 SDValue N0 = N->getOperand(0); 07021 SDValue N1 = N->getOperand(1); 07022 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 07023 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 07024 EVT VT = N->getValueType(0); 07025 07026 // fold (frem c1, c2) -> fmod(c1,c2) 07027 if (N0CFP && N1CFP) 07028 return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1); 07029 07030 return SDValue(); 07031 } 07032 07033 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { 07034 SDValue N0 = N->getOperand(0); 07035 SDValue N1 = N->getOperand(1); 07036 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 07037 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 07038 EVT VT = N->getValueType(0); 07039 07040 if (N0CFP && N1CFP) // Constant fold 07041 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1); 07042 07043 if (N1CFP) { 07044 const APFloat& V = N1CFP->getValueAPF(); 07045 // copysign(x, c1) -> fabs(x) iff ispos(c1) 07046 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) 07047 if (!V.isNegative()) { 07048 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) 07049 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 07050 } else { 07051 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 07052 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, 07053 DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); 07054 } 07055 } 07056 07057 // copysign(fabs(x), y) -> copysign(x, y) 07058 // copysign(fneg(x), y) -> copysign(x, y) 07059 // copysign(copysign(x,z), y) -> copysign(x, y) 07060 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || 07061 N0.getOpcode() == ISD::FCOPYSIGN) 07062 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 07063 N0.getOperand(0), N1); 07064 07065 // copysign(x, abs(y)) -> abs(x) 07066 if (N1.getOpcode() == ISD::FABS) 07067 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 07068 07069 // copysign(x, copysign(y,z)) -> copysign(x, z) 07070 if (N1.getOpcode() == ISD::FCOPYSIGN) 07071 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 07072 N0, N1.getOperand(1)); 07073 07074 // copysign(x, fp_extend(y)) -> copysign(x, y) 07075 // copysign(x, fp_round(y)) -> copysign(x, y) 07076 if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND) 07077 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 07078 N0, N1.getOperand(0)); 07079 07080 return SDValue(); 07081 } 07082 07083 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { 07084 SDValue N0 = N->getOperand(0); 07085 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 07086 EVT VT = N->getValueType(0); 07087 EVT OpVT = N0.getValueType(); 07088 07089 // fold (sint_to_fp c1) -> c1fp 07090 if (N0C && 07091 // ...but only if the target supports immediate floating-point values 07092 (!LegalOperations || 07093 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) 07094 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 07095 07096 // If the input is a legal type, and SINT_TO_FP is not legal on this target, 07097 // but UINT_TO_FP is legal on this target, try to convert. 07098 if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) && 07099 TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) { 07100 // If the sign bit is known to be zero, we can change this to UINT_TO_FP. 07101 if (DAG.SignBitIsZero(N0)) 07102 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 07103 } 07104 07105 // The next optimizations are desirable only if SELECT_CC can be lowered. 07106 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { 07107 // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) 07108 if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && 07109 !VT.isVector() && 07110 (!LegalOperations || 07111 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { 07112 SDValue Ops[] = 07113 { N0.getOperand(0), N0.getOperand(1), 07114 DAG.getConstantFP(-1.0, VT) , DAG.getConstantFP(0.0, VT), 07115 N0.getOperand(2) }; 07116 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops); 07117 } 07118 07119 // fold (sint_to_fp (zext (setcc x, y, cc))) -> 07120 // (select_cc x, y, 1.0, 0.0,, cc) 07121 if (N0.getOpcode() == ISD::ZERO_EXTEND && 07122 N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() && 07123 (!LegalOperations || 07124 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { 07125 SDValue Ops[] = 07126 { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1), 07127 DAG.getConstantFP(1.0, VT) , DAG.getConstantFP(0.0, VT), 07128 N0.getOperand(0).getOperand(2) }; 07129 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops); 07130 } 07131 } 07132 07133 return SDValue(); 07134 } 07135 07136 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { 07137 SDValue N0 = N->getOperand(0); 07138 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 07139 EVT VT = N->getValueType(0); 07140 EVT OpVT = N0.getValueType(); 07141 07142 // fold (uint_to_fp c1) -> c1fp 07143 if (N0C && 07144 // ...but only if the target supports immediate floating-point values 07145 (!LegalOperations || 07146 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) 07147 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 07148 07149 // If the input is a legal type, and UINT_TO_FP is not legal on this target, 07150 // but SINT_TO_FP is legal on this target, try to convert. 07151 if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) && 07152 TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) { 07153 // If the sign bit is known to be zero, we can change this to SINT_TO_FP. 07154 if (DAG.SignBitIsZero(N0)) 07155 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 07156 } 07157 07158 // The next optimizations are desirable only if SELECT_CC can be lowered. 07159 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { 07160 // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) 07161 07162 if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && 07163 (!LegalOperations || 07164 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { 07165 SDValue Ops[] = 07166 { N0.getOperand(0), N0.getOperand(1), 07167 DAG.getConstantFP(1.0, VT), DAG.getConstantFP(0.0, VT), 07168 N0.getOperand(2) }; 07169 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops); 07170 } 07171 } 07172 07173 return SDValue(); 07174 } 07175 07176 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { 07177 SDValue N0 = N->getOperand(0); 07178 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 07179 EVT VT = N->getValueType(0); 07180 07181 // fold (fp_to_sint c1fp) -> c1 07182 if (N0CFP) 07183 return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); 07184 07185 return SDValue(); 07186 } 07187 07188 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { 07189 SDValue N0 = N->getOperand(0); 07190 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 07191 EVT VT = N->getValueType(0); 07192 07193 // fold (fp_to_uint c1fp) -> c1 07194 if (N0CFP) 07195 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); 07196 07197 return SDValue(); 07198 } 07199 07200 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { 07201 SDValue N0 = N->getOperand(0); 07202 SDValue N1 = N->getOperand(1); 07203 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 07204 EVT VT = N->getValueType(0); 07205 07206 // fold (fp_round c1fp) -> c1fp 07207 if (N0CFP) 07208 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1); 07209 07210 // fold (fp_round (fp_extend x)) -> x 07211 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) 07212 return N0.getOperand(0); 07213 07214 // fold (fp_round (fp_round x)) -> (fp_round x) 07215 if (N0.getOpcode() == ISD::FP_ROUND) { 07216 // This is a value preserving truncation if both round's are. 07217 bool IsTrunc = N->getConstantOperandVal(1) == 1 && 07218 N0.getNode()->getConstantOperandVal(1) == 1; 07219 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0.getOperand(0), 07220 DAG.getIntPtrConstant(IsTrunc)); 07221 } 07222 07223 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) 07224 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { 07225 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, 07226 N0.getOperand(0), N1); 07227 AddToWorklist(Tmp.getNode()); 07228 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 07229 Tmp, N0.getOperand(1)); 07230 } 07231 07232 return SDValue(); 07233 } 07234 07235 SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) { 07236 SDValue N0 = N->getOperand(0); 07237 EVT VT = N->getValueType(0); 07238 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 07239 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 07240 07241 // fold (fp_round_inreg c1fp) -> c1fp 07242 if (N0CFP && isTypeLegal(EVT)) { 07243 SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT); 07244 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, Round); 07245 } 07246 07247 return SDValue(); 07248 } 07249 07250 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { 07251 SDValue N0 = N->getOperand(0); 07252 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 07253 EVT VT = N->getValueType(0); 07254 07255 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. 07256 if (N->hasOneUse() && 07257 N->use_begin()->getOpcode() == ISD::FP_ROUND) 07258 return SDValue(); 07259 07260 // fold (fp_extend c1fp) -> c1fp 07261 if (N0CFP) 07262 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); 07263 07264 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the 07265 // value of X. 07266 if (N0.getOpcode() == ISD::FP_ROUND 07267 && N0.getNode()->getConstantOperandVal(1) == 1) { 07268 SDValue In = N0.getOperand(0); 07269 if (In.getValueType() == VT) return In; 07270 if (VT.bitsLT(In.getValueType())) 07271 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, 07272 In, N0.getOperand(1)); 07273 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); 07274 } 07275 07276 // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) 07277 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 07278 TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType())) { 07279 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 07280 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 07281 LN0->getChain(), 07282 LN0->getBasePtr(), N0.getValueType(), 07283 LN0->getMemOperand()); 07284 CombineTo(N, ExtLoad); 07285 CombineTo(N0.getNode(), 07286 DAG.getNode(ISD::FP_ROUND, SDLoc(N0), 07287 N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)), 07288 ExtLoad.getValue(1)); 07289 return SDValue(N, 0); // Return N so it doesn't get rechecked! 07290 } 07291 07292 return SDValue(); 07293 } 07294 07295 SDValue DAGCombiner::visitFCEIL(SDNode *N) { 07296 SDValue N0 = N->getOperand(0); 07297 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 07298 EVT VT = N->getValueType(0); 07299 07300 // fold (fceil c1) -> fceil(c1) 07301 if (N0CFP) 07302 return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); 07303 07304 return SDValue(); 07305 } 07306 07307 SDValue DAGCombiner::visitFTRUNC(SDNode *N) { 07308 SDValue N0 = N->getOperand(0); 07309 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 07310 EVT VT = N->getValueType(0); 07311 07312 // fold (ftrunc c1) -> ftrunc(c1) 07313 if (N0CFP) 07314 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); 07315 07316 return SDValue(); 07317 } 07318 07319 SDValue DAGCombiner::visitFFLOOR(SDNode *N) { 07320 SDValue N0 = N->getOperand(0); 07321 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 07322 EVT VT = N->getValueType(0); 07323 07324 // fold (ffloor c1) -> ffloor(c1) 07325 if (N0CFP) 07326 return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); 07327 07328 return SDValue(); 07329 } 07330 07331 // FIXME: FNEG and FABS have a lot in common; refactor. 07332 SDValue DAGCombiner::visitFNEG(SDNode *N) { 07333 SDValue N0 = N->getOperand(0); 07334 EVT VT = N->getValueType(0); 07335 07336 if (VT.isVector()) { 07337 SDValue FoldedVOp = SimplifyVUnaryOp(N); 07338 if (FoldedVOp.getNode()) return FoldedVOp; 07339 } 07340 07341 // Constant fold FNEG. 07342 if (isa<ConstantFPSDNode>(N0)) 07343 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N->getOperand(0)); 07344 07345 if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(), 07346 &DAG.getTarget().Options)) 07347 return GetNegatedExpression(N0, DAG, LegalOperations); 07348 07349 // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading 07350 // constant pool values. 07351 if (!TLI.isFNegFree(VT) && 07352 N0.getOpcode() == ISD::BITCAST && 07353 N0.getNode()->hasOneUse()) { 07354 SDValue Int = N0.getOperand(0); 07355 EVT IntVT = Int.getValueType(); 07356 if (IntVT.isInteger() && !IntVT.isVector()) { 07357 APInt SignMask; 07358 if (N0.getValueType().isVector()) { 07359 // For a vector, get a mask such as 0x80... per scalar element 07360 // and splat it. 07361 SignMask = APInt::getSignBit(N0.getValueType().getScalarSizeInBits()); 07362 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 07363 } else { 07364 // For a scalar, just generate 0x80... 07365 SignMask = APInt::getSignBit(IntVT.getSizeInBits()); 07366 } 07367 Int = DAG.getNode(ISD::XOR, SDLoc(N0), IntVT, Int, 07368 DAG.getConstant(SignMask, IntVT)); 07369 AddToWorklist(Int.getNode()); 07370 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Int); 07371 } 07372 } 07373 07374 // (fneg (fmul c, x)) -> (fmul -c, x) 07375 if (N0.getOpcode() == ISD::FMUL) { 07376 ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); 07377 if (CFP1) { 07378 APFloat CVal = CFP1->getValueAPF(); 07379 CVal.changeSign(); 07380 if (Level >= AfterLegalizeDAG && 07381 (TLI.isFPImmLegal(CVal, N->getValueType(0)) || 07382 TLI.isOperationLegal(ISD::ConstantFP, N->getValueType(0)))) 07383 return DAG.getNode( 07384 ISD::FMUL, SDLoc(N), VT, N0.getOperand(0), 07385 DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0.getOperand(1))); 07386 } 07387 } 07388 07389 return SDValue(); 07390 } 07391 07392 SDValue DAGCombiner::visitFABS(SDNode *N) { 07393 SDValue N0 = N->getOperand(0); 07394 EVT VT = N->getValueType(0); 07395 07396 if (VT.isVector()) { 07397 SDValue FoldedVOp = SimplifyVUnaryOp(N); 07398 if (FoldedVOp.getNode()) return FoldedVOp; 07399 } 07400 07401 // fold (fabs c1) -> fabs(c1) 07402 if (isa<ConstantFPSDNode>(N0)) 07403 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 07404 07405 // fold (fabs (fabs x)) -> (fabs x) 07406 if (N0.getOpcode() == ISD::FABS) 07407 return N->getOperand(0); 07408 07409 // fold (fabs (fneg x)) -> (fabs x) 07410 // fold (fabs (fcopysign x, y)) -> (fabs x) 07411 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) 07412 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); 07413 07414 // Transform fabs(bitconvert(x)) -> bitconvert(x & ~sign) to avoid loading 07415 // constant pool values. 07416 if (!TLI.isFAbsFree(VT) && 07417 N0.getOpcode() == ISD::BITCAST && 07418 N0.getNode()->hasOneUse()) { 07419 SDValue Int = N0.getOperand(0); 07420 EVT IntVT = Int.getValueType(); 07421 if (IntVT.isInteger() && !IntVT.isVector()) { 07422 APInt SignMask; 07423 if (N0.getValueType().isVector()) { 07424 // For a vector, get a mask such as 0x7f... per scalar element 07425 // and splat it. 07426 SignMask = ~APInt::getSignBit(N0.getValueType().getScalarSizeInBits()); 07427 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 07428 } else { 07429 // For a scalar, just generate 0x7f... 07430 SignMask = ~APInt::getSignBit(IntVT.getSizeInBits()); 07431 } 07432 Int = DAG.getNode(ISD::AND, SDLoc(N0), IntVT, Int, 07433 DAG.getConstant(SignMask, IntVT)); 07434 AddToWorklist(Int.getNode()); 07435 return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Int); 07436 } 07437 } 07438 07439 return SDValue(); 07440 } 07441 07442 SDValue DAGCombiner::visitBRCOND(SDNode *N) { 07443 SDValue Chain = N->getOperand(0); 07444 SDValue N1 = N->getOperand(1); 07445 SDValue N2 = N->getOperand(2); 07446 07447 // If N is a constant we could fold this into a fallthrough or unconditional 07448 // branch. However that doesn't happen very often in normal code, because 07449 // Instcombine/SimplifyCFG should have handled the available opportunities. 07450 // If we did this folding here, it would be necessary to update the 07451 // MachineBasicBlock CFG, which is awkward. 07452 07453 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal 07454 // on the target. 07455 if (N1.getOpcode() == ISD::SETCC && 07456 TLI.isOperationLegalOrCustom(ISD::BR_CC, 07457 N1.getOperand(0).getValueType())) { 07458 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 07459 Chain, N1.getOperand(2), 07460 N1.getOperand(0), N1.getOperand(1), N2); 07461 } 07462 07463 if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) || 07464 ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) && 07465 (N1.getOperand(0).hasOneUse() && 07466 N1.getOperand(0).getOpcode() == ISD::SRL))) { 07467 SDNode *Trunc = nullptr; 07468 if (N1.getOpcode() == ISD::TRUNCATE) { 07469 // Look pass the truncate. 07470 Trunc = N1.getNode(); 07471 N1 = N1.getOperand(0); 07472 } 07473 07474 // Match this pattern so that we can generate simpler code: 07475 // 07476 // %a = ... 07477 // %b = and i32 %a, 2 07478 // %c = srl i32 %b, 1 07479 // brcond i32 %c ... 07480 // 07481 // into 07482 // 07483 // %a = ... 07484 // %b = and i32 %a, 2 07485 // %c = setcc eq %b, 0 07486 // brcond %c ... 07487 // 07488 // This applies only when the AND constant value has one bit set and the 07489 // SRL constant is equal to the log2 of the AND constant. The back-end is 07490 // smart enough to convert the result into a TEST/JMP sequence. 07491 SDValue Op0 = N1.getOperand(0); 07492 SDValue Op1 = N1.getOperand(1); 07493 07494 if (Op0.getOpcode() == ISD::AND && 07495 Op1.getOpcode() == ISD::Constant) { 07496 SDValue AndOp1 = Op0.getOperand(1); 07497 07498 if (AndOp1.getOpcode() == ISD::Constant) { 07499 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); 07500 07501 if (AndConst.isPowerOf2() && 07502 cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) { 07503 SDValue SetCC = 07504 DAG.getSetCC(SDLoc(N), 07505 getSetCCResultType(Op0.getValueType()), 07506 Op0, DAG.getConstant(0, Op0.getValueType()), 07507 ISD::SETNE); 07508 07509 SDValue NewBRCond = DAG.getNode(ISD::BRCOND, SDLoc(N), 07510 MVT::Other, Chain, SetCC, N2); 07511 // Don't add the new BRCond into the worklist or else SimplifySelectCC 07512 // will convert it back to (X & C1) >> C2. 07513 CombineTo(N, NewBRCond, false); 07514 // Truncate is dead. 07515 if (Trunc) 07516 deleteAndRecombine(Trunc); 07517 // Replace the uses of SRL with SETCC 07518 WorklistRemover DeadNodes(*this); 07519 DAG.ReplaceAllUsesOfValueWith(N1, SetCC); 07520 deleteAndRecombine(N1.getNode()); 07521 return SDValue(N, 0); // Return N so it doesn't get rechecked! 07522 } 07523 } 07524 } 07525 07526 if (Trunc) 07527 // Restore N1 if the above transformation doesn't match. 07528 N1 = N->getOperand(1); 07529 } 07530 07531 // Transform br(xor(x, y)) -> br(x != y) 07532 // Transform br(xor(xor(x,y), 1)) -> br (x == y) 07533 if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) { 07534 SDNode *TheXor = N1.getNode(); 07535 SDValue Op0 = TheXor->getOperand(0); 07536 SDValue Op1 = TheXor->getOperand(1); 07537 if (Op0.getOpcode() == Op1.getOpcode()) { 07538 // Avoid missing important xor optimizations. 07539 SDValue Tmp = visitXOR(TheXor); 07540 if (Tmp.getNode()) { 07541 if (Tmp.getNode() != TheXor) { 07542 DEBUG(dbgs() << "\nReplacing.8 "; 07543 TheXor->dump(&DAG); 07544 dbgs() << "\nWith: "; 07545 Tmp.getNode()->dump(&DAG); 07546 dbgs() << '\n'); 07547 WorklistRemover DeadNodes(*this); 07548 DAG.ReplaceAllUsesOfValueWith(N1, Tmp); 07549 deleteAndRecombine(TheXor); 07550 return DAG.getNode(ISD::BRCOND, SDLoc(N), 07551 MVT::Other, Chain, Tmp, N2); 07552 } 07553 07554 // visitXOR has changed XOR's operands or replaced the XOR completely, 07555 // bail out. 07556 return SDValue(N, 0); 07557 } 07558 } 07559 07560 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { 07561 bool Equal = false; 07562 if (ConstantSDNode *RHSCI = dyn_cast<ConstantSDNode>(Op0)) 07563 if (RHSCI->getAPIntValue() == 1 && Op0.hasOneUse() && 07564 Op0.getOpcode() == ISD::XOR) { 07565 TheXor = Op0.getNode(); 07566 Equal = true; 07567 } 07568 07569 EVT SetCCVT = N1.getValueType(); 07570 if (LegalTypes) 07571 SetCCVT = getSetCCResultType(SetCCVT); 07572 SDValue SetCC = DAG.getSetCC(SDLoc(TheXor), 07573 SetCCVT, 07574 Op0, Op1, 07575 Equal ? ISD::SETEQ : ISD::SETNE); 07576 // Replace the uses of XOR with SETCC 07577 WorklistRemover DeadNodes(*this); 07578 DAG.ReplaceAllUsesOfValueWith(N1, SetCC); 07579 deleteAndRecombine(N1.getNode()); 07580 return DAG.getNode(ISD::BRCOND, SDLoc(N), 07581 MVT::Other, Chain, SetCC, N2); 07582 } 07583 } 07584 07585 return SDValue(); 07586 } 07587 07588 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. 07589 // 07590 SDValue DAGCombiner::visitBR_CC(SDNode *N) { 07591 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); 07592 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); 07593 07594 // If N is a constant we could fold this into a fallthrough or unconditional 07595 // branch. However that doesn't happen very often in normal code, because 07596 // Instcombine/SimplifyCFG should have handled the available opportunities. 07597 // If we did this folding here, it would be necessary to update the 07598 // MachineBasicBlock CFG, which is awkward. 07599 07600 // Use SimplifySetCC to simplify SETCC's. 07601 SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), 07602 CondLHS, CondRHS, CC->get(), SDLoc(N), 07603 false); 07604 if (Simp.getNode()) AddToWorklist(Simp.getNode()); 07605 07606 // fold to a simpler setcc 07607 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) 07608 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 07609 N->getOperand(0), Simp.getOperand(2), 07610 Simp.getOperand(0), Simp.getOperand(1), 07611 N->getOperand(4)); 07612 07613 return SDValue(); 07614 } 07615 07616 /// Return true if 'Use' is a load or a store that uses N as its base pointer 07617 /// and that N may be folded in the load / store addressing mode. 07618 static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, 07619 SelectionDAG &DAG, 07620 const TargetLowering &TLI) { 07621 EVT VT; 07622 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) { 07623 if (LD->isIndexed() || LD->getBasePtr().getNode() != N) 07624 return false; 07625 VT = Use->getValueType(0); 07626 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) { 07627 if (ST->isIndexed() || ST->getBasePtr().getNode() != N) 07628 return false; 07629 VT = ST->getValue().getValueType(); 07630 } else 07631 return false; 07632 07633 TargetLowering::AddrMode AM; 07634 if (N->getOpcode() == ISD::ADD) { 07635 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 07636 if (Offset) 07637 // [reg +/- imm] 07638 AM.BaseOffs = Offset->getSExtValue(); 07639 else 07640 // [reg +/- reg] 07641 AM.Scale = 1; 07642 } else if (N->getOpcode() == ISD::SUB) { 07643 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 07644 if (Offset) 07645 // [reg +/- imm] 07646 AM.BaseOffs = -Offset->getSExtValue(); 07647 else 07648 // [reg +/- reg] 07649 AM.Scale = 1; 07650 } else 07651 return false; 07652 07653 return TLI.isLegalAddressingMode(AM, VT.getTypeForEVT(*DAG.getContext())); 07654 } 07655 07656 /// Try turning a load/store into a pre-indexed load/store when the base 07657 /// pointer is an add or subtract and it has other uses besides the load/store. 07658 /// After the transformation, the new indexed load/store has effectively folded 07659 /// the add/subtract in and all of its other uses are redirected to the 07660 /// new load/store. 07661 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { 07662 if (Level < AfterLegalizeDAG) 07663 return false; 07664 07665 bool isLoad = true; 07666 SDValue Ptr; 07667 EVT VT; 07668 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 07669 if (LD->isIndexed()) 07670 return false; 07671 VT = LD->getMemoryVT(); 07672 if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) && 07673 !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT)) 07674 return false; 07675 Ptr = LD->getBasePtr(); 07676 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 07677 if (ST->isIndexed()) 07678 return false; 07679 VT = ST->getMemoryVT(); 07680 if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) && 07681 !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT)) 07682 return false; 07683 Ptr = ST->getBasePtr(); 07684 isLoad = false; 07685 } else { 07686 return false; 07687 } 07688 07689 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail 07690 // out. There is no reason to make this a preinc/predec. 07691 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || 07692 Ptr.getNode()->hasOneUse()) 07693 return false; 07694 07695 // Ask the target to do addressing mode selection. 07696 SDValue BasePtr; 07697 SDValue Offset; 07698 ISD::MemIndexedMode AM = ISD::UNINDEXED; 07699 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) 07700 return false; 07701 07702 // Backends without true r+i pre-indexed forms may need to pass a 07703 // constant base with a variable offset so that constant coercion 07704 // will work with the patterns in canonical form. 07705 bool Swapped = false; 07706 if (isa<ConstantSDNode>(BasePtr)) { 07707 std::swap(BasePtr, Offset); 07708 Swapped = true; 07709 } 07710 07711 // Don't create a indexed load / store with zero offset. 07712 if (isa<ConstantSDNode>(Offset) && 07713 cast<ConstantSDNode>(Offset)->isNullValue()) 07714 return false; 07715 07716 // Try turning it into a pre-indexed load / store except when: 07717 // 1) The new base ptr is a frame index. 07718 // 2) If N is a store and the new base ptr is either the same as or is a 07719 // predecessor of the value being stored. 07720 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded 07721 // that would create a cycle. 07722 // 4) All uses are load / store ops that use it as old base ptr. 07723 07724 // Check #1. Preinc'ing a frame index would require copying the stack pointer 07725 // (plus the implicit offset) to a register to preinc anyway. 07726 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 07727 return false; 07728 07729 // Check #2. 07730 if (!isLoad) { 07731 SDValue Val = cast<StoreSDNode>(N)->getValue(); 07732 if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode())) 07733 return false; 07734 } 07735 07736 // If the offset is a constant, there may be other adds of constants that 07737 // can be folded with this one. We should do this to avoid having to keep 07738 // a copy of the original base pointer. 07739 SmallVector<SDNode *, 16> OtherUses; 07740 if (isa<ConstantSDNode>(Offset)) 07741 for (SDNode *Use : BasePtr.getNode()->uses()) { 07742 if (Use == Ptr.getNode()) 07743 continue; 07744 07745 if (Use->isPredecessorOf(N)) 07746 continue; 07747 07748 if (Use->getOpcode() != ISD::ADD && Use->getOpcode() != ISD::SUB) { 07749 OtherUses.clear(); 07750 break; 07751 } 07752 07753 SDValue Op0 = Use->getOperand(0), Op1 = Use->getOperand(1); 07754 if (Op1.getNode() == BasePtr.getNode()) 07755 std::swap(Op0, Op1); 07756 assert(Op0.getNode() == BasePtr.getNode() && 07757 "Use of ADD/SUB but not an operand"); 07758 07759 if (!isa<ConstantSDNode>(Op1)) { 07760 OtherUses.clear(); 07761 break; 07762 } 07763 07764 // FIXME: In some cases, we can be smarter about this. 07765 if (Op1.getValueType() != Offset.getValueType()) { 07766 OtherUses.clear(); 07767 break; 07768 } 07769 07770 OtherUses.push_back(Use); 07771 } 07772 07773 if (Swapped) 07774 std::swap(BasePtr, Offset); 07775 07776 // Now check for #3 and #4. 07777 bool RealUse = false; 07778 07779 // Caches for hasPredecessorHelper 07780 SmallPtrSet<const SDNode *, 32> Visited; 07781 SmallVector<const SDNode *, 16> Worklist; 07782 07783 for (SDNode *Use : Ptr.getNode()->uses()) { 07784 if (Use == N) 07785 continue; 07786 if (N->hasPredecessorHelper(Use, Visited, Worklist)) 07787 return false; 07788 07789 // If Ptr may be folded in addressing mode of other use, then it's 07790 // not profitable to do this transformation. 07791 if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI)) 07792 RealUse = true; 07793 } 07794 07795 if (!RealUse) 07796 return false; 07797 07798 SDValue Result; 07799 if (isLoad) 07800 Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), 07801 BasePtr, Offset, AM); 07802 else 07803 Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N), 07804 BasePtr, Offset, AM); 07805 ++PreIndexedNodes; 07806 ++NodesCombined; 07807 DEBUG(dbgs() << "\nReplacing.4 "; 07808 N->dump(&DAG); 07809 dbgs() << "\nWith: "; 07810 Result.getNode()->dump(&DAG); 07811 dbgs() << '\n'); 07812 WorklistRemover DeadNodes(*this); 07813 if (isLoad) { 07814 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 07815 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 07816 } else { 07817 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 07818 } 07819 07820 // Finally, since the node is now dead, remove it from the graph. 07821 deleteAndRecombine(N); 07822 07823 if (Swapped) 07824 std::swap(BasePtr, Offset); 07825 07826 // Replace other uses of BasePtr that can be updated to use Ptr 07827 for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { 07828 unsigned OffsetIdx = 1; 07829 if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) 07830 OffsetIdx = 0; 07831 assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == 07832 BasePtr.getNode() && "Expected BasePtr operand"); 07833 07834 // We need to replace ptr0 in the following expression: 07835 // x0 * offset0 + y0 * ptr0 = t0 07836 // knowing that 07837 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) 07838 // 07839 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the 07840 // indexed load/store and the expresion that needs to be re-written. 07841 // 07842 // Therefore, we have: 07843 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 07844 07845 ConstantSDNode *CN = 07846 cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx)); 07847 int X0, X1, Y0, Y1; 07848 APInt Offset0 = CN->getAPIntValue(); 07849 APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue(); 07850 07851 X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1; 07852 Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1; 07853 X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1; 07854 Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1; 07855 07856 unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; 07857 07858 APInt CNV = Offset0; 07859 if (X0 < 0) CNV = -CNV; 07860 if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; 07861 else CNV = CNV - Offset1; 07862 07863 // We can now generate the new expression. 07864 SDValue NewOp1 = DAG.getConstant(CNV, CN->getValueType(0)); 07865 SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0); 07866 07867 SDValue NewUse = DAG.getNode(Opcode, 07868 SDLoc(OtherUses[i]), 07869 OtherUses[i]->getValueType(0), NewOp1, NewOp2); 07870 DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); 07871 deleteAndRecombine(OtherUses[i]); 07872 } 07873 07874 // Replace the uses of Ptr with uses of the updated base value. 07875 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0)); 07876 deleteAndRecombine(Ptr.getNode()); 07877 07878 return true; 07879 } 07880 07881 /// Try to combine a load/store with a add/sub of the base pointer node into a 07882 /// post-indexed load/store. The transformation folded the add/subtract into the 07883 /// new indexed load/store effectively and all of its uses are redirected to the 07884 /// new load/store. 07885 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { 07886 if (Level < AfterLegalizeDAG) 07887 return false; 07888 07889 bool isLoad = true; 07890 SDValue Ptr; 07891 EVT VT; 07892 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 07893 if (LD->isIndexed()) 07894 return false; 07895 VT = LD->getMemoryVT(); 07896 if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) && 07897 !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT)) 07898 return false; 07899 Ptr = LD->getBasePtr(); 07900 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 07901 if (ST->isIndexed()) 07902 return false; 07903 VT = ST->getMemoryVT(); 07904 if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) && 07905 !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT)) 07906 return false; 07907 Ptr = ST->getBasePtr(); 07908 isLoad = false; 07909 } else { 07910 return false; 07911 } 07912 07913 if (Ptr.getNode()->hasOneUse()) 07914 return false; 07915 07916 for (SDNode *Op : Ptr.getNode()->uses()) { 07917 if (Op == N || 07918 (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)) 07919 continue; 07920 07921 SDValue BasePtr; 07922 SDValue Offset; 07923 ISD::MemIndexedMode AM = ISD::UNINDEXED; 07924 if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) { 07925 // Don't create a indexed load / store with zero offset. 07926 if (isa<ConstantSDNode>(Offset) && 07927 cast<ConstantSDNode>(Offset)->isNullValue()) 07928 continue; 07929 07930 // Try turning it into a post-indexed load / store except when 07931 // 1) All uses are load / store ops that use it as base ptr (and 07932 // it may be folded as addressing mmode). 07933 // 2) Op must be independent of N, i.e. Op is neither a predecessor 07934 // nor a successor of N. Otherwise, if Op is folded that would 07935 // create a cycle. 07936 07937 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 07938 continue; 07939 07940 // Check for #1. 07941 bool TryNext = false; 07942 for (SDNode *Use : BasePtr.getNode()->uses()) { 07943 if (Use == Ptr.getNode()) 07944 continue; 07945 07946 // If all the uses are load / store addresses, then don't do the 07947 // transformation. 07948 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){ 07949 bool RealUse = false; 07950 for (SDNode *UseUse : Use->uses()) { 07951 if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI)) 07952 RealUse = true; 07953 } 07954 07955 if (!RealUse) { 07956 TryNext = true; 07957 break; 07958 } 07959 } 07960 } 07961 07962 if (TryNext) 07963 continue; 07964 07965 // Check for #2 07966 if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) { 07967 SDValue Result = isLoad 07968 ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), 07969 BasePtr, Offset, AM) 07970 : DAG.getIndexedStore(SDValue(N,0), SDLoc(N), 07971 BasePtr, Offset, AM); 07972 ++PostIndexedNodes; 07973 ++NodesCombined; 07974 DEBUG(dbgs() << "\nReplacing.5 "; 07975 N->dump(&DAG); 07976 dbgs() << "\nWith: "; 07977 Result.getNode()->dump(&DAG); 07978 dbgs() << '\n'); 07979 WorklistRemover DeadNodes(*this); 07980 if (isLoad) { 07981 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 07982 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 07983 } else { 07984 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 07985 } 07986 07987 // Finally, since the node is now dead, remove it from the graph. 07988 deleteAndRecombine(N); 07989 07990 // Replace the uses of Use with uses of the updated base value. 07991 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), 07992 Result.getValue(isLoad ? 1 : 0)); 07993 deleteAndRecombine(Op); 07994 return true; 07995 } 07996 } 07997 } 07998 07999 return false; 08000 } 08001 08002 /// \brief Return the base-pointer arithmetic from an indexed \p LD. 08003 SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { 08004 ISD::MemIndexedMode AM = LD->getAddressingMode(); 08005 assert(AM != ISD::UNINDEXED); 08006 SDValue BP = LD->getOperand(1); 08007 SDValue Inc = LD->getOperand(2); 08008 08009 // Some backends use TargetConstants for load offsets, but don't expect 08010 // TargetConstants in general ADD nodes. We can convert these constants into 08011 // regular Constants (if the constant is not opaque). 08012 assert((Inc.getOpcode() != ISD::TargetConstant || 08013 !cast<ConstantSDNode>(Inc)->isOpaque()) && 08014 "Cannot split out indexing using opaque target constants"); 08015 if (Inc.getOpcode() == ISD::TargetConstant) { 08016 ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); 08017 Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), 08018 ConstInc->getValueType(0)); 08019 } 08020 08021 unsigned Opc = 08022 (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); 08023 return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); 08024 } 08025 08026 SDValue DAGCombiner::visitLOAD(SDNode *N) { 08027 LoadSDNode *LD = cast<LoadSDNode>(N); 08028 SDValue Chain = LD->getChain(); 08029 SDValue Ptr = LD->getBasePtr(); 08030 08031 // If load is not volatile and there are no uses of the loaded value (and 08032 // the updated indexed value in case of indexed loads), change uses of the 08033 // chain value into uses of the chain input (i.e. delete the dead load). 08034 if (!LD->isVolatile()) { 08035 if (N->getValueType(1) == MVT::Other) { 08036 // Unindexed loads. 08037 if (!N->hasAnyUseOfValue(0)) { 08038 // It's not safe to use the two value CombineTo variant here. e.g. 08039 // v1, chain2 = load chain1, loc 08040 // v2, chain3 = load chain2, loc 08041 // v3 = add v2, c 08042 // Now we replace use of chain2 with chain1. This makes the second load 08043 // isomorphic to the one we are deleting, and thus makes this load live. 08044 DEBUG(dbgs() << "\nReplacing.6 "; 08045 N->dump(&DAG); 08046 dbgs() << "\nWith chain: "; 08047 Chain.getNode()->dump(&DAG); 08048 dbgs() << "\n"); 08049 WorklistRemover DeadNodes(*this); 08050 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 08051 08052 if (N->use_empty()) 08053 deleteAndRecombine(N); 08054 08055 return SDValue(N, 0); // Return N so it doesn't get rechecked! 08056 } 08057 } else { 08058 // Indexed loads. 08059 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); 08060 08061 // If this load has an opaque TargetConstant offset, then we cannot split 08062 // the indexing into an add/sub directly (that TargetConstant may not be 08063 // valid for a different type of node, and we cannot convert an opaque 08064 // target constant into a regular constant). 08065 bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant && 08066 cast<ConstantSDNode>(LD->getOperand(2))->isOpaque(); 08067 08068 if (!N->hasAnyUseOfValue(0) && 08069 ((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) { 08070 SDValue Undef = DAG.getUNDEF(N->getValueType(0)); 08071 SDValue Index; 08072 if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) { 08073 Index = SplitIndexingFromLoad(LD); 08074 // Try to fold the base pointer arithmetic into subsequent loads and 08075 // stores. 08076 AddUsersToWorklist(N); 08077 } else 08078 Index = DAG.getUNDEF(N->getValueType(1)); 08079 DEBUG(dbgs() << "\nReplacing.7 "; 08080 N->dump(&DAG); 08081 dbgs() << "\nWith: "; 08082 Undef.getNode()->dump(&DAG); 08083 dbgs() << " and 2 other values\n"); 08084 WorklistRemover DeadNodes(*this); 08085 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); 08086 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); 08087 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); 08088 deleteAndRecombine(N); 08089 return SDValue(N, 0); // Return N so it doesn't get rechecked! 08090 } 08091 } 08092 } 08093 08094 // If this load is directly stored, replace the load value with the stored 08095 // value. 08096 // TODO: Handle store large -> read small portion. 08097 // TODO: Handle TRUNCSTORE/LOADEXT 08098 if (ISD::isNormalLoad(N) && !LD->isVolatile()) { 08099 if (ISD::isNON_TRUNCStore(Chain.getNode())) { 08100 StoreSDNode *PrevST = cast<StoreSDNode>(Chain); 08101 if (PrevST->getBasePtr() == Ptr && 08102 PrevST->getValue().getValueType() == N->getValueType(0)) 08103 return CombineTo(N, Chain.getOperand(1), Chain); 08104 } 08105 } 08106 08107 // Try to infer better alignment information than the load already has. 08108 if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) { 08109 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { 08110 if (Align > LD->getMemOperand()->getBaseAlignment()) { 08111 SDValue NewLoad = 08112 DAG.getExtLoad(LD->getExtensionType(), SDLoc(N), 08113 LD->getValueType(0), 08114 Chain, Ptr, LD->getPointerInfo(), 08115 LD->getMemoryVT(), 08116 LD->isVolatile(), LD->isNonTemporal(), 08117 LD->isInvariant(), Align, LD->getAAInfo()); 08118 return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true); 08119 } 08120 } 08121 } 08122 08123 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA : 08124 TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA(); 08125 #ifndef NDEBUG 08126 if (CombinerAAOnlyFunc.getNumOccurrences() && 08127 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 08128 UseAA = false; 08129 #endif 08130 if (UseAA && LD->isUnindexed()) { 08131 // Walk up chain skipping non-aliasing memory nodes. 08132 SDValue BetterChain = FindBetterChain(N, Chain); 08133 08134 // If there is a better chain. 08135 if (Chain != BetterChain) { 08136 SDValue ReplLoad; 08137 08138 // Replace the chain to void dependency. 08139 if (LD->getExtensionType() == ISD::NON_EXTLOAD) { 08140 ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), 08141 BetterChain, Ptr, LD->getMemOperand()); 08142 } else { 08143 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), 08144 LD->getValueType(0), 08145 BetterChain, Ptr, LD->getMemoryVT(), 08146 LD->getMemOperand()); 08147 } 08148 08149 // Create token factor to keep old chain connected. 08150 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), 08151 MVT::Other, Chain, ReplLoad.getValue(1)); 08152 08153 // Make sure the new and old chains are cleaned up. 08154 AddToWorklist(Token.getNode()); 08155 08156 // Replace uses with load result and token factor. Don't add users 08157 // to work list. 08158 return CombineTo(N, ReplLoad.getValue(0), Token, false); 08159 } 08160 } 08161 08162 // Try transforming N to an indexed load. 08163 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 08164 return SDValue(N, 0); 08165 08166 // Try to slice up N to more direct loads if the slices are mapped to 08167 // different register banks or pairing can take place. 08168 if (SliceUpLoad(N)) 08169 return SDValue(N, 0); 08170 08171 return SDValue(); 08172 } 08173 08174 namespace { 08175 /// \brief Helper structure used to slice a load in smaller loads. 08176 /// Basically a slice is obtained from the following sequence: 08177 /// Origin = load Ty1, Base 08178 /// Shift = srl Ty1 Origin, CstTy Amount 08179 /// Inst = trunc Shift to Ty2 08180 /// 08181 /// Then, it will be rewriten into: 08182 /// Slice = load SliceTy, Base + SliceOffset 08183 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 08184 /// 08185 /// SliceTy is deduced from the number of bits that are actually used to 08186 /// build Inst. 08187 struct LoadedSlice { 08188 /// \brief Helper structure used to compute the cost of a slice. 08189 struct Cost { 08190 /// Are we optimizing for code size. 08191 bool ForCodeSize; 08192 /// Various cost. 08193 unsigned Loads; 08194 unsigned Truncates; 08195 unsigned CrossRegisterBanksCopies; 08196 unsigned ZExts; 08197 unsigned Shift; 08198 08199 Cost(bool ForCodeSize = false) 08200 : ForCodeSize(ForCodeSize), Loads(0), Truncates(0), 08201 CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {} 08202 08203 /// \brief Get the cost of one isolated slice. 08204 Cost(const LoadedSlice &LS, bool ForCodeSize = false) 08205 : ForCodeSize(ForCodeSize), Loads(1), Truncates(0), 08206 CrossRegisterBanksCopies(0), ZExts(0), Shift(0) { 08207 EVT TruncType = LS.Inst->getValueType(0); 08208 EVT LoadedType = LS.getLoadedType(); 08209 if (TruncType != LoadedType && 08210 !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) 08211 ZExts = 1; 08212 } 08213 08214 /// \brief Account for slicing gain in the current cost. 08215 /// Slicing provide a few gains like removing a shift or a 08216 /// truncate. This method allows to grow the cost of the original 08217 /// load with the gain from this slice. 08218 void addSliceGain(const LoadedSlice &LS) { 08219 // Each slice saves a truncate. 08220 const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); 08221 if (!TLI.isTruncateFree(LS.Inst->getValueType(0), 08222 LS.Inst->getOperand(0).getValueType())) 08223 ++Truncates; 08224 // If there is a shift amount, this slice gets rid of it. 08225 if (LS.Shift) 08226 ++Shift; 08227 // If this slice can merge a cross register bank copy, account for it. 08228 if (LS.canMergeExpensiveCrossRegisterBankCopy()) 08229 ++CrossRegisterBanksCopies; 08230 } 08231 08232 Cost &operator+=(const Cost &RHS) { 08233 Loads += RHS.Loads; 08234 Truncates += RHS.Truncates; 08235 CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; 08236 ZExts += RHS.ZExts; 08237 Shift += RHS.Shift; 08238 return *this; 08239 } 08240 08241 bool operator==(const Cost &RHS) const { 08242 return Loads == RHS.Loads && Truncates == RHS.Truncates && 08243 CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && 08244 ZExts == RHS.ZExts && Shift == RHS.Shift; 08245 } 08246 08247 bool operator!=(const Cost &RHS) const { return !(*this == RHS); } 08248 08249 bool operator<(const Cost &RHS) const { 08250 // Assume cross register banks copies are as expensive as loads. 08251 // FIXME: Do we want some more target hooks? 08252 unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; 08253 unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; 08254 // Unless we are optimizing for code size, consider the 08255 // expensive operation first. 08256 if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) 08257 return ExpensiveOpsLHS < ExpensiveOpsRHS; 08258 return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < 08259 (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); 08260 } 08261 08262 bool operator>(const Cost &RHS) const { return RHS < *this; } 08263 08264 bool operator<=(const Cost &RHS) const { return !(RHS < *this); } 08265 08266 bool operator>=(const Cost &RHS) const { return !(*this < RHS); } 08267 }; 08268 // The last instruction that represent the slice. This should be a 08269 // truncate instruction. 08270 SDNode *Inst; 08271 // The original load instruction. 08272 LoadSDNode *Origin; 08273 // The right shift amount in bits from the original load. 08274 unsigned Shift; 08275 // The DAG from which Origin came from. 08276 // This is used to get some contextual information about legal types, etc. 08277 SelectionDAG *DAG; 08278 08279 LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, 08280 unsigned Shift = 0, SelectionDAG *DAG = nullptr) 08281 : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} 08282 08283 LoadedSlice(const LoadedSlice &LS) 08284 : Inst(LS.Inst), Origin(LS.Origin), Shift(LS.Shift), DAG(LS.DAG) {} 08285 08286 /// \brief Get the bits used in a chunk of bits \p BitWidth large. 08287 /// \return Result is \p BitWidth and has used bits set to 1 and 08288 /// not used bits set to 0. 08289 APInt getUsedBits() const { 08290 // Reproduce the trunc(lshr) sequence: 08291 // - Start from the truncated value. 08292 // - Zero extend to the desired bit width. 08293 // - Shift left. 08294 assert(Origin && "No original load to compare against."); 08295 unsigned BitWidth = Origin->getValueSizeInBits(0); 08296 assert(Inst && "This slice is not bound to an instruction"); 08297 assert(Inst->getValueSizeInBits(0) <= BitWidth && 08298 "Extracted slice is bigger than the whole type!"); 08299 APInt UsedBits(Inst->getValueSizeInBits(0), 0); 08300 UsedBits.setAllBits(); 08301 UsedBits = UsedBits.zext(BitWidth); 08302 UsedBits <<= Shift; 08303 return UsedBits; 08304 } 08305 08306 /// \brief Get the size of the slice to be loaded in bytes. 08307 unsigned getLoadedSize() const { 08308 unsigned SliceSize = getUsedBits().countPopulation(); 08309 assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); 08310 return SliceSize / 8; 08311 } 08312 08313 /// \brief Get the type that will be loaded for this slice. 08314 /// Note: This may not be the final type for the slice. 08315 EVT getLoadedType() const { 08316 assert(DAG && "Missing context"); 08317 LLVMContext &Ctxt = *DAG->getContext(); 08318 return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); 08319 } 08320 08321 /// \brief Get the alignment of the load used for this slice. 08322 unsigned getAlignment() const { 08323 unsigned Alignment = Origin->getAlignment(); 08324 unsigned Offset = getOffsetFromBase(); 08325 if (Offset != 0) 08326 Alignment = MinAlign(Alignment, Alignment + Offset); 08327 return Alignment; 08328 } 08329 08330 /// \brief Check if this slice can be rewritten with legal operations. 08331 bool isLegal() const { 08332 // An invalid slice is not legal. 08333 if (!Origin || !Inst || !DAG) 08334 return false; 08335 08336 // Offsets are for indexed load only, we do not handle that. 08337 if (Origin->getOffset().getOpcode() != ISD::UNDEF) 08338 return false; 08339 08340 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 08341 08342 // Check that the type is legal. 08343 EVT SliceType = getLoadedType(); 08344 if (!TLI.isTypeLegal(SliceType)) 08345 return false; 08346 08347 // Check that the load is legal for this type. 08348 if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) 08349 return false; 08350 08351 // Check that the offset can be computed. 08352 // 1. Check its type. 08353 EVT PtrType = Origin->getBasePtr().getValueType(); 08354 if (PtrType == MVT::Untyped || PtrType.isExtended()) 08355 return false; 08356 08357 // 2. Check that it fits in the immediate. 08358 if (!TLI.isLegalAddImmediate(getOffsetFromBase())) 08359 return false; 08360 08361 // 3. Check that the computation is legal. 08362 if (!TLI.isOperationLegal(ISD::ADD, PtrType)) 08363 return false; 08364 08365 // Check that the zext is legal if it needs one. 08366 EVT TruncateType = Inst->getValueType(0); 08367 if (TruncateType != SliceType && 08368 !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) 08369 return false; 08370 08371 return true; 08372 } 08373 08374 /// \brief Get the offset in bytes of this slice in the original chunk of 08375 /// bits. 08376 /// \pre DAG != nullptr. 08377 uint64_t getOffsetFromBase() const { 08378 assert(DAG && "Missing context."); 08379 bool IsBigEndian = 08380 DAG->getTargetLoweringInfo().getDataLayout()->isBigEndian(); 08381 assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); 08382 uint64_t Offset = Shift / 8; 08383 unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; 08384 assert(!(Origin->getValueSizeInBits(0) & 0x7) && 08385 "The size of the original loaded type is not a multiple of a" 08386 " byte."); 08387 // If Offset is bigger than TySizeInBytes, it means we are loading all 08388 // zeros. This should have been optimized before in the process. 08389 assert(TySizeInBytes > Offset && 08390 "Invalid shift amount for given loaded size"); 08391 if (IsBigEndian) 08392 Offset = TySizeInBytes - Offset - getLoadedSize(); 08393 return Offset; 08394 } 08395 08396 /// \brief Generate the sequence of instructions to load the slice 08397 /// represented by this object and redirect the uses of this slice to 08398 /// this new sequence of instructions. 08399 /// \pre this->Inst && this->Origin are valid Instructions and this 08400 /// object passed the legal check: LoadedSlice::isLegal returned true. 08401 /// \return The last instruction of the sequence used to load the slice. 08402 SDValue loadSlice() const { 08403 assert(Inst && Origin && "Unable to replace a non-existing slice."); 08404 const SDValue &OldBaseAddr = Origin->getBasePtr(); 08405 SDValue BaseAddr = OldBaseAddr; 08406 // Get the offset in that chunk of bytes w.r.t. the endianess. 08407 int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); 08408 assert(Offset >= 0 && "Offset too big to fit in int64_t!"); 08409 if (Offset) { 08410 // BaseAddr = BaseAddr + Offset. 08411 EVT ArithType = BaseAddr.getValueType(); 08412 BaseAddr = DAG->getNode(ISD::ADD, SDLoc(Origin), ArithType, BaseAddr, 08413 DAG->getConstant(Offset, ArithType)); 08414 } 08415 08416 // Create the type of the loaded slice according to its size. 08417 EVT SliceType = getLoadedType(); 08418 08419 // Create the load for the slice. 08420 SDValue LastInst = DAG->getLoad( 08421 SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, 08422 Origin->getPointerInfo().getWithOffset(Offset), Origin->isVolatile(), 08423 Origin->isNonTemporal(), Origin->isInvariant(), getAlignment()); 08424 // If the final type is not the same as the loaded type, this means that 08425 // we have to pad with zero. Create a zero extend for that. 08426 EVT FinalType = Inst->getValueType(0); 08427 if (SliceType != FinalType) 08428 LastInst = 08429 DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); 08430 return LastInst; 08431 } 08432 08433 /// \brief Check if this slice can be merged with an expensive cross register 08434 /// bank copy. E.g., 08435 /// i = load i32 08436 /// f = bitcast i32 i to float 08437 bool canMergeExpensiveCrossRegisterBankCopy() const { 08438 if (!Inst || !Inst->hasOneUse()) 08439 return false; 08440 SDNode *Use = *Inst->use_begin(); 08441 if (Use->getOpcode() != ISD::BITCAST) 08442 return false; 08443 assert(DAG && "Missing context"); 08444 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 08445 EVT ResVT = Use->getValueType(0); 08446 const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT()); 08447 const TargetRegisterClass *ArgRC = 08448 TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT()); 08449 if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) 08450 return false; 08451 08452 // At this point, we know that we perform a cross-register-bank copy. 08453 // Check if it is expensive. 08454 const TargetRegisterInfo *TRI = 08455 TLI.getTargetMachine().getSubtargetImpl()->getRegisterInfo(); 08456 // Assume bitcasts are cheap, unless both register classes do not 08457 // explicitly share a common sub class. 08458 if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) 08459 return false; 08460 08461 // Check if it will be merged with the load. 08462 // 1. Check the alignment constraint. 08463 unsigned RequiredAlignment = TLI.getDataLayout()->getABITypeAlignment( 08464 ResVT.getTypeForEVT(*DAG->getContext())); 08465 08466 if (RequiredAlignment > getAlignment()) 08467 return false; 08468 08469 // 2. Check that the load is a legal operation for that type. 08470 if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) 08471 return false; 08472 08473 // 3. Check that we do not have a zext in the way. 08474 if (Inst->getValueType(0) != getLoadedType()) 08475 return false; 08476 08477 return true; 08478 } 08479 }; 08480 } 08481 08482 /// \brief Check that all bits set in \p UsedBits form a dense region, i.e., 08483 /// \p UsedBits looks like 0..0 1..1 0..0. 08484 static bool areUsedBitsDense(const APInt &UsedBits) { 08485 // If all the bits are one, this is dense! 08486 if (UsedBits.isAllOnesValue()) 08487 return true; 08488 08489 // Get rid of the unused bits on the right. 08490 APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros()); 08491 // Get rid of the unused bits on the left. 08492 if (NarrowedUsedBits.countLeadingZeros()) 08493 NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); 08494 // Check that the chunk of bits is completely used. 08495 return NarrowedUsedBits.isAllOnesValue(); 08496 } 08497 08498 /// \brief Check whether or not \p First and \p Second are next to each other 08499 /// in memory. This means that there is no hole between the bits loaded 08500 /// by \p First and the bits loaded by \p Second. 08501 static bool areSlicesNextToEachOther(const LoadedSlice &First, 08502 const LoadedSlice &Second) { 08503 assert(First.Origin == Second.Origin && First.Origin && 08504 "Unable to match different memory origins."); 08505 APInt UsedBits = First.getUsedBits(); 08506 assert((UsedBits & Second.getUsedBits()) == 0 && 08507 "Slices are not supposed to overlap."); 08508 UsedBits |= Second.getUsedBits(); 08509 return areUsedBitsDense(UsedBits); 08510 } 08511 08512 /// \brief Adjust the \p GlobalLSCost according to the target 08513 /// paring capabilities and the layout of the slices. 08514 /// \pre \p GlobalLSCost should account for at least as many loads as 08515 /// there is in the slices in \p LoadedSlices. 08516 static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, 08517 LoadedSlice::Cost &GlobalLSCost) { 08518 unsigned NumberOfSlices = LoadedSlices.size(); 08519 // If there is less than 2 elements, no pairing is possible. 08520 if (NumberOfSlices < 2) 08521 return; 08522 08523 // Sort the slices so that elements that are likely to be next to each 08524 // other in memory are next to each other in the list. 08525 std::sort(LoadedSlices.begin(), LoadedSlices.end(), 08526 [](const LoadedSlice &LHS, const LoadedSlice &RHS) { 08527 assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); 08528 return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); 08529 }); 08530 const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); 08531 // First (resp. Second) is the first (resp. Second) potentially candidate 08532 // to be placed in a paired load. 08533 const LoadedSlice *First = nullptr; 08534 const LoadedSlice *Second = nullptr; 08535 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, 08536 // Set the beginning of the pair. 08537 First = Second) { 08538 08539 Second = &LoadedSlices[CurrSlice]; 08540 08541 // If First is NULL, it means we start a new pair. 08542 // Get to the next slice. 08543 if (!First) 08544 continue; 08545 08546 EVT LoadedType = First->getLoadedType(); 08547 08548 // If the types of the slices are different, we cannot pair them. 08549 if (LoadedType != Second->getLoadedType()) 08550 continue; 08551 08552 // Check if the target supplies paired loads for this type. 08553 unsigned RequiredAlignment = 0; 08554 if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { 08555 // move to the next pair, this type is hopeless. 08556 Second = nullptr; 08557 continue; 08558 } 08559 // Check if we meet the alignment requirement. 08560 if (RequiredAlignment > First->getAlignment()) 08561 continue; 08562 08563 // Check that both loads are next to each other in memory. 08564 if (!areSlicesNextToEachOther(*First, *Second)) 08565 continue; 08566 08567 assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); 08568 --GlobalLSCost.Loads; 08569 // Move to the next pair. 08570 Second = nullptr; 08571 } 08572 } 08573 08574 /// \brief Check the profitability of all involved LoadedSlice. 08575 /// Currently, it is considered profitable if there is exactly two 08576 /// involved slices (1) which are (2) next to each other in memory, and 08577 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). 08578 /// 08579 /// Note: The order of the elements in \p LoadedSlices may be modified, but not 08580 /// the elements themselves. 08581 /// 08582 /// FIXME: When the cost model will be mature enough, we can relax 08583 /// constraints (1) and (2). 08584 static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, 08585 const APInt &UsedBits, bool ForCodeSize) { 08586 unsigned NumberOfSlices = LoadedSlices.size(); 08587 if (StressLoadSlicing) 08588 return NumberOfSlices > 1; 08589 08590 // Check (1). 08591 if (NumberOfSlices != 2) 08592 return false; 08593 08594 // Check (2). 08595 if (!areUsedBitsDense(UsedBits)) 08596 return false; 08597 08598 // Check (3). 08599 LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); 08600 // The original code has one big load. 08601 OrigCost.Loads = 1; 08602 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { 08603 const LoadedSlice &LS = LoadedSlices[CurrSlice]; 08604 // Accumulate the cost of all the slices. 08605 LoadedSlice::Cost SliceCost(LS, ForCodeSize); 08606 GlobalSlicingCost += SliceCost; 08607 08608 // Account as cost in the original configuration the gain obtained 08609 // with the current slices. 08610 OrigCost.addSliceGain(LS); 08611 } 08612 08613 // If the target supports paired load, adjust the cost accordingly. 08614 adjustCostForPairing(LoadedSlices, GlobalSlicingCost); 08615 return OrigCost > GlobalSlicingCost; 08616 } 08617 08618 /// \brief If the given load, \p LI, is used only by trunc or trunc(lshr) 08619 /// operations, split it in the various pieces being extracted. 08620 /// 08621 /// This sort of thing is introduced by SROA. 08622 /// This slicing takes care not to insert overlapping loads. 08623 /// \pre LI is a simple load (i.e., not an atomic or volatile load). 08624 bool DAGCombiner::SliceUpLoad(SDNode *N) { 08625 if (Level < AfterLegalizeDAG) 08626 return false; 08627 08628 LoadSDNode *LD = cast<LoadSDNode>(N); 08629 if (LD->isVolatile() || !ISD::isNormalLoad(LD) || 08630 !LD->getValueType(0).isInteger()) 08631 return false; 08632 08633 // Keep track of already used bits to detect overlapping values. 08634 // In that case, we will just abort the transformation. 08635 APInt UsedBits(LD->getValueSizeInBits(0), 0); 08636 08637 SmallVector<LoadedSlice, 4> LoadedSlices; 08638 08639 // Check if this load is used as several smaller chunks of bits. 08640 // Basically, look for uses in trunc or trunc(lshr) and record a new chain 08641 // of computation for each trunc. 08642 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); 08643 UI != UIEnd; ++UI) { 08644 // Skip the uses of the chain. 08645 if (UI.getUse().getResNo() != 0) 08646 continue; 08647 08648 SDNode *User = *UI; 08649 unsigned Shift = 0; 08650 08651 // Check if this is a trunc(lshr). 08652 if (User->getOpcode() == ISD::SRL && User->hasOneUse() && 08653 isa<ConstantSDNode>(User->getOperand(1))) { 08654 Shift = cast<ConstantSDNode>(User->getOperand(1))->getZExtValue(); 08655 User = *User->use_begin(); 08656 } 08657 08658 // At this point, User is a Truncate, iff we encountered, trunc or 08659 // trunc(lshr). 08660 if (User->getOpcode() != ISD::TRUNCATE) 08661 return false; 08662 08663 // The width of the type must be a power of 2 and greater than 8-bits. 08664 // Otherwise the load cannot be represented in LLVM IR. 08665 // Moreover, if we shifted with a non-8-bits multiple, the slice 08666 // will be across several bytes. We do not support that. 08667 unsigned Width = User->getValueSizeInBits(0); 08668 if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) 08669 return 0; 08670 08671 // Build the slice for this chain of computations. 08672 LoadedSlice LS(User, LD, Shift, &DAG); 08673 APInt CurrentUsedBits = LS.getUsedBits(); 08674 08675 // Check if this slice overlaps with another. 08676 if ((CurrentUsedBits & UsedBits) != 0) 08677 return false; 08678 // Update the bits used globally. 08679 UsedBits |= CurrentUsedBits; 08680 08681 // Check if the new slice would be legal. 08682 if (!LS.isLegal()) 08683 return false; 08684 08685 // Record the slice. 08686 LoadedSlices.push_back(LS); 08687 } 08688 08689 // Abort slicing if it does not seem to be profitable. 08690 if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) 08691 return false; 08692 08693 ++SlicedLoads; 08694 08695 // Rewrite each chain to use an independent load. 08696 // By construction, each chain can be represented by a unique load. 08697 08698 // Prepare the argument for the new token factor for all the slices. 08699 SmallVector<SDValue, 8> ArgChains; 08700 for (SmallVectorImpl<LoadedSlice>::const_iterator 08701 LSIt = LoadedSlices.begin(), 08702 LSItEnd = LoadedSlices.end(); 08703 LSIt != LSItEnd; ++LSIt) { 08704 SDValue SliceInst = LSIt->loadSlice(); 08705 CombineTo(LSIt->Inst, SliceInst, true); 08706 if (SliceInst.getNode()->getOpcode() != ISD::LOAD) 08707 SliceInst = SliceInst.getOperand(0); 08708 assert(SliceInst->getOpcode() == ISD::LOAD && 08709 "It takes more than a zext to get to the loaded slice!!"); 08710 ArgChains.push_back(SliceInst.getValue(1)); 08711 } 08712 08713 SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, 08714 ArgChains); 08715 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 08716 return true; 08717 } 08718 08719 /// Check to see if V is (and load (ptr), imm), where the load is having 08720 /// specific bytes cleared out. If so, return the byte size being masked out 08721 /// and the shift amount. 08722 static std::pair<unsigned, unsigned> 08723 CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { 08724 std::pair<unsigned, unsigned> Result(0, 0); 08725 08726 // Check for the structure we're looking for. 08727 if (V->getOpcode() != ISD::AND || 08728 !isa<ConstantSDNode>(V->getOperand(1)) || 08729 !ISD::isNormalLoad(V->getOperand(0).getNode())) 08730 return Result; 08731 08732 // Check the chain and pointer. 08733 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); 08734 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer. 08735 08736 // The store should be chained directly to the load or be an operand of a 08737 // tokenfactor. 08738 if (LD == Chain.getNode()) 08739 ; // ok. 08740 else if (Chain->getOpcode() != ISD::TokenFactor) 08741 return Result; // Fail. 08742 else { 08743 bool isOk = false; 08744 for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i) 08745 if (Chain->getOperand(i).getNode() == LD) { 08746 isOk = true; 08747 break; 08748 } 08749 if (!isOk) return Result; 08750 } 08751 08752 // This only handles simple types. 08753 if (V.getValueType() != MVT::i16 && 08754 V.getValueType() != MVT::i32 && 08755 V.getValueType() != MVT::i64) 08756 return Result; 08757 08758 // Check the constant mask. Invert it so that the bits being masked out are 08759 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits 08760 // follow the sign bit for uniformity. 08761 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); 08762 unsigned NotMaskLZ = countLeadingZeros(NotMask); 08763 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte. 08764 unsigned NotMaskTZ = countTrailingZeros(NotMask); 08765 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte. 08766 if (NotMaskLZ == 64) return Result; // All zero mask. 08767 08768 // See if we have a continuous run of bits. If so, we have 0*1+0* 08769 if (CountTrailingOnes_64(NotMask >> NotMaskTZ)+NotMaskTZ+NotMaskLZ != 64) 08770 return Result; 08771 08772 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. 08773 if (V.getValueType() != MVT::i64 && NotMaskLZ) 08774 NotMaskLZ -= 64-V.getValueSizeInBits(); 08775 08776 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; 08777 switch (MaskedBytes) { 08778 case 1: 08779 case 2: 08780 case 4: break; 08781 default: return Result; // All one mask, or 5-byte mask. 08782 } 08783 08784 // Verify that the first bit starts at a multiple of mask so that the access 08785 // is aligned the same as the access width. 08786 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; 08787 08788 Result.first = MaskedBytes; 08789 Result.second = NotMaskTZ/8; 08790 return Result; 08791 } 08792 08793 08794 /// Check to see if IVal is something that provides a value as specified by 08795 /// MaskInfo. If so, replace the specified store with a narrower store of 08796 /// truncated IVal. 08797 static SDNode * 08798 ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, 08799 SDValue IVal, StoreSDNode *St, 08800 DAGCombiner *DC) { 08801 unsigned NumBytes = MaskInfo.first; 08802 unsigned ByteShift = MaskInfo.second; 08803 SelectionDAG &DAG = DC->getDAG(); 08804 08805 // Check to see if IVal is all zeros in the part being masked in by the 'or' 08806 // that uses this. If not, this is not a replacement. 08807 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), 08808 ByteShift*8, (ByteShift+NumBytes)*8); 08809 if (!DAG.MaskedValueIsZero(IVal, Mask)) return nullptr; 08810 08811 // Check that it is legal on the target to do this. It is legal if the new 08812 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type 08813 // legalization. 08814 MVT VT = MVT::getIntegerVT(NumBytes*8); 08815 if (!DC->isTypeLegal(VT)) 08816 return nullptr; 08817 08818 // Okay, we can do this! Replace the 'St' store with a store of IVal that is 08819 // shifted by ByteShift and truncated down to NumBytes. 08820 if (ByteShift) 08821 IVal = DAG.getNode(ISD::SRL, SDLoc(IVal), IVal.getValueType(), IVal, 08822 DAG.getConstant(ByteShift*8, 08823 DC->getShiftAmountTy(IVal.getValueType()))); 08824 08825 // Figure out the offset for the store and the alignment of the access. 08826 unsigned StOffset; 08827 unsigned NewAlign = St->getAlignment(); 08828 08829 if (DAG.getTargetLoweringInfo().isLittleEndian()) 08830 StOffset = ByteShift; 08831 else 08832 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; 08833 08834 SDValue Ptr = St->getBasePtr(); 08835 if (StOffset) { 08836 Ptr = DAG.getNode(ISD::ADD, SDLoc(IVal), Ptr.getValueType(), 08837 Ptr, DAG.getConstant(StOffset, Ptr.getValueType())); 08838 NewAlign = MinAlign(NewAlign, StOffset); 08839 } 08840 08841 // Truncate down to the new size. 08842 IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); 08843 08844 ++OpsNarrowed; 08845 return DAG.getStore(St->getChain(), SDLoc(St), IVal, Ptr, 08846 St->getPointerInfo().getWithOffset(StOffset), 08847 false, false, NewAlign).getNode(); 08848 } 08849 08850 08851 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and 08852 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try 08853 /// narrowing the load and store if it would end up being a win for performance 08854 /// or code size. 08855 SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { 08856 StoreSDNode *ST = cast<StoreSDNode>(N); 08857 if (ST->isVolatile()) 08858 return SDValue(); 08859 08860 SDValue Chain = ST->getChain(); 08861 SDValue Value = ST->getValue(); 08862 SDValue Ptr = ST->getBasePtr(); 08863 EVT VT = Value.getValueType(); 08864 08865 if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) 08866 return SDValue(); 08867 08868 unsigned Opc = Value.getOpcode(); 08869 08870 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst 08871 // is a byte mask indicating a consecutive number of bytes, check to see if 08872 // Y is known to provide just those bytes. If so, we try to replace the 08873 // load + replace + store sequence with a single (narrower) store, which makes 08874 // the load dead. 08875 if (Opc == ISD::OR) { 08876 std::pair<unsigned, unsigned> MaskedLoad; 08877 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); 08878 if (MaskedLoad.first) 08879 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 08880 Value.getOperand(1), ST,this)) 08881 return SDValue(NewST, 0); 08882 08883 // Or is commutative, so try swapping X and Y. 08884 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); 08885 if (MaskedLoad.first) 08886 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 08887 Value.getOperand(0), ST,this)) 08888 return SDValue(NewST, 0); 08889 } 08890 08891 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || 08892 Value.getOperand(1).getOpcode() != ISD::Constant) 08893 return SDValue(); 08894 08895 SDValue N0 = Value.getOperand(0); 08896 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 08897 Chain == SDValue(N0.getNode(), 1)) { 08898 LoadSDNode *LD = cast<LoadSDNode>(N0); 08899 if (LD->getBasePtr() != Ptr || 08900 LD->getPointerInfo().getAddrSpace() != 08901 ST->getPointerInfo().getAddrSpace()) 08902 return SDValue(); 08903 08904 // Find the type to narrow it the load / op / store to. 08905 SDValue N1 = Value.getOperand(1); 08906 unsigned BitWidth = N1.getValueSizeInBits(); 08907 APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); 08908 if (Opc == ISD::AND) 08909 Imm ^= APInt::getAllOnesValue(BitWidth); 08910 if (Imm == 0 || Imm.isAllOnesValue()) 08911 return SDValue(); 08912 unsigned ShAmt = Imm.countTrailingZeros(); 08913 unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; 08914 unsigned NewBW = NextPowerOf2(MSB - ShAmt); 08915 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 08916 while (NewBW < BitWidth && 08917 !(TLI.isOperationLegalOrCustom(Opc, NewVT) && 08918 TLI.isNarrowingProfitable(VT, NewVT))) { 08919 NewBW = NextPowerOf2(NewBW); 08920 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 08921 } 08922 if (NewBW >= BitWidth) 08923 return SDValue(); 08924 08925 // If the lsb changed does not start at the type bitwidth boundary, 08926 // start at the previous one. 08927 if (ShAmt % NewBW) 08928 ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; 08929 APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, 08930 std::min(BitWidth, ShAmt + NewBW)); 08931 if ((Imm & Mask) == Imm) { 08932 APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); 08933 if (Opc == ISD::AND) 08934 NewImm ^= APInt::getAllOnesValue(NewBW); 08935 uint64_t PtrOff = ShAmt / 8; 08936 // For big endian targets, we need to adjust the offset to the pointer to 08937 // load the correct bytes. 08938 if (TLI.isBigEndian()) 08939 PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; 08940 08941 unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff); 08942 Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext()); 08943 if (NewAlign < TLI.getDataLayout()->getABITypeAlignment(NewVTTy)) 08944 return SDValue(); 08945 08946 SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD), 08947 Ptr.getValueType(), Ptr, 08948 DAG.getConstant(PtrOff, Ptr.getValueType())); 08949 SDValue NewLD = DAG.getLoad(NewVT, SDLoc(N0), 08950 LD->getChain(), NewPtr, 08951 LD->getPointerInfo().getWithOffset(PtrOff), 08952 LD->isVolatile(), LD->isNonTemporal(), 08953 LD->isInvariant(), NewAlign, 08954 LD->getAAInfo()); 08955 SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, 08956 DAG.getConstant(NewImm, NewVT)); 08957 SDValue NewST = DAG.getStore(Chain, SDLoc(N), 08958 NewVal, NewPtr, 08959 ST->getPointerInfo().getWithOffset(PtrOff), 08960 false, false, NewAlign); 08961 08962 AddToWorklist(NewPtr.getNode()); 08963 AddToWorklist(NewLD.getNode()); 08964 AddToWorklist(NewVal.getNode()); 08965 WorklistRemover DeadNodes(*this); 08966 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); 08967 ++OpsNarrowed; 08968 return NewST; 08969 } 08970 } 08971 08972 return SDValue(); 08973 } 08974 08975 /// For a given floating point load / store pair, if the load value isn't used 08976 /// by any other operations, then consider transforming the pair to integer 08977 /// load / store operations if the target deems the transformation profitable. 08978 SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { 08979 StoreSDNode *ST = cast<StoreSDNode>(N); 08980 SDValue Chain = ST->getChain(); 08981 SDValue Value = ST->getValue(); 08982 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && 08983 Value.hasOneUse() && 08984 Chain == SDValue(Value.getNode(), 1)) { 08985 LoadSDNode *LD = cast<LoadSDNode>(Value); 08986 EVT VT = LD->getMemoryVT(); 08987 if (!VT.isFloatingPoint() || 08988 VT != ST->getMemoryVT() || 08989 LD->isNonTemporal() || 08990 ST->isNonTemporal() || 08991 LD->getPointerInfo().getAddrSpace() != 0 || 08992 ST->getPointerInfo().getAddrSpace() != 0) 08993 return SDValue(); 08994 08995 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 08996 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || 08997 !TLI.isOperationLegal(ISD::STORE, IntVT) || 08998 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || 08999 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT)) 09000 return SDValue(); 09001 09002 unsigned LDAlign = LD->getAlignment(); 09003 unsigned STAlign = ST->getAlignment(); 09004 Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext()); 09005 unsigned ABIAlign = TLI.getDataLayout()->getABITypeAlignment(IntVTTy); 09006 if (LDAlign < ABIAlign || STAlign < ABIAlign) 09007 return SDValue(); 09008 09009 SDValue NewLD = DAG.getLoad(IntVT, SDLoc(Value), 09010 LD->getChain(), LD->getBasePtr(), 09011 LD->getPointerInfo(), 09012 false, false, false, LDAlign); 09013 09014 SDValue NewST = DAG.getStore(NewLD.getValue(1), SDLoc(N), 09015 NewLD, ST->getBasePtr(), 09016 ST->getPointerInfo(), 09017 false, false, STAlign); 09018 09019 AddToWorklist(NewLD.getNode()); 09020 AddToWorklist(NewST.getNode()); 09021 WorklistRemover DeadNodes(*this); 09022 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); 09023 ++LdStFP2Int; 09024 return NewST; 09025 } 09026 09027 return SDValue(); 09028 } 09029 09030 /// Helper struct to parse and store a memory address as base + index + offset. 09031 /// We ignore sign extensions when it is safe to do so. 09032 /// The following two expressions are not equivalent. To differentiate we need 09033 /// to store whether there was a sign extension involved in the index 09034 /// computation. 09035 /// (load (i64 add (i64 copyfromreg %c) 09036 /// (i64 signextend (add (i8 load %index) 09037 /// (i8 1)))) 09038 /// vs 09039 /// 09040 /// (load (i64 add (i64 copyfromreg %c) 09041 /// (i64 signextend (i32 add (i32 signextend (i8 load %index)) 09042 /// (i32 1))))) 09043 struct BaseIndexOffset { 09044 SDValue Base; 09045 SDValue Index; 09046 int64_t Offset; 09047 bool IsIndexSignExt; 09048 09049 BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {} 09050 09051 BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset, 09052 bool IsIndexSignExt) : 09053 Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {} 09054 09055 bool equalBaseIndex(const BaseIndexOffset &Other) { 09056 return Other.Base == Base && Other.Index == Index && 09057 Other.IsIndexSignExt == IsIndexSignExt; 09058 } 09059 09060 /// Parses tree in Ptr for base, index, offset addresses. 09061 static BaseIndexOffset match(SDValue Ptr) { 09062 bool IsIndexSignExt = false; 09063 09064 // We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD 09065 // instruction, then it could be just the BASE or everything else we don't 09066 // know how to handle. Just use Ptr as BASE and give up. 09067 if (Ptr->getOpcode() != ISD::ADD) 09068 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); 09069 09070 // We know that we have at least an ADD instruction. Try to pattern match 09071 // the simple case of BASE + OFFSET. 09072 if (isa<ConstantSDNode>(Ptr->getOperand(1))) { 09073 int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue(); 09074 return BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset, 09075 IsIndexSignExt); 09076 } 09077 09078 // Inside a loop the current BASE pointer is calculated using an ADD and a 09079 // MUL instruction. In this case Ptr is the actual BASE pointer. 09080 // (i64 add (i64 %array_ptr) 09081 // (i64 mul (i64 %induction_var) 09082 // (i64 %element_size))) 09083 if (Ptr->getOperand(1)->getOpcode() == ISD::MUL) 09084 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); 09085 09086 // Look at Base + Index + Offset cases. 09087 SDValue Base = Ptr->getOperand(0); 09088 SDValue IndexOffset = Ptr->getOperand(1); 09089 09090 // Skip signextends. 09091 if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) { 09092 IndexOffset = IndexOffset->getOperand(0); 09093 IsIndexSignExt = true; 09094 } 09095 09096 // Either the case of Base + Index (no offset) or something else. 09097 if (IndexOffset->getOpcode() != ISD::ADD) 09098 return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt); 09099 09100 // Now we have the case of Base + Index + offset. 09101 SDValue Index = IndexOffset->getOperand(0); 09102 SDValue Offset = IndexOffset->getOperand(1); 09103 09104 if (!isa<ConstantSDNode>(Offset)) 09105 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); 09106 09107 // Ignore signextends. 09108 if (Index->getOpcode() == ISD::SIGN_EXTEND) { 09109 Index = Index->getOperand(0); 09110 IsIndexSignExt = true; 09111 } else IsIndexSignExt = false; 09112 09113 int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue(); 09114 return BaseIndexOffset(Base, Index, Off, IsIndexSignExt); 09115 } 09116 }; 09117 09118 /// Holds a pointer to an LSBaseSDNode as well as information on where it 09119 /// is located in a sequence of memory operations connected by a chain. 09120 struct MemOpLink { 09121 MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq): 09122 MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { } 09123 // Ptr to the mem node. 09124 LSBaseSDNode *MemNode; 09125 // Offset from the base ptr. 09126 int64_t OffsetFromBase; 09127 // What is the sequence number of this mem node. 09128 // Lowest mem operand in the DAG starts at zero. 09129 unsigned SequenceNum; 09130 }; 09131 09132 bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) { 09133 EVT MemVT = St->getMemoryVT(); 09134 int64_t ElementSizeBytes = MemVT.getSizeInBits()/8; 09135 bool NoVectors = DAG.getMachineFunction().getFunction()->getAttributes(). 09136 hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat); 09137 09138 // Don't merge vectors into wider inputs. 09139 if (MemVT.isVector() || !MemVT.isSimple()) 09140 return false; 09141 09142 // Perform an early exit check. Do not bother looking at stored values that 09143 // are not constants or loads. 09144 SDValue StoredVal = St->getValue(); 09145 bool IsLoadSrc = isa<LoadSDNode>(StoredVal); 09146 if (!isa<ConstantSDNode>(StoredVal) && !isa<ConstantFPSDNode>(StoredVal) && 09147 !IsLoadSrc) 09148 return false; 09149 09150 // Only look at ends of store sequences. 09151 SDValue Chain = SDValue(St, 0); 09152 if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE) 09153 return false; 09154 09155 // This holds the base pointer, index, and the offset in bytes from the base 09156 // pointer. 09157 BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr()); 09158 09159 // We must have a base and an offset. 09160 if (!BasePtr.Base.getNode()) 09161 return false; 09162 09163 // Do not handle stores to undef base pointers. 09164 if (BasePtr.Base.getOpcode() == ISD::UNDEF) 09165 return false; 09166 09167 // Save the LoadSDNodes that we find in the chain. 09168 // We need to make sure that these nodes do not interfere with 09169 // any of the store nodes. 09170 SmallVector<LSBaseSDNode*, 8> AliasLoadNodes; 09171 09172 // Save the StoreSDNodes that we find in the chain. 09173 SmallVector<MemOpLink, 8> StoreNodes; 09174 09175 // Walk up the chain and look for nodes with offsets from the same 09176 // base pointer. Stop when reaching an instruction with a different kind 09177 // or instruction which has a different base pointer. 09178 unsigned Seq = 0; 09179 StoreSDNode *Index = St; 09180 while (Index) { 09181 // If the chain has more than one use, then we can't reorder the mem ops. 09182 if (Index != St && !SDValue(Index, 0)->hasOneUse()) 09183 break; 09184 09185 // Find the base pointer and offset for this memory node. 09186 BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr()); 09187 09188 // Check that the base pointer is the same as the original one. 09189 if (!Ptr.equalBaseIndex(BasePtr)) 09190 break; 09191 09192 // Check that the alignment is the same. 09193 if (Index->getAlignment() != St->getAlignment()) 09194 break; 09195 09196 // The memory operands must not be volatile. 09197 if (Index->isVolatile() || Index->isIndexed()) 09198 break; 09199 09200 // No truncation. 09201 if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index)) 09202 if (St->isTruncatingStore()) 09203 break; 09204 09205 // The stored memory type must be the same. 09206 if (Index->getMemoryVT() != MemVT) 09207 break; 09208 09209 // We do not allow unaligned stores because we want to prevent overriding 09210 // stores. 09211 if (Index->getAlignment()*8 != MemVT.getSizeInBits()) 09212 break; 09213 09214 // We found a potential memory operand to merge. 09215 StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++)); 09216 09217 // Find the next memory operand in the chain. If the next operand in the 09218 // chain is a store then move up and continue the scan with the next 09219 // memory operand. If the next operand is a load save it and use alias 09220 // information to check if it interferes with anything. 09221 SDNode *NextInChain = Index->getChain().getNode(); 09222 while (1) { 09223 if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) { 09224 // We found a store node. Use it for the next iteration. 09225 Index = STn; 09226 break; 09227 } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) { 09228 if (Ldn->isVolatile()) { 09229 Index = nullptr; 09230 break; 09231 } 09232 09233 // Save the load node for later. Continue the scan. 09234 AliasLoadNodes.push_back(Ldn); 09235 NextInChain = Ldn->getChain().getNode(); 09236 continue; 09237 } else { 09238 Index = nullptr; 09239 break; 09240 } 09241 } 09242 } 09243 09244 // Check if there is anything to merge. 09245 if (StoreNodes.size() < 2) 09246 return false; 09247 09248 // Sort the memory operands according to their distance from the base pointer. 09249 std::sort(StoreNodes.begin(), StoreNodes.end(), 09250 [](MemOpLink LHS, MemOpLink RHS) { 09251 return LHS.OffsetFromBase < RHS.OffsetFromBase || 09252 (LHS.OffsetFromBase == RHS.OffsetFromBase && 09253 LHS.SequenceNum > RHS.SequenceNum); 09254 }); 09255 09256 // Scan the memory operations on the chain and find the first non-consecutive 09257 // store memory address. 09258 unsigned LastConsecutiveStore = 0; 09259 int64_t StartAddress = StoreNodes[0].OffsetFromBase; 09260 for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) { 09261 09262 // Check that the addresses are consecutive starting from the second 09263 // element in the list of stores. 09264 if (i > 0) { 09265 int64_t CurrAddress = StoreNodes[i].OffsetFromBase; 09266 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 09267 break; 09268 } 09269 09270 bool Alias = false; 09271 // Check if this store interferes with any of the loads that we found. 09272 for (unsigned ld = 0, lde = AliasLoadNodes.size(); ld < lde; ++ld) 09273 if (isAlias(AliasLoadNodes[ld], StoreNodes[i].MemNode)) { 09274 Alias = true; 09275 break; 09276 } 09277 // We found a load that alias with this store. Stop the sequence. 09278 if (Alias) 09279 break; 09280 09281 // Mark this node as useful. 09282 LastConsecutiveStore = i; 09283 } 09284 09285 // The node with the lowest store address. 09286 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 09287 09288 // Store the constants into memory as one consecutive store. 09289 if (!IsLoadSrc) { 09290 unsigned LastLegalType = 0; 09291 unsigned LastLegalVectorType = 0; 09292 bool NonZero = false; 09293 for (unsigned i=0; i<LastConsecutiveStore+1; ++i) { 09294 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 09295 SDValue StoredVal = St->getValue(); 09296 09297 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) { 09298 NonZero |= !C->isNullValue(); 09299 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) { 09300 NonZero |= !C->getConstantFPValue()->isNullValue(); 09301 } else { 09302 // Non-constant. 09303 break; 09304 } 09305 09306 // Find a legal type for the constant store. 09307 unsigned StoreBW = (i+1) * ElementSizeBytes * 8; 09308 EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW); 09309 if (TLI.isTypeLegal(StoreTy)) 09310 LastLegalType = i+1; 09311 // Or check whether a truncstore is legal. 09312 else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) == 09313 TargetLowering::TypePromoteInteger) { 09314 EVT LegalizedStoredValueTy = 09315 TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType()); 09316 if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy)) 09317 LastLegalType = i+1; 09318 } 09319 09320 // Find a legal type for the vector store. 09321 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1); 09322 if (TLI.isTypeLegal(Ty)) 09323 LastLegalVectorType = i + 1; 09324 } 09325 09326 // We only use vectors if the constant is known to be zero and the 09327 // function is not marked with the noimplicitfloat attribute. 09328 if (NonZero || NoVectors) 09329 LastLegalVectorType = 0; 09330 09331 // Check if we found a legal integer type to store. 09332 if (LastLegalType == 0 && LastLegalVectorType == 0) 09333 return false; 09334 09335 bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors; 09336 unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType; 09337 09338 // Make sure we have something to merge. 09339 if (NumElem < 2) 09340 return false; 09341 09342 unsigned EarliestNodeUsed = 0; 09343 for (unsigned i=0; i < NumElem; ++i) { 09344 // Find a chain for the new wide-store operand. Notice that some 09345 // of the store nodes that we found may not be selected for inclusion 09346 // in the wide store. The chain we use needs to be the chain of the 09347 // earliest store node which is *used* and replaced by the wide store. 09348 if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum) 09349 EarliestNodeUsed = i; 09350 } 09351 09352 // The earliest Node in the DAG. 09353 LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode; 09354 SDLoc DL(StoreNodes[0].MemNode); 09355 09356 SDValue StoredVal; 09357 if (UseVector) { 09358 // Find a legal type for the vector store. 09359 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem); 09360 assert(TLI.isTypeLegal(Ty) && "Illegal vector store"); 09361 StoredVal = DAG.getConstant(0, Ty); 09362 } else { 09363 unsigned StoreBW = NumElem * ElementSizeBytes * 8; 09364 APInt StoreInt(StoreBW, 0); 09365 09366 // Construct a single integer constant which is made of the smaller 09367 // constant inputs. 09368 bool IsLE = TLI.isLittleEndian(); 09369 for (unsigned i = 0; i < NumElem ; ++i) { 09370 unsigned Idx = IsLE ?(NumElem - 1 - i) : i; 09371 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode); 09372 SDValue Val = St->getValue(); 09373 StoreInt<<=ElementSizeBytes*8; 09374 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { 09375 StoreInt|=C->getAPIntValue().zext(StoreBW); 09376 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { 09377 StoreInt|= C->getValueAPF().bitcastToAPInt().zext(StoreBW); 09378 } else { 09379 assert(false && "Invalid constant element type"); 09380 } 09381 } 09382 09383 // Create the new Load and Store operations. 09384 EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW); 09385 StoredVal = DAG.getConstant(StoreInt, StoreTy); 09386 } 09387 09388 SDValue NewStore = DAG.getStore(EarliestOp->getChain(), DL, StoredVal, 09389 FirstInChain->getBasePtr(), 09390 FirstInChain->getPointerInfo(), 09391 false, false, 09392 FirstInChain->getAlignment()); 09393 09394 // Replace the first store with the new store 09395 CombineTo(EarliestOp, NewStore); 09396 // Erase all other stores. 09397 for (unsigned i = 0; i < NumElem ; ++i) { 09398 if (StoreNodes[i].MemNode == EarliestOp) 09399 continue; 09400 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 09401 // ReplaceAllUsesWith will replace all uses that existed when it was 09402 // called, but graph optimizations may cause new ones to appear. For 09403 // example, the case in pr14333 looks like 09404 // 09405 // St's chain -> St -> another store -> X 09406 // 09407 // And the only difference from St to the other store is the chain. 09408 // When we change it's chain to be St's chain they become identical, 09409 // get CSEed and the net result is that X is now a use of St. 09410 // Since we know that St is redundant, just iterate. 09411 while (!St->use_empty()) 09412 DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain()); 09413 deleteAndRecombine(St); 09414 } 09415 09416 return true; 09417 } 09418 09419 // Below we handle the case of multiple consecutive stores that 09420 // come from multiple consecutive loads. We merge them into a single 09421 // wide load and a single wide store. 09422 09423 // Look for load nodes which are used by the stored values. 09424 SmallVector<MemOpLink, 8> LoadNodes; 09425 09426 // Find acceptable loads. Loads need to have the same chain (token factor), 09427 // must not be zext, volatile, indexed, and they must be consecutive. 09428 BaseIndexOffset LdBasePtr; 09429 for (unsigned i=0; i<LastConsecutiveStore+1; ++i) { 09430 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 09431 LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue()); 09432 if (!Ld) break; 09433 09434 // Loads must only have one use. 09435 if (!Ld->hasNUsesOfValue(1, 0)) 09436 break; 09437 09438 // Check that the alignment is the same as the stores. 09439 if (Ld->getAlignment() != St->getAlignment()) 09440 break; 09441 09442 // The memory operands must not be volatile. 09443 if (Ld->isVolatile() || Ld->isIndexed()) 09444 break; 09445 09446 // We do not accept ext loads. 09447 if (Ld->getExtensionType() != ISD::NON_EXTLOAD) 09448 break; 09449 09450 // The stored memory type must be the same. 09451 if (Ld->getMemoryVT() != MemVT) 09452 break; 09453 09454 BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr()); 09455 // If this is not the first ptr that we check. 09456 if (LdBasePtr.Base.getNode()) { 09457 // The base ptr must be the same. 09458 if (!LdPtr.equalBaseIndex(LdBasePtr)) 09459 break; 09460 } else { 09461 // Check that all other base pointers are the same as this one. 09462 LdBasePtr = LdPtr; 09463 } 09464 09465 // We found a potential memory operand to merge. 09466 LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0)); 09467 } 09468 09469 if (LoadNodes.size() < 2) 09470 return false; 09471 09472 // If we have load/store pair instructions and we only have two values, 09473 // don't bother. 09474 unsigned RequiredAlignment; 09475 if (LoadNodes.size() == 2 && TLI.hasPairedLoad(MemVT, RequiredAlignment) && 09476 St->getAlignment() >= RequiredAlignment) 09477 return false; 09478 09479 // Scan the memory operations on the chain and find the first non-consecutive 09480 // load memory address. These variables hold the index in the store node 09481 // array. 09482 unsigned LastConsecutiveLoad = 0; 09483 // This variable refers to the size and not index in the array. 09484 unsigned LastLegalVectorType = 0; 09485 unsigned LastLegalIntegerType = 0; 09486 StartAddress = LoadNodes[0].OffsetFromBase; 09487 SDValue FirstChain = LoadNodes[0].MemNode->getChain(); 09488 for (unsigned i = 1; i < LoadNodes.size(); ++i) { 09489 // All loads much share the same chain. 09490 if (LoadNodes[i].MemNode->getChain() != FirstChain) 09491 break; 09492 09493 int64_t CurrAddress = LoadNodes[i].OffsetFromBase; 09494 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 09495 break; 09496 LastConsecutiveLoad = i; 09497 09498 // Find a legal type for the vector store. 09499 EVT StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1); 09500 if (TLI.isTypeLegal(StoreTy)) 09501 LastLegalVectorType = i + 1; 09502 09503 // Find a legal type for the integer store. 09504 unsigned StoreBW = (i+1) * ElementSizeBytes * 8; 09505 StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW); 09506 if (TLI.isTypeLegal(StoreTy)) 09507 LastLegalIntegerType = i + 1; 09508 // Or check whether a truncstore and extload is legal. 09509 else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) == 09510 TargetLowering::TypePromoteInteger) { 09511 EVT LegalizedStoredValueTy = 09512 TLI.getTypeToTransformTo(*DAG.getContext(), StoreTy); 09513 if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) && 09514 TLI.isLoadExtLegal(ISD::ZEXTLOAD, StoreTy) && 09515 TLI.isLoadExtLegal(ISD::SEXTLOAD, StoreTy) && 09516 TLI.isLoadExtLegal(ISD::EXTLOAD, StoreTy)) 09517 LastLegalIntegerType = i+1; 09518 } 09519 } 09520 09521 // Only use vector types if the vector type is larger than the integer type. 09522 // If they are the same, use integers. 09523 bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors; 09524 unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType); 09525 09526 // We add +1 here because the LastXXX variables refer to location while 09527 // the NumElem refers to array/index size. 09528 unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1; 09529 NumElem = std::min(LastLegalType, NumElem); 09530 09531 if (NumElem < 2) 09532 return false; 09533 09534 // The earliest Node in the DAG. 09535 unsigned EarliestNodeUsed = 0; 09536 LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode; 09537 for (unsigned i=1; i<NumElem; ++i) { 09538 // Find a chain for the new wide-store operand. Notice that some 09539 // of the store nodes that we found may not be selected for inclusion 09540 // in the wide store. The chain we use needs to be the chain of the 09541 // earliest store node which is *used* and replaced by the wide store. 09542 if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum) 09543 EarliestNodeUsed = i; 09544 } 09545 09546 // Find if it is better to use vectors or integers to load and store 09547 // to memory. 09548 EVT JointMemOpVT; 09549 if (UseVectorTy) { 09550 JointMemOpVT = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem); 09551 } else { 09552 unsigned StoreBW = NumElem * ElementSizeBytes * 8; 09553 JointMemOpVT = EVT::getIntegerVT(*DAG.getContext(), StoreBW); 09554 } 09555 09556 SDLoc LoadDL(LoadNodes[0].MemNode); 09557 SDLoc StoreDL(StoreNodes[0].MemNode); 09558 09559 LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); 09560 SDValue NewLoad = DAG.getLoad(JointMemOpVT, LoadDL, 09561 FirstLoad->getChain(), 09562 FirstLoad->getBasePtr(), 09563 FirstLoad->getPointerInfo(), 09564 false, false, false, 09565 FirstLoad->getAlignment()); 09566 09567 SDValue NewStore = DAG.getStore(EarliestOp->getChain(), StoreDL, NewLoad, 09568 FirstInChain->getBasePtr(), 09569 FirstInChain->getPointerInfo(), false, false, 09570 FirstInChain->getAlignment()); 09571 09572 // Replace one of the loads with the new load. 09573 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[0].MemNode); 09574 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), 09575 SDValue(NewLoad.getNode(), 1)); 09576 09577 // Remove the rest of the load chains. 09578 for (unsigned i = 1; i < NumElem ; ++i) { 09579 // Replace all chain users of the old load nodes with the chain of the new 09580 // load node. 09581 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); 09582 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Ld->getChain()); 09583 } 09584 09585 // Replace the first store with the new store. 09586 CombineTo(EarliestOp, NewStore); 09587 // Erase all other stores. 09588 for (unsigned i = 0; i < NumElem ; ++i) { 09589 // Remove all Store nodes. 09590 if (StoreNodes[i].MemNode == EarliestOp) 09591 continue; 09592 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 09593 DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain()); 09594 deleteAndRecombine(St); 09595 } 09596 09597 return true; 09598 } 09599 09600 SDValue DAGCombiner::visitSTORE(SDNode *N) { 09601 StoreSDNode *ST = cast<StoreSDNode>(N); 09602 SDValue Chain = ST->getChain(); 09603 SDValue Value = ST->getValue(); 09604 SDValue Ptr = ST->getBasePtr(); 09605 09606 // If this is a store of a bit convert, store the input value if the 09607 // resultant store does not need a higher alignment than the original. 09608 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && 09609 ST->isUnindexed()) { 09610 unsigned OrigAlign = ST->getAlignment(); 09611 EVT SVT = Value.getOperand(0).getValueType(); 09612 unsigned Align = TLI.getDataLayout()-> 09613 getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext())); 09614 if (Align <= OrigAlign && 09615 ((!LegalOperations && !ST->isVolatile()) || 09616 TLI.isOperationLegalOrCustom(ISD::STORE, SVT))) 09617 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), 09618 Ptr, ST->getPointerInfo(), ST->isVolatile(), 09619 ST->isNonTemporal(), OrigAlign, 09620 ST->getAAInfo()); 09621 } 09622 09623 // Turn 'store undef, Ptr' -> nothing. 09624 if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed()) 09625 return Chain; 09626 09627 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 09628 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) { 09629 // NOTE: If the original store is volatile, this transform must not increase 09630 // the number of stores. For example, on x86-32 an f64 can be stored in one 09631 // processor operation but an i64 (which is not legal) requires two. So the 09632 // transform should not be done in this case. 09633 if (Value.getOpcode() != ISD::TargetConstantFP) { 09634 SDValue Tmp; 09635 switch (CFP->getSimpleValueType(0).SimpleTy) { 09636 default: llvm_unreachable("Unknown FP type"); 09637 case MVT::f16: // We don't do this for these yet. 09638 case MVT::f80: 09639 case MVT::f128: 09640 case MVT::ppcf128: 09641 break; 09642 case MVT::f32: 09643 if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) || 09644 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 09645 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). 09646 bitcastToAPInt().getZExtValue(), MVT::i32); 09647 return DAG.getStore(Chain, SDLoc(N), Tmp, 09648 Ptr, ST->getMemOperand()); 09649 } 09650 break; 09651 case MVT::f64: 09652 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && 09653 !ST->isVolatile()) || 09654 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { 09655 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 09656 getZExtValue(), MVT::i64); 09657 return DAG.getStore(Chain, SDLoc(N), Tmp, 09658 Ptr, ST->getMemOperand()); 09659 } 09660 09661 if (!ST->isVolatile() && 09662 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 09663 // Many FP stores are not made apparent until after legalize, e.g. for 09664 // argument passing. Since this is so common, custom legalize the 09665 // 64-bit integer store into two 32-bit stores. 09666 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 09667 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32); 09668 SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32); 09669 if (TLI.isBigEndian()) std::swap(Lo, Hi); 09670 09671 unsigned Alignment = ST->getAlignment(); 09672 bool isVolatile = ST->isVolatile(); 09673 bool isNonTemporal = ST->isNonTemporal(); 09674 AAMDNodes AAInfo = ST->getAAInfo(); 09675 09676 SDValue St0 = DAG.getStore(Chain, SDLoc(ST), Lo, 09677 Ptr, ST->getPointerInfo(), 09678 isVolatile, isNonTemporal, 09679 ST->getAlignment(), AAInfo); 09680 Ptr = DAG.getNode(ISD::ADD, SDLoc(N), Ptr.getValueType(), Ptr, 09681 DAG.getConstant(4, Ptr.getValueType())); 09682 Alignment = MinAlign(Alignment, 4U); 09683 SDValue St1 = DAG.getStore(Chain, SDLoc(ST), Hi, 09684 Ptr, ST->getPointerInfo().getWithOffset(4), 09685 isVolatile, isNonTemporal, 09686 Alignment, AAInfo); 09687 return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, 09688 St0, St1); 09689 } 09690 09691 break; 09692 } 09693 } 09694 } 09695 09696 // Try to infer better alignment information than the store already has. 09697 if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) { 09698 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { 09699 if (Align > ST->getAlignment()) 09700 return DAG.getTruncStore(Chain, SDLoc(N), Value, 09701 Ptr, ST->getPointerInfo(), ST->getMemoryVT(), 09702 ST->isVolatile(), ST->isNonTemporal(), Align, 09703 ST->getAAInfo()); 09704 } 09705 } 09706 09707 // Try transforming a pair floating point load / store ops to integer 09708 // load / store ops. 09709 SDValue NewST = TransformFPLoadStorePair(N); 09710 if (NewST.getNode()) 09711 return NewST; 09712 09713 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA : 09714 TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA(); 09715 #ifndef NDEBUG 09716 if (CombinerAAOnlyFunc.getNumOccurrences() && 09717 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 09718 UseAA = false; 09719 #endif 09720 if (UseAA && ST->isUnindexed()) { 09721 // Walk up chain skipping non-aliasing memory nodes. 09722 SDValue BetterChain = FindBetterChain(N, Chain); 09723 09724 // If there is a better chain. 09725 if (Chain != BetterChain) { 09726 SDValue ReplStore; 09727 09728 // Replace the chain to avoid dependency. 09729 if (ST->isTruncatingStore()) { 09730 ReplStore = DAG.getTruncStore(BetterChain, SDLoc(N), Value, Ptr, 09731 ST->getMemoryVT(), ST->getMemOperand()); 09732 } else { 09733 ReplStore = DAG.getStore(BetterChain, SDLoc(N), Value, Ptr, 09734 ST->getMemOperand()); 09735 } 09736 09737 // Create token to keep both nodes around. 09738 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), 09739 MVT::Other, Chain, ReplStore); 09740 09741 // Make sure the new and old chains are cleaned up. 09742 AddToWorklist(Token.getNode()); 09743 09744 // Don't add users to work list. 09745 return CombineTo(N, Token, false); 09746 } 09747 } 09748 09749 // Try transforming N to an indexed store. 09750 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 09751 return SDValue(N, 0); 09752 09753 // FIXME: is there such a thing as a truncating indexed store? 09754 if (ST->isTruncatingStore() && ST->isUnindexed() && 09755 Value.getValueType().isInteger()) { 09756 // See if we can simplify the input to this truncstore with knowledge that 09757 // only the low bits are being used. For example: 09758 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8" 09759 SDValue Shorter = 09760 GetDemandedBits(Value, 09761 APInt::getLowBitsSet( 09762 Value.getValueType().getScalarType().getSizeInBits(), 09763 ST->getMemoryVT().getScalarType().getSizeInBits())); 09764 AddToWorklist(Value.getNode()); 09765 if (Shorter.getNode()) 09766 return DAG.getTruncStore(Chain, SDLoc(N), Shorter, 09767 Ptr, ST->getMemoryVT(), ST->getMemOperand()); 09768 09769 // Otherwise, see if we can simplify the operation with 09770 // SimplifyDemandedBits, which only works if the value has a single use. 09771 if (SimplifyDemandedBits(Value, 09772 APInt::getLowBitsSet( 09773 Value.getValueType().getScalarType().getSizeInBits(), 09774 ST->getMemoryVT().getScalarType().getSizeInBits()))) 09775 return SDValue(N, 0); 09776 } 09777 09778 // If this is a load followed by a store to the same location, then the store 09779 // is dead/noop. 09780 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { 09781 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && 09782 ST->isUnindexed() && !ST->isVolatile() && 09783 // There can't be any side effects between the load and store, such as 09784 // a call or store. 09785 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { 09786 // The store is dead, remove it. 09787 return Chain; 09788 } 09789 } 09790 09791 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a 09792 // truncating store. We can do this even if this is already a truncstore. 09793 if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE) 09794 && Value.getNode()->hasOneUse() && ST->isUnindexed() && 09795 TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(), 09796 ST->getMemoryVT())) { 09797 return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), 09798 Ptr, ST->getMemoryVT(), ST->getMemOperand()); 09799 } 09800 09801 // Only perform this optimization before the types are legal, because we 09802 // don't want to perform this optimization on every DAGCombine invocation. 09803 if (!LegalTypes) { 09804 bool EverChanged = false; 09805 09806 do { 09807 // There can be multiple store sequences on the same chain. 09808 // Keep trying to merge store sequences until we are unable to do so 09809 // or until we merge the last store on the chain. 09810 bool Changed = MergeConsecutiveStores(ST); 09811 EverChanged |= Changed; 09812 if (!Changed) break; 09813 } while (ST->getOpcode() != ISD::DELETED_NODE); 09814 09815 if (EverChanged) 09816 return SDValue(N, 0); 09817 } 09818 09819 return ReduceLoadOpStoreWidth(N); 09820 } 09821 09822 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { 09823 SDValue InVec = N->getOperand(0); 09824 SDValue InVal = N->getOperand(1); 09825 SDValue EltNo = N->getOperand(2); 09826 SDLoc dl(N); 09827 09828 // If the inserted element is an UNDEF, just use the input vector. 09829 if (InVal.getOpcode() == ISD::UNDEF) 09830 return InVec; 09831 09832 EVT VT = InVec.getValueType(); 09833 09834 // If we can't generate a legal BUILD_VECTOR, exit 09835 if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 09836 return SDValue(); 09837 09838 // Check that we know which element is being inserted 09839 if (!isa<ConstantSDNode>(EltNo)) 09840 return SDValue(); 09841 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 09842 09843 // Canonicalize insert_vector_elt dag nodes. 09844 // Example: 09845 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) 09846 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) 09847 // 09848 // Do this only if the child insert_vector node has one use; also 09849 // do this only if indices are both constants and Idx1 < Idx0. 09850 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() 09851 && isa<ConstantSDNode>(InVec.getOperand(2))) { 09852 unsigned OtherElt = 09853 cast<ConstantSDNode>(InVec.getOperand(2))->getZExtValue(); 09854 if (Elt < OtherElt) { 09855 // Swap nodes. 09856 SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VT, 09857 InVec.getOperand(0), InVal, EltNo); 09858 AddToWorklist(NewOp.getNode()); 09859 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), 09860 VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); 09861 } 09862 } 09863 09864 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially 09865 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the 09866 // vector elements. 09867 SmallVector<SDValue, 8> Ops; 09868 // Do not combine these two vectors if the output vector will not replace 09869 // the input vector. 09870 if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) { 09871 Ops.append(InVec.getNode()->op_begin(), 09872 InVec.getNode()->op_end()); 09873 } else if (InVec.getOpcode() == ISD::UNDEF) { 09874 unsigned NElts = VT.getVectorNumElements(); 09875 Ops.append(NElts, DAG.getUNDEF(InVal.getValueType())); 09876 } else { 09877 return SDValue(); 09878 } 09879 09880 // Insert the element 09881 if (Elt < Ops.size()) { 09882 // All the operands of BUILD_VECTOR must have the same type; 09883 // we enforce that here. 09884 EVT OpVT = Ops[0].getValueType(); 09885 if (InVal.getValueType() != OpVT) 09886 InVal = OpVT.bitsGT(InVal.getValueType()) ? 09887 DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) : 09888 DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal); 09889 Ops[Elt] = InVal; 09890 } 09891 09892 // Return the new vector 09893 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 09894 } 09895 09896 SDValue DAGCombiner::ReplaceExtractVectorEltOfLoadWithNarrowedLoad( 09897 SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad) { 09898 EVT ResultVT = EVE->getValueType(0); 09899 EVT VecEltVT = InVecVT.getVectorElementType(); 09900 unsigned Align = OriginalLoad->getAlignment(); 09901 unsigned NewAlign = TLI.getDataLayout()->getABITypeAlignment( 09902 VecEltVT.getTypeForEVT(*DAG.getContext())); 09903 09904 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT)) 09905 return SDValue(); 09906 09907 Align = NewAlign; 09908 09909 SDValue NewPtr = OriginalLoad->getBasePtr(); 09910 SDValue Offset; 09911 EVT PtrType = NewPtr.getValueType(); 09912 MachinePointerInfo MPI; 09913 if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) { 09914 int Elt = ConstEltNo->getZExtValue(); 09915 unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8; 09916 if (TLI.isBigEndian()) 09917 PtrOff = InVecVT.getSizeInBits() / 8 - PtrOff; 09918 Offset = DAG.getConstant(PtrOff, PtrType); 09919 MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff); 09920 } else { 09921 Offset = DAG.getNode( 09922 ISD::MUL, SDLoc(EVE), EltNo.getValueType(), EltNo, 09923 DAG.getConstant(VecEltVT.getStoreSize(), EltNo.getValueType())); 09924 if (TLI.isBigEndian()) 09925 Offset = DAG.getNode( 09926 ISD::SUB, SDLoc(EVE), EltNo.getValueType(), 09927 DAG.getConstant(InVecVT.getStoreSize(), EltNo.getValueType()), Offset); 09928 MPI = OriginalLoad->getPointerInfo(); 09929 } 09930 NewPtr = DAG.getNode(ISD::ADD, SDLoc(EVE), PtrType, NewPtr, Offset); 09931 09932 // The replacement we need to do here is a little tricky: we need to 09933 // replace an extractelement of a load with a load. 09934 // Use ReplaceAllUsesOfValuesWith to do the replacement. 09935 // Note that this replacement assumes that the extractvalue is the only 09936 // use of the load; that's okay because we don't want to perform this 09937 // transformation in other cases anyway. 09938 SDValue Load; 09939 SDValue Chain; 09940 if (ResultVT.bitsGT(VecEltVT)) { 09941 // If the result type of vextract is wider than the load, then issue an 09942 // extending load instead. 09943 ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, VecEltVT) 09944 ? ISD::ZEXTLOAD 09945 : ISD::EXTLOAD; 09946 Load = DAG.getExtLoad( 09947 ExtType, SDLoc(EVE), ResultVT, OriginalLoad->getChain(), NewPtr, MPI, 09948 VecEltVT, OriginalLoad->isVolatile(), OriginalLoad->isNonTemporal(), 09949 OriginalLoad->isInvariant(), Align, OriginalLoad->getAAInfo()); 09950 Chain = Load.getValue(1); 09951 } else { 09952 Load = DAG.getLoad( 09953 VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, MPI, 09954 OriginalLoad->isVolatile(), OriginalLoad->isNonTemporal(), 09955 OriginalLoad->isInvariant(), Align, OriginalLoad->getAAInfo()); 09956 Chain = Load.getValue(1); 09957 if (ResultVT.bitsLT(VecEltVT)) 09958 Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load); 09959 else 09960 Load = DAG.getNode(ISD::BITCAST, SDLoc(EVE), ResultVT, Load); 09961 } 09962 WorklistRemover DeadNodes(*this); 09963 SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) }; 09964 SDValue To[] = { Load, Chain }; 09965 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 09966 // Since we're explicitly calling ReplaceAllUses, add the new node to the 09967 // worklist explicitly as well. 09968 AddToWorklist(Load.getNode()); 09969 AddUsersToWorklist(Load.getNode()); // Add users too 09970 // Make sure to revisit this node to clean it up; it will usually be dead. 09971 AddToWorklist(EVE); 09972 ++OpsNarrowed; 09973 return SDValue(EVE, 0); 09974 } 09975 09976 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { 09977 // (vextract (scalar_to_vector val, 0) -> val 09978 SDValue InVec = N->getOperand(0); 09979 EVT VT = InVec.getValueType(); 09980 EVT NVT = N->getValueType(0); 09981 09982 if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) { 09983 // Check if the result type doesn't match the inserted element type. A 09984 // SCALAR_TO_VECTOR may truncate the inserted element and the 09985 // EXTRACT_VECTOR_ELT may widen the extracted vector. 09986 SDValue InOp = InVec.getOperand(0); 09987 if (InOp.getValueType() != NVT) { 09988 assert(InOp.getValueType().isInteger() && NVT.isInteger()); 09989 return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT); 09990 } 09991 return InOp; 09992 } 09993 09994 SDValue EltNo = N->getOperand(1); 09995 bool ConstEltNo = isa<ConstantSDNode>(EltNo); 09996 09997 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. 09998 // We only perform this optimization before the op legalization phase because 09999 // we may introduce new vector instructions which are not backed by TD 10000 // patterns. For example on AVX, extracting elements from a wide vector 10001 // without using extract_subvector. However, if we can find an underlying 10002 // scalar value, then we can always use that. 10003 if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE 10004 && ConstEltNo) { 10005 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 10006 int NumElem = VT.getVectorNumElements(); 10007 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec); 10008 // Find the new index to extract from. 10009 int OrigElt = SVOp->getMaskElt(Elt); 10010 10011 // Extracting an undef index is undef. 10012 if (OrigElt == -1) 10013 return DAG.getUNDEF(NVT); 10014 10015 // Select the right vector half to extract from. 10016 SDValue SVInVec; 10017 if (OrigElt < NumElem) { 10018 SVInVec = InVec->getOperand(0); 10019 } else { 10020 SVInVec = InVec->getOperand(1); 10021 OrigElt -= NumElem; 10022 } 10023 10024 if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { 10025 SDValue InOp = SVInVec.getOperand(OrigElt); 10026 if (InOp.getValueType() != NVT) { 10027 assert(InOp.getValueType().isInteger() && NVT.isInteger()); 10028 InOp = DAG.getSExtOrTrunc(InOp, SDLoc(SVInVec), NVT); 10029 } 10030 10031 return InOp; 10032 } 10033 10034 // FIXME: We should handle recursing on other vector shuffles and 10035 // scalar_to_vector here as well. 10036 10037 if (!LegalOperations) { 10038 EVT IndexTy = TLI.getVectorIdxTy(); 10039 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT, 10040 SVInVec, DAG.getConstant(OrigElt, IndexTy)); 10041 } 10042 } 10043 10044 bool BCNumEltsChanged = false; 10045 EVT ExtVT = VT.getVectorElementType(); 10046 EVT LVT = ExtVT; 10047 10048 // If the result of load has to be truncated, then it's not necessarily 10049 // profitable. 10050 if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT)) 10051 return SDValue(); 10052 10053 if (InVec.getOpcode() == ISD::BITCAST) { 10054 // Don't duplicate a load with other uses. 10055 if (!InVec.hasOneUse()) 10056 return SDValue(); 10057 10058 EVT BCVT = InVec.getOperand(0).getValueType(); 10059 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) 10060 return SDValue(); 10061 if (VT.getVectorNumElements() != BCVT.getVectorNumElements()) 10062 BCNumEltsChanged = true; 10063 InVec = InVec.getOperand(0); 10064 ExtVT = BCVT.getVectorElementType(); 10065 } 10066 10067 // (vextract (vN[if]M load $addr), i) -> ([if]M load $addr + i * size) 10068 if (!LegalOperations && !ConstEltNo && InVec.hasOneUse() && 10069 ISD::isNormalLoad(InVec.getNode()) && 10070 !N->getOperand(1)->hasPredecessor(InVec.getNode())) { 10071 SDValue Index = N->getOperand(1); 10072 if (LoadSDNode *OrigLoad = dyn_cast<LoadSDNode>(InVec)) 10073 return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, Index, 10074 OrigLoad); 10075 } 10076 10077 // Perform only after legalization to ensure build_vector / vector_shuffle 10078 // optimizations have already been done. 10079 if (!LegalOperations) return SDValue(); 10080 10081 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) 10082 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) 10083 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) 10084 10085 if (ConstEltNo) { 10086 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 10087 10088 LoadSDNode *LN0 = nullptr; 10089 const ShuffleVectorSDNode *SVN = nullptr; 10090 if (ISD::isNormalLoad(InVec.getNode())) { 10091 LN0 = cast<LoadSDNode>(InVec); 10092 } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR && 10093 InVec.getOperand(0).getValueType() == ExtVT && 10094 ISD::isNormalLoad(InVec.getOperand(0).getNode())) { 10095 // Don't duplicate a load with other uses. 10096 if (!InVec.hasOneUse()) 10097 return SDValue(); 10098 10099 LN0 = cast<LoadSDNode>(InVec.getOperand(0)); 10100 } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) { 10101 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) 10102 // => 10103 // (load $addr+1*size) 10104 10105 // Don't duplicate a load with other uses. 10106 if (!InVec.hasOneUse()) 10107 return SDValue(); 10108 10109 // If the bit convert changed the number of elements, it is unsafe 10110 // to examine the mask. 10111 if (BCNumEltsChanged) 10112 return SDValue(); 10113 10114 // Select the input vector, guarding against out of range extract vector. 10115 unsigned NumElems = VT.getVectorNumElements(); 10116 int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt); 10117 InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1); 10118 10119 if (InVec.getOpcode() == ISD::BITCAST) { 10120 // Don't duplicate a load with other uses. 10121 if (!InVec.hasOneUse()) 10122 return SDValue(); 10123 10124 InVec = InVec.getOperand(0); 10125 } 10126 if (ISD::isNormalLoad(InVec.getNode())) { 10127 LN0 = cast<LoadSDNode>(InVec); 10128 Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems; 10129 EltNo = DAG.getConstant(Elt, EltNo.getValueType()); 10130 } 10131 } 10132 10133 // Make sure we found a non-volatile load and the extractelement is 10134 // the only use. 10135 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile()) 10136 return SDValue(); 10137 10138 // If Idx was -1 above, Elt is going to be -1, so just return undef. 10139 if (Elt == -1) 10140 return DAG.getUNDEF(LVT); 10141 10142 return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, EltNo, LN0); 10143 } 10144 10145 return SDValue(); 10146 } 10147 10148 // Simplify (build_vec (ext )) to (bitcast (build_vec )) 10149 SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { 10150 // We perform this optimization post type-legalization because 10151 // the type-legalizer often scalarizes integer-promoted vectors. 10152 // Performing this optimization before may create bit-casts which 10153 // will be type-legalized to complex code sequences. 10154 // We perform this optimization only before the operation legalizer because we 10155 // may introduce illegal operations. 10156 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) 10157 return SDValue(); 10158 10159 unsigned NumInScalars = N->getNumOperands(); 10160 SDLoc dl(N); 10161 EVT VT = N->getValueType(0); 10162 10163 // Check to see if this is a BUILD_VECTOR of a bunch of values 10164 // which come from any_extend or zero_extend nodes. If so, we can create 10165 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR 10166 // optimizations. We do not handle sign-extend because we can't fill the sign 10167 // using shuffles. 10168 EVT SourceType = MVT::Other; 10169 bool AllAnyExt = true; 10170 10171 for (unsigned i = 0; i != NumInScalars; ++i) { 10172 SDValue In = N->getOperand(i); 10173 // Ignore undef inputs. 10174 if (In.getOpcode() == ISD::UNDEF) continue; 10175 10176 bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND; 10177 bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; 10178 10179 // Abort if the element is not an extension. 10180 if (!ZeroExt && !AnyExt) { 10181 SourceType = MVT::Other; 10182 break; 10183 } 10184 10185 // The input is a ZeroExt or AnyExt. Check the original type. 10186 EVT InTy = In.getOperand(0).getValueType(); 10187 10188 // Check that all of the widened source types are the same. 10189 if (SourceType == MVT::Other) 10190 // First time. 10191 SourceType = InTy; 10192 else if (InTy != SourceType) { 10193 // Multiple income types. Abort. 10194 SourceType = MVT::Other; 10195 break; 10196 } 10197 10198 // Check if all of the extends are ANY_EXTENDs. 10199 AllAnyExt &= AnyExt; 10200 } 10201 10202 // In order to have valid types, all of the inputs must be extended from the 10203 // same source type and all of the inputs must be any or zero extend. 10204 // Scalar sizes must be a power of two. 10205 EVT OutScalarTy = VT.getScalarType(); 10206 bool ValidTypes = SourceType != MVT::Other && 10207 isPowerOf2_32(OutScalarTy.getSizeInBits()) && 10208 isPowerOf2_32(SourceType.getSizeInBits()); 10209 10210 // Create a new simpler BUILD_VECTOR sequence which other optimizations can 10211 // turn into a single shuffle instruction. 10212 if (!ValidTypes) 10213 return SDValue(); 10214 10215 bool isLE = TLI.isLittleEndian(); 10216 unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); 10217 assert(ElemRatio > 1 && "Invalid element size ratio"); 10218 SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): 10219 DAG.getConstant(0, SourceType); 10220 10221 unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); 10222 SmallVector<SDValue, 8> Ops(NewBVElems, Filler); 10223 10224 // Populate the new build_vector 10225 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 10226 SDValue Cast = N->getOperand(i); 10227 assert((Cast.getOpcode() == ISD::ANY_EXTEND || 10228 Cast.getOpcode() == ISD::ZERO_EXTEND || 10229 Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode"); 10230 SDValue In; 10231 if (Cast.getOpcode() == ISD::UNDEF) 10232 In = DAG.getUNDEF(SourceType); 10233 else 10234 In = Cast->getOperand(0); 10235 unsigned Index = isLE ? (i * ElemRatio) : 10236 (i * ElemRatio + (ElemRatio - 1)); 10237 10238 assert(Index < Ops.size() && "Invalid index"); 10239 Ops[Index] = In; 10240 } 10241 10242 // The type of the new BUILD_VECTOR node. 10243 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); 10244 assert(VecVT.getSizeInBits() == VT.getSizeInBits() && 10245 "Invalid vector size"); 10246 // Check if the new vector type is legal. 10247 if (!isTypeLegal(VecVT)) return SDValue(); 10248 10249 // Make the new BUILD_VECTOR. 10250 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops); 10251 10252 // The new BUILD_VECTOR node has the potential to be further optimized. 10253 AddToWorklist(BV.getNode()); 10254 // Bitcast to the desired type. 10255 return DAG.getNode(ISD::BITCAST, dl, VT, BV); 10256 } 10257 10258 SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) { 10259 EVT VT = N->getValueType(0); 10260 10261 unsigned NumInScalars = N->getNumOperands(); 10262 SDLoc dl(N); 10263 10264 EVT SrcVT = MVT::Other; 10265 unsigned Opcode = ISD::DELETED_NODE; 10266 unsigned NumDefs = 0; 10267 10268 for (unsigned i = 0; i != NumInScalars; ++i) { 10269 SDValue In = N->getOperand(i); 10270 unsigned Opc = In.getOpcode(); 10271 10272 if (Opc == ISD::UNDEF) 10273 continue; 10274 10275 // If all scalar values are floats and converted from integers. 10276 if (Opcode == ISD::DELETED_NODE && 10277 (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) { 10278 Opcode = Opc; 10279 } 10280 10281 if (Opc != Opcode) 10282 return SDValue(); 10283 10284 EVT InVT = In.getOperand(0).getValueType(); 10285 10286 // If all scalar values are typed differently, bail out. It's chosen to 10287 // simplify BUILD_VECTOR of integer types. 10288 if (SrcVT == MVT::Other) 10289 SrcVT = InVT; 10290 if (SrcVT != InVT) 10291 return SDValue(); 10292 NumDefs++; 10293 } 10294 10295 // If the vector has just one element defined, it's not worth to fold it into 10296 // a vectorized one. 10297 if (NumDefs < 2) 10298 return SDValue(); 10299 10300 assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP) 10301 && "Should only handle conversion from integer to float."); 10302 assert(SrcVT != MVT::Other && "Cannot determine source type!"); 10303 10304 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars); 10305 10306 if (!TLI.isOperationLegalOrCustom(Opcode, NVT)) 10307 return SDValue(); 10308 10309 SmallVector<SDValue, 8> Opnds; 10310 for (unsigned i = 0; i != NumInScalars; ++i) { 10311 SDValue In = N->getOperand(i); 10312 10313 if (In.getOpcode() == ISD::UNDEF) 10314 Opnds.push_back(DAG.getUNDEF(SrcVT)); 10315 else 10316 Opnds.push_back(In.getOperand(0)); 10317 } 10318 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, Opnds); 10319 AddToWorklist(BV.getNode()); 10320 10321 return DAG.getNode(Opcode, dl, VT, BV); 10322 } 10323 10324 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { 10325 unsigned NumInScalars = N->getNumOperands(); 10326 SDLoc dl(N); 10327 EVT VT = N->getValueType(0); 10328 10329 // A vector built entirely of undefs is undef. 10330 if (ISD::allOperandsUndef(N)) 10331 return DAG.getUNDEF(VT); 10332 10333 SDValue V = reduceBuildVecExtToExtBuildVec(N); 10334 if (V.getNode()) 10335 return V; 10336 10337 V = reduceBuildVecConvertToConvertBuildVec(N); 10338 if (V.getNode()) 10339 return V; 10340 10341 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT 10342 // operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from 10343 // at most two distinct vectors, turn this into a shuffle node. 10344 10345 // May only combine to shuffle after legalize if shuffle is legal. 10346 if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) 10347 return SDValue(); 10348 10349 SDValue VecIn1, VecIn2; 10350 for (unsigned i = 0; i != NumInScalars; ++i) { 10351 // Ignore undef inputs. 10352 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 10353 10354 // If this input is something other than a EXTRACT_VECTOR_ELT with a 10355 // constant index, bail out. 10356 if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10357 !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) { 10358 VecIn1 = VecIn2 = SDValue(nullptr, 0); 10359 break; 10360 } 10361 10362 // We allow up to two distinct input vectors. 10363 SDValue ExtractedFromVec = N->getOperand(i).getOperand(0); 10364 if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2) 10365 continue; 10366 10367 if (!VecIn1.getNode()) { 10368 VecIn1 = ExtractedFromVec; 10369 } else if (!VecIn2.getNode()) { 10370 VecIn2 = ExtractedFromVec; 10371 } else { 10372 // Too many inputs. 10373 VecIn1 = VecIn2 = SDValue(nullptr, 0); 10374 break; 10375 } 10376 } 10377 10378 // If everything is good, we can make a shuffle operation. 10379 if (VecIn1.getNode()) { 10380 SmallVector<int, 8> Mask; 10381 for (unsigned i = 0; i != NumInScalars; ++i) { 10382 if (N->getOperand(i).getOpcode() == ISD::UNDEF) { 10383 Mask.push_back(-1); 10384 continue; 10385 } 10386 10387 // If extracting from the first vector, just use the index directly. 10388 SDValue Extract = N->getOperand(i); 10389 SDValue ExtVal = Extract.getOperand(1); 10390 if (Extract.getOperand(0) == VecIn1) { 10391 unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue(); 10392 if (ExtIndex > VT.getVectorNumElements()) 10393 return SDValue(); 10394 10395 Mask.push_back(ExtIndex); 10396 continue; 10397 } 10398 10399 // Otherwise, use InIdx + VecSize 10400 unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue(); 10401 Mask.push_back(Idx+NumInScalars); 10402 } 10403 10404 // We can't generate a shuffle node with mismatched input and output types. 10405 // Attempt to transform a single input vector to the correct type. 10406 if ((VT != VecIn1.getValueType())) { 10407 // We don't support shuffeling between TWO values of different types. 10408 if (VecIn2.getNode()) 10409 return SDValue(); 10410 10411 // We only support widening of vectors which are half the size of the 10412 // output registers. For example XMM->YMM widening on X86 with AVX. 10413 if (VecIn1.getValueType().getSizeInBits()*2 != VT.getSizeInBits()) 10414 return SDValue(); 10415 10416 // If the input vector type has a different base type to the output 10417 // vector type, bail out. 10418 if (VecIn1.getValueType().getVectorElementType() != 10419 VT.getVectorElementType()) 10420 return SDValue(); 10421 10422 // Widen the input vector by adding undef values. 10423 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, 10424 VecIn1, DAG.getUNDEF(VecIn1.getValueType())); 10425 } 10426 10427 // If VecIn2 is unused then change it to undef. 10428 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT); 10429 10430 // Check that we were able to transform all incoming values to the same 10431 // type. 10432 if (VecIn2.getValueType() != VecIn1.getValueType() || 10433 VecIn1.getValueType() != VT) 10434 return SDValue(); 10435 10436 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. 10437 if (!isTypeLegal(VT)) 10438 return SDValue(); 10439 10440 // Return the new VECTOR_SHUFFLE node. 10441 SDValue Ops[2]; 10442 Ops[0] = VecIn1; 10443 Ops[1] = VecIn2; 10444 return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]); 10445 } 10446 10447 return SDValue(); 10448 } 10449 10450 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { 10451 // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of 10452 // EXTRACT_SUBVECTOR operations. If so, and if the EXTRACT_SUBVECTOR vector 10453 // inputs come from at most two distinct vectors, turn this into a shuffle 10454 // node. 10455 10456 // If we only have one input vector, we don't need to do any concatenation. 10457 if (N->getNumOperands() == 1) 10458 return N->getOperand(0); 10459 10460 // Check if all of the operands are undefs. 10461 EVT VT = N->getValueType(0); 10462 if (ISD::allOperandsUndef(N)) 10463 return DAG.getUNDEF(VT); 10464 10465 // Optimize concat_vectors where one of the vectors is undef. 10466 if (N->getNumOperands() == 2 && 10467 N->getOperand(1)->getOpcode() == ISD::UNDEF) { 10468 SDValue In = N->getOperand(0); 10469 assert(In.getValueType().isVector() && "Must concat vectors"); 10470 10471 // Transform: concat_vectors(scalar, undef) -> scalar_to_vector(sclr). 10472 if (In->getOpcode() == ISD::BITCAST && 10473 !In->getOperand(0)->getValueType(0).isVector()) { 10474 SDValue Scalar = In->getOperand(0); 10475 EVT SclTy = Scalar->getValueType(0); 10476 10477 if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) 10478 return SDValue(); 10479 10480 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, 10481 VT.getSizeInBits() / SclTy.getSizeInBits()); 10482 if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) 10483 return SDValue(); 10484 10485 SDLoc dl = SDLoc(N); 10486 SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NVT, Scalar); 10487 return DAG.getNode(ISD::BITCAST, dl, VT, Res); 10488 } 10489 } 10490 10491 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) 10492 // -> (BUILD_VECTOR A, B, ..., C, D, ...) 10493 if (N->getNumOperands() == 2 && 10494 N->getOperand(0).getOpcode() == ISD::BUILD_VECTOR && 10495 N->getOperand(1).getOpcode() == ISD::BUILD_VECTOR) { 10496 EVT VT = N->getValueType(0); 10497 SDValue N0 = N->getOperand(0); 10498 SDValue N1 = N->getOperand(1); 10499 SmallVector<SDValue, 8> Opnds; 10500 unsigned BuildVecNumElts = N0.getNumOperands(); 10501 10502 EVT SclTy0 = N0.getOperand(0)->getValueType(0); 10503 EVT SclTy1 = N1.getOperand(0)->getValueType(0); 10504 if (SclTy0.isFloatingPoint()) { 10505 for (unsigned i = 0; i != BuildVecNumElts; ++i) 10506 Opnds.push_back(N0.getOperand(i)); 10507 for (unsigned i = 0; i != BuildVecNumElts; ++i) 10508 Opnds.push_back(N1.getOperand(i)); 10509 } else { 10510 // If BUILD_VECTOR are from built from integer, they may have different 10511 // operand types. Get the smaller type and truncate all operands to it. 10512 EVT MinTy = SclTy0.bitsLE(SclTy1) ? SclTy0 : SclTy1; 10513 for (unsigned i = 0; i != BuildVecNumElts; ++i) 10514 Opnds.push_back(DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinTy, 10515 N0.getOperand(i))); 10516 for (unsigned i = 0; i != BuildVecNumElts; ++i) 10517 Opnds.push_back(DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinTy, 10518 N1.getOperand(i))); 10519 } 10520 10521 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Opnds); 10522 } 10523 10524 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR 10525 // nodes often generate nop CONCAT_VECTOR nodes. 10526 // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that 10527 // place the incoming vectors at the exact same location. 10528 SDValue SingleSource = SDValue(); 10529 unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements(); 10530 10531 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 10532 SDValue Op = N->getOperand(i); 10533 10534 if (Op.getOpcode() == ISD::UNDEF) 10535 continue; 10536 10537 // Check if this is the identity extract: 10538 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 10539 return SDValue(); 10540 10541 // Find the single incoming vector for the extract_subvector. 10542 if (SingleSource.getNode()) { 10543 if (Op.getOperand(0) != SingleSource) 10544 return SDValue(); 10545 } else { 10546 SingleSource = Op.getOperand(0); 10547 10548 // Check the source type is the same as the type of the result. 10549 // If not, this concat may extend the vector, so we can not 10550 // optimize it away. 10551 if (SingleSource.getValueType() != N->getValueType(0)) 10552 return SDValue(); 10553 } 10554 10555 unsigned IdentityIndex = i * PartNumElem; 10556 ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 10557 // The extract index must be constant. 10558 if (!CS) 10559 return SDValue(); 10560 10561 // Check that we are reading from the identity index. 10562 if (CS->getZExtValue() != IdentityIndex) 10563 return SDValue(); 10564 } 10565 10566 if (SingleSource.getNode()) 10567 return SingleSource; 10568 10569 return SDValue(); 10570 } 10571 10572 SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) { 10573 EVT NVT = N->getValueType(0); 10574 SDValue V = N->getOperand(0); 10575 10576 if (V->getOpcode() == ISD::CONCAT_VECTORS) { 10577 // Combine: 10578 // (extract_subvec (concat V1, V2, ...), i) 10579 // Into: 10580 // Vi if possible 10581 // Only operand 0 is checked as 'concat' assumes all inputs of the same 10582 // type. 10583 if (V->getOperand(0).getValueType() != NVT) 10584 return SDValue(); 10585 unsigned Idx = dyn_cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 10586 unsigned NumElems = NVT.getVectorNumElements(); 10587 assert((Idx % NumElems) == 0 && 10588 "IDX in concat is not a multiple of the result vector length."); 10589 return V->getOperand(Idx / NumElems); 10590 } 10591 10592 // Skip bitcasting 10593 if (V->getOpcode() == ISD::BITCAST) 10594 V = V.getOperand(0); 10595 10596 if (V->getOpcode() == ISD::INSERT_SUBVECTOR) { 10597 SDLoc dl(N); 10598 // Handle only simple case where vector being inserted and vector 10599 // being extracted are of same type, and are half size of larger vectors. 10600 EVT BigVT = V->getOperand(0).getValueType(); 10601 EVT SmallVT = V->getOperand(1).getValueType(); 10602 if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits()) 10603 return SDValue(); 10604 10605 // Only handle cases where both indexes are constants with the same type. 10606 ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1)); 10607 ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2)); 10608 10609 if (InsIdx && ExtIdx && 10610 InsIdx->getValueType(0).getSizeInBits() <= 64 && 10611 ExtIdx->getValueType(0).getSizeInBits() <= 64) { 10612 // Combine: 10613 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) 10614 // Into: 10615 // indices are equal or bit offsets are equal => V1 10616 // otherwise => (extract_subvec V1, ExtIdx) 10617 if (InsIdx->getZExtValue() * SmallVT.getScalarType().getSizeInBits() == 10618 ExtIdx->getZExtValue() * NVT.getScalarType().getSizeInBits()) 10619 return DAG.getNode(ISD::BITCAST, dl, NVT, V->getOperand(1)); 10620 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT, 10621 DAG.getNode(ISD::BITCAST, dl, 10622 N->getOperand(0).getValueType(), 10623 V->getOperand(0)), N->getOperand(1)); 10624 } 10625 } 10626 10627 return SDValue(); 10628 } 10629 10630 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat. 10631 static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { 10632 EVT VT = N->getValueType(0); 10633 unsigned NumElts = VT.getVectorNumElements(); 10634 10635 SDValue N0 = N->getOperand(0); 10636 SDValue N1 = N->getOperand(1); 10637 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 10638 10639 SmallVector<SDValue, 4> Ops; 10640 EVT ConcatVT = N0.getOperand(0).getValueType(); 10641 unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); 10642 unsigned NumConcats = NumElts / NumElemsPerConcat; 10643 10644 // Look at every vector that's inserted. We're looking for exact 10645 // subvector-sized copies from a concatenated vector 10646 for (unsigned I = 0; I != NumConcats; ++I) { 10647 // Make sure we're dealing with a copy. 10648 unsigned Begin = I * NumElemsPerConcat; 10649 bool AllUndef = true, NoUndef = true; 10650 for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) { 10651 if (SVN->getMaskElt(J) >= 0) 10652 AllUndef = false; 10653 else 10654 NoUndef = false; 10655 } 10656 10657 if (NoUndef) { 10658 if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0) 10659 return SDValue(); 10660 10661 for (unsigned J = 1; J != NumElemsPerConcat; ++J) 10662 if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J)) 10663 return SDValue(); 10664 10665 unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat; 10666 if (FirstElt < N0.getNumOperands()) 10667 Ops.push_back(N0.getOperand(FirstElt)); 10668 else 10669 Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands())); 10670 10671 } else if (AllUndef) { 10672 Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType())); 10673 } else { // Mixed with general masks and undefs, can't do optimization. 10674 return SDValue(); 10675 } 10676 } 10677 10678 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 10679 } 10680 10681 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { 10682 EVT VT = N->getValueType(0); 10683 unsigned NumElts = VT.getVectorNumElements(); 10684 10685 SDValue N0 = N->getOperand(0); 10686 SDValue N1 = N->getOperand(1); 10687 10688 assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); 10689 10690 // Canonicalize shuffle undef, undef -> undef 10691 if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF) 10692 return DAG.getUNDEF(VT); 10693 10694 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 10695 10696 // Canonicalize shuffle v, v -> v, undef 10697 if (N0 == N1) { 10698 SmallVector<int, 8> NewMask; 10699 for (unsigned i = 0; i != NumElts; ++i) { 10700 int Idx = SVN->getMaskElt(i); 10701 if (Idx >= (int)NumElts) Idx -= NumElts; 10702 NewMask.push_back(Idx); 10703 } 10704 return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), 10705 &NewMask[0]); 10706 } 10707 10708 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 10709 if (N0.getOpcode() == ISD::UNDEF) { 10710 SmallVector<int, 8> NewMask; 10711 for (unsigned i = 0; i != NumElts; ++i) { 10712 int Idx = SVN->getMaskElt(i); 10713 if (Idx >= 0) { 10714 if (Idx >= (int)NumElts) 10715 Idx -= NumElts; 10716 else 10717 Idx = -1; // remove reference to lhs 10718 } 10719 NewMask.push_back(Idx); 10720 } 10721 return DAG.getVectorShuffle(VT, SDLoc(N), N1, DAG.getUNDEF(VT), 10722 &NewMask[0]); 10723 } 10724 10725 // Remove references to rhs if it is undef 10726 if (N1.getOpcode() == ISD::UNDEF) { 10727 bool Changed = false; 10728 SmallVector<int, 8> NewMask; 10729 for (unsigned i = 0; i != NumElts; ++i) { 10730 int Idx = SVN->getMaskElt(i); 10731 if (Idx >= (int)NumElts) { 10732 Idx = -1; 10733 Changed = true; 10734 } 10735 NewMask.push_back(Idx); 10736 } 10737 if (Changed) 10738 return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, &NewMask[0]); 10739 } 10740 10741 // If it is a splat, check if the argument vector is another splat or a 10742 // build_vector with all scalar elements the same. 10743 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { 10744 SDNode *V = N0.getNode(); 10745 10746 // If this is a bit convert that changes the element type of the vector but 10747 // not the number of vector elements, look through it. Be careful not to 10748 // look though conversions that change things like v4f32 to v2f64. 10749 if (V->getOpcode() == ISD::BITCAST) { 10750 SDValue ConvInput = V->getOperand(0); 10751 if (ConvInput.getValueType().isVector() && 10752 ConvInput.getValueType().getVectorNumElements() == NumElts) 10753 V = ConvInput.getNode(); 10754 } 10755 10756 if (V->getOpcode() == ISD::BUILD_VECTOR) { 10757 assert(V->getNumOperands() == NumElts && 10758 "BUILD_VECTOR has wrong number of operands"); 10759 SDValue Base; 10760 bool AllSame = true; 10761 for (unsigned i = 0; i != NumElts; ++i) { 10762 if (V->getOperand(i).getOpcode() != ISD::UNDEF) { 10763 Base = V->getOperand(i); 10764 break; 10765 } 10766 } 10767 // Splat of <u, u, u, u>, return <u, u, u, u> 10768 if (!Base.getNode()) 10769 return N0; 10770 for (unsigned i = 0; i != NumElts; ++i) { 10771 if (V->getOperand(i) != Base) { 10772 AllSame = false; 10773 break; 10774 } 10775 } 10776 // Splat of <x, x, x, x>, return <x, x, x, x> 10777 if (AllSame) 10778 return N0; 10779 } 10780 } 10781 10782 if (N0.getOpcode() == ISD::CONCAT_VECTORS && 10783 Level < AfterLegalizeVectorOps && 10784 (N1.getOpcode() == ISD::UNDEF || 10785 (N1.getOpcode() == ISD::CONCAT_VECTORS && 10786 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { 10787 SDValue V = partitionShuffleOfConcats(N, DAG); 10788 10789 if (V.getNode()) 10790 return V; 10791 } 10792 10793 // If this shuffle node is simply a swizzle of another shuffle node, 10794 // then try to simplify it. 10795 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG && 10796 N1.getOpcode() == ISD::UNDEF) { 10797 10798 ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0); 10799 10800 // The incoming shuffle must be of the same type as the result of the 10801 // current shuffle. 10802 assert(OtherSV->getOperand(0).getValueType() == VT && 10803 "Shuffle types don't match"); 10804 10805 SmallVector<int, 4> Mask; 10806 // Compute the combined shuffle mask. 10807 for (unsigned i = 0; i != NumElts; ++i) { 10808 int Idx = SVN->getMaskElt(i); 10809 assert(Idx < (int)NumElts && "Index references undef operand"); 10810 // Next, this index comes from the first value, which is the incoming 10811 // shuffle. Adopt the incoming index. 10812 if (Idx >= 0) 10813 Idx = OtherSV->getMaskElt(Idx); 10814 Mask.push_back(Idx); 10815 } 10816 10817 // Check if all indices in Mask are Undef. In case, propagate Undef. 10818 bool isUndefMask = true; 10819 for (unsigned i = 0; i != NumElts && isUndefMask; ++i) 10820 isUndefMask &= Mask[i] < 0; 10821 10822 if (isUndefMask) 10823 return DAG.getUNDEF(VT); 10824 10825 bool CommuteOperands = false; 10826 if (N0.getOperand(1).getOpcode() != ISD::UNDEF) { 10827 // To be valid, the combine shuffle mask should only reference elements 10828 // from one of the two vectors in input to the inner shufflevector. 10829 bool IsValidMask = true; 10830 for (unsigned i = 0; i != NumElts && IsValidMask; ++i) 10831 // See if the combined mask only reference undefs or elements coming 10832 // from the first shufflevector operand. 10833 IsValidMask = Mask[i] < 0 || (unsigned)Mask[i] < NumElts; 10834 10835 if (!IsValidMask) { 10836 IsValidMask = true; 10837 for (unsigned i = 0; i != NumElts && IsValidMask; ++i) 10838 // Check that all the elements come from the second shuffle operand. 10839 IsValidMask = Mask[i] < 0 || (unsigned)Mask[i] >= NumElts; 10840 CommuteOperands = IsValidMask; 10841 } 10842 10843 // Early exit if the combined shuffle mask is not valid. 10844 if (!IsValidMask) 10845 return SDValue(); 10846 } 10847 10848 // See if this pair of shuffles can be safely folded according to either 10849 // of the following rules: 10850 // shuffle(shuffle(x, y), undef) -> x 10851 // shuffle(shuffle(x, undef), undef) -> x 10852 // shuffle(shuffle(x, y), undef) -> y 10853 bool IsIdentityMask = true; 10854 unsigned BaseMaskIndex = CommuteOperands ? NumElts : 0; 10855 for (unsigned i = 0; i != NumElts && IsIdentityMask; ++i) { 10856 // Skip Undefs. 10857 if (Mask[i] < 0) 10858 continue; 10859 10860 // The combined shuffle must map each index to itself. 10861 IsIdentityMask = (unsigned)Mask[i] == i + BaseMaskIndex; 10862 } 10863 10864 if (IsIdentityMask) { 10865 if (CommuteOperands) 10866 // optimize shuffle(shuffle(x, y), undef) -> y. 10867 return OtherSV->getOperand(1); 10868 10869 // optimize shuffle(shuffle(x, undef), undef) -> x 10870 // optimize shuffle(shuffle(x, y), undef) -> x 10871 return OtherSV->getOperand(0); 10872 } 10873 10874 // It may still be beneficial to combine the two shuffles if the 10875 // resulting shuffle is legal. 10876 if (TLI.isTypeLegal(VT)) { 10877 if (!CommuteOperands) { 10878 if (TLI.isShuffleMaskLegal(Mask, VT)) 10879 // shuffle(shuffle(x, undef, M1), undef, M2) -> shuffle(x, undef, M3). 10880 // shuffle(shuffle(x, y, M1), undef, M2) -> shuffle(x, undef, M3) 10881 return DAG.getVectorShuffle(VT, SDLoc(N), N0->getOperand(0), N1, 10882 &Mask[0]); 10883 } else { 10884 // Compute the commuted shuffle mask. 10885 for (unsigned i = 0; i != NumElts; ++i) { 10886 int idx = Mask[i]; 10887 if (idx < 0) 10888 continue; 10889 else if (idx < (int)NumElts) 10890 Mask[i] = idx + NumElts; 10891 else 10892 Mask[i] = idx - NumElts; 10893 } 10894 10895 if (TLI.isShuffleMaskLegal(Mask, VT)) 10896 // shuffle(shuffle(x, y, M1), undef, M2) -> shuffle(y, undef, M3) 10897 return DAG.getVectorShuffle(VT, SDLoc(N), N0->getOperand(1), N1, 10898 &Mask[0]); 10899 } 10900 } 10901 } 10902 10903 // Canonicalize shuffles according to rules: 10904 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A) 10905 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B) 10906 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B) 10907 if (N1.getOpcode() == ISD::VECTOR_SHUFFLE && N0.getOpcode() != ISD::UNDEF && 10908 N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG && 10909 TLI.isTypeLegal(VT)) { 10910 // The incoming shuffle must be of the same type as the result of the 10911 // current shuffle. 10912 assert(N1->getOperand(0).getValueType() == VT && 10913 "Shuffle types don't match"); 10914 10915 SDValue SV0 = N1->getOperand(0); 10916 SDValue SV1 = N1->getOperand(1); 10917 bool HasSameOp0 = N0 == SV0; 10918 bool IsSV1Undef = SV1.getOpcode() == ISD::UNDEF; 10919 if (HasSameOp0 || IsSV1Undef || N0 == SV1) 10920 // Commute the operands of this shuffle so that next rule 10921 // will trigger. 10922 return DAG.getCommutedVectorShuffle(*SVN); 10923 } 10924 10925 // Try to fold according to rules: 10926 // shuffle(shuffle(A, B, M0), B, M1) -> shuffle(A, B, M2) 10927 // shuffle(shuffle(A, B, M0), A, M1) -> shuffle(A, B, M2) 10928 // shuffle(shuffle(A, Undef, M0), B, M1) -> shuffle(A, B, M2) 10929 // shuffle(shuffle(A, Undef, M0), A, M1) -> shuffle(A, Undef, M2) 10930 // Don't try to fold shuffles with illegal type. 10931 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG && 10932 N1.getOpcode() != ISD::UNDEF && TLI.isTypeLegal(VT)) { 10933 ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0); 10934 10935 // The incoming shuffle must be of the same type as the result of the 10936 // current shuffle. 10937 assert(OtherSV->getOperand(0).getValueType() == VT && 10938 "Shuffle types don't match"); 10939 10940 SDValue SV0 = OtherSV->getOperand(0); 10941 SDValue SV1 = OtherSV->getOperand(1); 10942 bool HasSameOp0 = N1 == SV0; 10943 bool IsSV1Undef = SV1.getOpcode() == ISD::UNDEF; 10944 if (!HasSameOp0 && !IsSV1Undef && N1 != SV1) 10945 // Early exit. 10946 return SDValue(); 10947 10948 SmallVector<int, 4> Mask; 10949 // Compute the combined shuffle mask for a shuffle with SV0 as the first 10950 // operand, and SV1 as the second operand. 10951 for (unsigned i = 0; i != NumElts; ++i) { 10952 int Idx = SVN->getMaskElt(i); 10953 if (Idx < 0) { 10954 // Propagate Undef. 10955 Mask.push_back(Idx); 10956 continue; 10957 } 10958 10959 if (Idx < (int)NumElts) { 10960 Idx = OtherSV->getMaskElt(Idx); 10961 if (IsSV1Undef && Idx >= (int) NumElts) 10962 Idx = -1; // Propagate Undef. 10963 } else 10964 Idx = HasSameOp0 ? Idx - NumElts : Idx; 10965 10966 Mask.push_back(Idx); 10967 } 10968 10969 // Check if all indices in Mask are Undef. In case, propagate Undef. 10970 bool isUndefMask = true; 10971 for (unsigned i = 0; i != NumElts && isUndefMask; ++i) 10972 isUndefMask &= Mask[i] < 0; 10973 10974 if (isUndefMask) 10975 return DAG.getUNDEF(VT); 10976 10977 // Avoid introducing shuffles with illegal mask. 10978 if (TLI.isShuffleMaskLegal(Mask, VT)) { 10979 if (IsSV1Undef) 10980 // shuffle(shuffle(A, Undef, M0), B, M1) -> shuffle(A, B, M2) 10981 // shuffle(shuffle(A, Undef, M0), A, M1) -> shuffle(A, Undef, M2) 10982 return DAG.getVectorShuffle(VT, SDLoc(N), SV0, N1, &Mask[0]); 10983 return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, &Mask[0]); 10984 } 10985 } 10986 10987 return SDValue(); 10988 } 10989 10990 SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { 10991 SDValue N0 = N->getOperand(0); 10992 SDValue N2 = N->getOperand(2); 10993 10994 // If the input vector is a concatenation, and the insert replaces 10995 // one of the halves, we can optimize into a single concat_vectors. 10996 if (N0.getOpcode() == ISD::CONCAT_VECTORS && 10997 N0->getNumOperands() == 2 && N2.getOpcode() == ISD::Constant) { 10998 APInt InsIdx = cast<ConstantSDNode>(N2)->getAPIntValue(); 10999 EVT VT = N->getValueType(0); 11000 11001 // Lower half: fold (insert_subvector (concat_vectors X, Y), Z) -> 11002 // (concat_vectors Z, Y) 11003 if (InsIdx == 0) 11004 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, 11005 N->getOperand(1), N0.getOperand(1)); 11006 11007 // Upper half: fold (insert_subvector (concat_vectors X, Y), Z) -> 11008 // (concat_vectors X, Z) 11009 if (InsIdx == VT.getVectorNumElements()/2) 11010 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, 11011 N0.getOperand(0), N->getOperand(1)); 11012 } 11013 11014 return SDValue(); 11015 } 11016 11017 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle 11018 /// with the destination vector and a zero vector. 11019 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> 11020 /// vector_shuffle V, Zero, <0, 4, 2, 4> 11021 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { 11022 EVT VT = N->getValueType(0); 11023 SDLoc dl(N); 11024 SDValue LHS = N->getOperand(0); 11025 SDValue RHS = N->getOperand(1); 11026 if (N->getOpcode() == ISD::AND) { 11027 if (RHS.getOpcode() == ISD::BITCAST) 11028 RHS = RHS.getOperand(0); 11029 if (RHS.getOpcode() == ISD::BUILD_VECTOR) { 11030 SmallVector<int, 8> Indices; 11031 unsigned NumElts = RHS.getNumOperands(); 11032 for (unsigned i = 0; i != NumElts; ++i) { 11033 SDValue Elt = RHS.getOperand(i); 11034 if (!isa<ConstantSDNode>(Elt)) 11035 return SDValue(); 11036 11037 if (cast<ConstantSDNode>(Elt)->isAllOnesValue()) 11038 Indices.push_back(i); 11039 else if (cast<ConstantSDNode>(Elt)->isNullValue()) 11040 Indices.push_back(NumElts); 11041 else 11042 return SDValue(); 11043 } 11044 11045 // Let's see if the target supports this vector_shuffle. 11046 EVT RVT = RHS.getValueType(); 11047 if (!TLI.isVectorClearMaskLegal(Indices, RVT)) 11048 return SDValue(); 11049 11050 // Return the new VECTOR_SHUFFLE node. 11051 EVT EltVT = RVT.getVectorElementType(); 11052 SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(), 11053 DAG.getConstant(0, EltVT)); 11054 SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), RVT, ZeroOps); 11055 LHS = DAG.getNode(ISD::BITCAST, dl, RVT, LHS); 11056 SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]); 11057 return DAG.getNode(ISD::BITCAST, dl, VT, Shuf); 11058 } 11059 } 11060 11061 return SDValue(); 11062 } 11063 11064 /// Visit a binary vector operation, like ADD. 11065 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) { 11066 assert(N->getValueType(0).isVector() && 11067 "SimplifyVBinOp only works on vectors!"); 11068 11069 SDValue LHS = N->getOperand(0); 11070 SDValue RHS = N->getOperand(1); 11071 SDValue Shuffle = XformToShuffleWithZero(N); 11072 if (Shuffle.getNode()) return Shuffle; 11073 11074 // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold 11075 // this operation. 11076 if (LHS.getOpcode() == ISD::BUILD_VECTOR && 11077 RHS.getOpcode() == ISD::BUILD_VECTOR) { 11078 // Check if both vectors are constants. If not bail out. 11079 if (!(cast<BuildVectorSDNode>(LHS)->isConstant() && 11080 cast<BuildVectorSDNode>(RHS)->isConstant())) 11081 return SDValue(); 11082 11083 SmallVector<SDValue, 8> Ops; 11084 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 11085 SDValue LHSOp = LHS.getOperand(i); 11086 SDValue RHSOp = RHS.getOperand(i); 11087 11088 // Can't fold divide by zero. 11089 if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV || 11090 N->getOpcode() == ISD::FDIV) { 11091 if ((RHSOp.getOpcode() == ISD::Constant && 11092 cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) || 11093 (RHSOp.getOpcode() == ISD::ConstantFP && 11094 cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero())) 11095 break; 11096 } 11097 11098 EVT VT = LHSOp.getValueType(); 11099 EVT RVT = RHSOp.getValueType(); 11100 if (RVT != VT) { 11101 // Integer BUILD_VECTOR operands may have types larger than the element 11102 // size (e.g., when the element type is not legal). Prior to type 11103 // legalization, the types may not match between the two BUILD_VECTORS. 11104 // Truncate one of the operands to make them match. 11105 if (RVT.getSizeInBits() > VT.getSizeInBits()) { 11106 RHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, RHSOp); 11107 } else { 11108 LHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), RVT, LHSOp); 11109 VT = RVT; 11110 } 11111 } 11112 SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(LHS), VT, 11113 LHSOp, RHSOp); 11114 if (FoldOp.getOpcode() != ISD::UNDEF && 11115 FoldOp.getOpcode() != ISD::Constant && 11116 FoldOp.getOpcode() != ISD::ConstantFP) 11117 break; 11118 Ops.push_back(FoldOp); 11119 AddToWorklist(FoldOp.getNode()); 11120 } 11121 11122 if (Ops.size() == LHS.getNumOperands()) 11123 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), LHS.getValueType(), Ops); 11124 } 11125 11126 // Type legalization might introduce new shuffles in the DAG. 11127 // Fold (VBinOp (shuffle (A, Undef, Mask)), (shuffle (B, Undef, Mask))) 11128 // -> (shuffle (VBinOp (A, B)), Undef, Mask). 11129 if (LegalTypes && isa<ShuffleVectorSDNode>(LHS) && 11130 isa<ShuffleVectorSDNode>(RHS) && LHS.hasOneUse() && RHS.hasOneUse() && 11131 LHS.getOperand(1).getOpcode() == ISD::UNDEF && 11132 RHS.getOperand(1).getOpcode() == ISD::UNDEF) { 11133 ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(LHS); 11134 ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(RHS); 11135 11136 if (SVN0->getMask().equals(SVN1->getMask())) { 11137 EVT VT = N->getValueType(0); 11138 SDValue UndefVector = LHS.getOperand(1); 11139 SDValue NewBinOp = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 11140 LHS.getOperand(0), RHS.getOperand(0)); 11141 AddUsersToWorklist(N); 11142 return DAG.getVectorShuffle(VT, SDLoc(N), NewBinOp, UndefVector, 11143 &SVN0->getMask()[0]); 11144 } 11145 } 11146 11147 return SDValue(); 11148 } 11149 11150 /// Visit a binary vector operation, like FABS/FNEG. 11151 SDValue DAGCombiner::SimplifyVUnaryOp(SDNode *N) { 11152 assert(N->getValueType(0).isVector() && 11153 "SimplifyVUnaryOp only works on vectors!"); 11154 11155 SDValue N0 = N->getOperand(0); 11156 11157 if (N0.getOpcode() != ISD::BUILD_VECTOR) 11158 return SDValue(); 11159 11160 // Operand is a BUILD_VECTOR node, see if we can constant fold it. 11161 SmallVector<SDValue, 8> Ops; 11162 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { 11163 SDValue Op = N0.getOperand(i); 11164 if (Op.getOpcode() != ISD::UNDEF && 11165 Op.getOpcode() != ISD::ConstantFP) 11166 break; 11167 EVT EltVT = Op.getValueType(); 11168 SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(N0), EltVT, Op); 11169 if (FoldOp.getOpcode() != ISD::UNDEF && 11170 FoldOp.getOpcode() != ISD::ConstantFP) 11171 break; 11172 Ops.push_back(FoldOp); 11173 AddToWorklist(FoldOp.getNode()); 11174 } 11175 11176 if (Ops.size() != N0.getNumOperands()) 11177 return SDValue(); 11178 11179 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), N0.getValueType(), Ops); 11180 } 11181 11182 SDValue DAGCombiner::SimplifySelect(SDLoc DL, SDValue N0, 11183 SDValue N1, SDValue N2){ 11184 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); 11185 11186 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, 11187 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 11188 11189 // If we got a simplified select_cc node back from SimplifySelectCC, then 11190 // break it down into a new SETCC node, and a new SELECT node, and then return 11191 // the SELECT node, since we were called with a SELECT node. 11192 if (SCC.getNode()) { 11193 // Check to see if we got a select_cc back (to turn into setcc/select). 11194 // Otherwise, just return whatever node we got back, like fabs. 11195 if (SCC.getOpcode() == ISD::SELECT_CC) { 11196 SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), 11197 N0.getValueType(), 11198 SCC.getOperand(0), SCC.getOperand(1), 11199 SCC.getOperand(4)); 11200 AddToWorklist(SETCC.getNode()); 11201 return DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, 11202 SCC.getOperand(2), SCC.getOperand(3)); 11203 } 11204 11205 return SCC; 11206 } 11207 return SDValue(); 11208 } 11209 11210 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values 11211 /// being selected between, see if we can simplify the select. Callers of this 11212 /// should assume that TheSelect is deleted if this returns true. As such, they 11213 /// should return the appropriate thing (e.g. the node) back to the top-level of 11214 /// the DAG combiner loop to avoid it being looked at. 11215 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, 11216 SDValue RHS) { 11217 11218 // Cannot simplify select with vector condition 11219 if (TheSelect->getOperand(0).getValueType().isVector()) return false; 11220 11221 // If this is a select from two identical things, try to pull the operation 11222 // through the select. 11223 if (LHS.getOpcode() != RHS.getOpcode() || 11224 !LHS.hasOneUse() || !RHS.hasOneUse()) 11225 return false; 11226 11227 // If this is a load and the token chain is identical, replace the select 11228 // of two loads with a load through a select of the address to load from. 11229 // This triggers in things like "select bool X, 10.0, 123.0" after the FP 11230 // constants have been dropped into the constant pool. 11231 if (LHS.getOpcode() == ISD::LOAD) { 11232 LoadSDNode *LLD = cast<LoadSDNode>(LHS); 11233 LoadSDNode *RLD = cast<LoadSDNode>(RHS); 11234 11235 // Token chains must be identical. 11236 if (LHS.getOperand(0) != RHS.getOperand(0) || 11237 // Do not let this transformation reduce the number of volatile loads. 11238 LLD->isVolatile() || RLD->isVolatile() || 11239 // If this is an EXTLOAD, the VT's must match. 11240 LLD->getMemoryVT() != RLD->getMemoryVT() || 11241 // If this is an EXTLOAD, the kind of extension must match. 11242 (LLD->getExtensionType() != RLD->getExtensionType() && 11243 // The only exception is if one of the extensions is anyext. 11244 LLD->getExtensionType() != ISD::EXTLOAD && 11245 RLD->getExtensionType() != ISD::EXTLOAD) || 11246 // FIXME: this discards src value information. This is 11247 // over-conservative. It would be beneficial to be able to remember 11248 // both potential memory locations. Since we are discarding 11249 // src value info, don't do the transformation if the memory 11250 // locations are not in the default address space. 11251 LLD->getPointerInfo().getAddrSpace() != 0 || 11252 RLD->getPointerInfo().getAddrSpace() != 0 || 11253 !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), 11254 LLD->getBasePtr().getValueType())) 11255 return false; 11256 11257 // Check that the select condition doesn't reach either load. If so, 11258 // folding this will induce a cycle into the DAG. If not, this is safe to 11259 // xform, so create a select of the addresses. 11260 SDValue Addr; 11261 if (TheSelect->getOpcode() == ISD::SELECT) { 11262 SDNode *CondNode = TheSelect->getOperand(0).getNode(); 11263 if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) || 11264 (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode))) 11265 return false; 11266 // The loads must not depend on one another. 11267 if (LLD->isPredecessorOf(RLD) || 11268 RLD->isPredecessorOf(LLD)) 11269 return false; 11270 Addr = DAG.getSelect(SDLoc(TheSelect), 11271 LLD->getBasePtr().getValueType(), 11272 TheSelect->getOperand(0), LLD->getBasePtr(), 11273 RLD->getBasePtr()); 11274 } else { // Otherwise SELECT_CC 11275 SDNode *CondLHS = TheSelect->getOperand(0).getNode(); 11276 SDNode *CondRHS = TheSelect->getOperand(1).getNode(); 11277 11278 if ((LLD->hasAnyUseOfValue(1) && 11279 (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) || 11280 (RLD->hasAnyUseOfValue(1) && 11281 (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS)))) 11282 return false; 11283 11284 Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), 11285 LLD->getBasePtr().getValueType(), 11286 TheSelect->getOperand(0), 11287 TheSelect->getOperand(1), 11288 LLD->getBasePtr(), RLD->getBasePtr(), 11289 TheSelect->getOperand(4)); 11290 } 11291 11292 SDValue Load; 11293 // It is safe to replace the two loads if they have different alignments, 11294 // but the new load must be the minimum (most restrictive) alignment of the 11295 // inputs. 11296 bool isInvariant = LLD->getAlignment() & RLD->getAlignment(); 11297 unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment()); 11298 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { 11299 Load = DAG.getLoad(TheSelect->getValueType(0), 11300 SDLoc(TheSelect), 11301 // FIXME: Discards pointer and AA info. 11302 LLD->getChain(), Addr, MachinePointerInfo(), 11303 LLD->isVolatile(), LLD->isNonTemporal(), 11304 isInvariant, Alignment); 11305 } else { 11306 Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ? 11307 RLD->getExtensionType() : LLD->getExtensionType(), 11308 SDLoc(TheSelect), 11309 TheSelect->getValueType(0), 11310 // FIXME: Discards pointer and AA info. 11311 LLD->getChain(), Addr, MachinePointerInfo(), 11312 LLD->getMemoryVT(), LLD->isVolatile(), 11313 LLD->isNonTemporal(), isInvariant, Alignment); 11314 } 11315 11316 // Users of the select now use the result of the load. 11317 CombineTo(TheSelect, Load); 11318 11319 // Users of the old loads now use the new load's chain. We know the 11320 // old-load value is dead now. 11321 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); 11322 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); 11323 return true; 11324 } 11325 11326 return false; 11327 } 11328 11329 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3 11330 /// where 'cond' is the comparison specified by CC. 11331 SDValue DAGCombiner::SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, 11332 SDValue N2, SDValue N3, 11333 ISD::CondCode CC, bool NotExtCompare) { 11334 // (x ? y : y) -> y. 11335 if (N2 == N3) return N2; 11336 11337 EVT VT = N2.getValueType(); 11338 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); 11339 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); 11340 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode()); 11341 11342 // Determine if the condition we're dealing with is constant 11343 SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), 11344 N0, N1, CC, DL, false); 11345 if (SCC.getNode()) AddToWorklist(SCC.getNode()); 11346 ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode()); 11347 11348 // fold select_cc true, x, y -> x 11349 if (SCCC && !SCCC->isNullValue()) 11350 return N2; 11351 // fold select_cc false, x, y -> y 11352 if (SCCC && SCCC->isNullValue()) 11353 return N3; 11354 11355 // Check to see if we can simplify the select into an fabs node 11356 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) { 11357 // Allow either -0.0 or 0.0 11358 if (CFP->getValueAPF().isZero()) { 11359 // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs 11360 if ((CC == ISD::SETGE || CC == ISD::SETGT) && 11361 N0 == N2 && N3.getOpcode() == ISD::FNEG && 11362 N2 == N3.getOperand(0)) 11363 return DAG.getNode(ISD::FABS, DL, VT, N0); 11364 11365 // select (setl[te] X, +/-0.0), fneg(X), X -> fabs 11366 if ((CC == ISD::SETLT || CC == ISD::SETLE) && 11367 N0 == N3 && N2.getOpcode() == ISD::FNEG && 11368 N2.getOperand(0) == N3) 11369 return DAG.getNode(ISD::FABS, DL, VT, N3); 11370 } 11371 } 11372 11373 // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" 11374 // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 11375 // in it. This is a win when the constant is not otherwise available because 11376 // it replaces two constant pool loads with one. We only do this if the FP 11377 // type is known to be legal, because if it isn't, then we are before legalize 11378 // types an we want the other legalization to happen first (e.g. to avoid 11379 // messing with soft float) and if the ConstantFP is not legal, because if 11380 // it is legal, we may not need to store the FP constant in a constant pool. 11381 if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2)) 11382 if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) { 11383 if (TLI.isTypeLegal(N2.getValueType()) && 11384 (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) != 11385 TargetLowering::Legal && 11386 !TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0)) && 11387 !TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0))) && 11388 // If both constants have multiple uses, then we won't need to do an 11389 // extra load, they are likely around in registers for other users. 11390 (TV->hasOneUse() || FV->hasOneUse())) { 11391 Constant *Elts[] = { 11392 const_cast<ConstantFP*>(FV->getConstantFPValue()), 11393 const_cast<ConstantFP*>(TV->getConstantFPValue()) 11394 }; 11395 Type *FPTy = Elts[0]->getType(); 11396 const DataLayout &TD = *TLI.getDataLayout(); 11397 11398 // Create a ConstantArray of the two constants. 11399 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); 11400 SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(), 11401 TD.getPrefTypeAlignment(FPTy)); 11402 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 11403 11404 // Get the offsets to the 0 and 1 element of the array so that we can 11405 // select between them. 11406 SDValue Zero = DAG.getIntPtrConstant(0); 11407 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); 11408 SDValue One = DAG.getIntPtrConstant(EltSize); 11409 11410 SDValue Cond = DAG.getSetCC(DL, 11411 getSetCCResultType(N0.getValueType()), 11412 N0, N1, CC); 11413 AddToWorklist(Cond.getNode()); 11414 SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), 11415 Cond, One, Zero); 11416 AddToWorklist(CstOffset.getNode()); 11417 CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, 11418 CstOffset); 11419 AddToWorklist(CPIdx.getNode()); 11420 return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, 11421 MachinePointerInfo::getConstantPool(), false, 11422 false, false, Alignment); 11423 11424 } 11425 } 11426 11427 // Check to see if we can perform the "gzip trick", transforming 11428 // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A) 11429 if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT && 11430 (N1C->isNullValue() || // (a < 0) ? b : 0 11431 (N1C->getAPIntValue() == 1 && N0 == N2))) { // (a < 1) ? a : 0 11432 EVT XType = N0.getValueType(); 11433 EVT AType = N2.getValueType(); 11434 if (XType.bitsGE(AType)) { 11435 // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a 11436 // single-bit constant. 11437 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) { 11438 unsigned ShCtV = N2C->getAPIntValue().logBase2(); 11439 ShCtV = XType.getSizeInBits()-ShCtV-1; 11440 SDValue ShCt = DAG.getConstant(ShCtV, 11441 getShiftAmountTy(N0.getValueType())); 11442 SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0), 11443 XType, N0, ShCt); 11444 AddToWorklist(Shift.getNode()); 11445 11446 if (XType.bitsGT(AType)) { 11447 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 11448 AddToWorklist(Shift.getNode()); 11449 } 11450 11451 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 11452 } 11453 11454 SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0), 11455 XType, N0, 11456 DAG.getConstant(XType.getSizeInBits()-1, 11457 getShiftAmountTy(N0.getValueType()))); 11458 AddToWorklist(Shift.getNode()); 11459 11460 if (XType.bitsGT(AType)) { 11461 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 11462 AddToWorklist(Shift.getNode()); 11463 } 11464 11465 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 11466 } 11467 } 11468 11469 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A) 11470 // where y is has a single bit set. 11471 // A plaintext description would be, we can turn the SELECT_CC into an AND 11472 // when the condition can be materialized as an all-ones register. Any 11473 // single bit-test can be materialized as an all-ones register with 11474 // shift-left and shift-right-arith. 11475 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && 11476 N0->getValueType(0) == VT && 11477 N1C && N1C->isNullValue() && 11478 N2C && N2C->isNullValue()) { 11479 SDValue AndLHS = N0->getOperand(0); 11480 ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 11481 if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { 11482 // Shift the tested bit over the sign bit. 11483 APInt AndMask = ConstAndRHS->getAPIntValue(); 11484 SDValue ShlAmt = 11485 DAG.getConstant(AndMask.countLeadingZeros(), 11486 getShiftAmountTy(AndLHS.getValueType())); 11487 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); 11488 11489 // Now arithmetic right shift it all the way over, so the result is either 11490 // all-ones, or zero. 11491 SDValue ShrAmt = 11492 DAG.getConstant(AndMask.getBitWidth()-1, 11493 getShiftAmountTy(Shl.getValueType())); 11494 SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); 11495 11496 return DAG.getNode(ISD::AND, DL, VT, Shr, N3); 11497 } 11498 } 11499 11500 // fold select C, 16, 0 -> shl C, 4 11501 if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() && 11502 TLI.getBooleanContents(N0.getValueType()) == 11503 TargetLowering::ZeroOrOneBooleanContent) { 11504 11505 // If the caller doesn't want us to simplify this into a zext of a compare, 11506 // don't do it. 11507 if (NotExtCompare && N2C->getAPIntValue() == 1) 11508 return SDValue(); 11509 11510 // Get a SetCC of the condition 11511 // NOTE: Don't create a SETCC if it's not legal on this target. 11512 if (!LegalOperations || 11513 TLI.isOperationLegal(ISD::SETCC, 11514 LegalTypes ? getSetCCResultType(N0.getValueType()) : MVT::i1)) { 11515 SDValue Temp, SCC; 11516 // cast from setcc result type to select result type 11517 if (LegalTypes) { 11518 SCC = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), 11519 N0, N1, CC); 11520 if (N2.getValueType().bitsLT(SCC.getValueType())) 11521 Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), 11522 N2.getValueType()); 11523 else 11524 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), 11525 N2.getValueType(), SCC); 11526 } else { 11527 SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); 11528 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), 11529 N2.getValueType(), SCC); 11530 } 11531 11532 AddToWorklist(SCC.getNode()); 11533 AddToWorklist(Temp.getNode()); 11534 11535 if (N2C->getAPIntValue() == 1) 11536 return Temp; 11537 11538 // shl setcc result by log2 n2c 11539 return DAG.getNode( 11540 ISD::SHL, DL, N2.getValueType(), Temp, 11541 DAG.getConstant(N2C->getAPIntValue().logBase2(), 11542 getShiftAmountTy(Temp.getValueType()))); 11543 } 11544 } 11545 11546 // Check to see if this is the equivalent of setcc 11547 // FIXME: Turn all of these into setcc if setcc if setcc is legal 11548 // otherwise, go ahead with the folds. 11549 if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) { 11550 EVT XType = N0.getValueType(); 11551 if (!LegalOperations || 11552 TLI.isOperationLegal(ISD::SETCC, getSetCCResultType(XType))) { 11553 SDValue Res = DAG.getSetCC(DL, getSetCCResultType(XType), N0, N1, CC); 11554 if (Res.getValueType() != VT) 11555 Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res); 11556 return Res; 11557 } 11558 11559 // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X)))) 11560 if (N1C && N1C->isNullValue() && CC == ISD::SETEQ && 11561 (!LegalOperations || 11562 TLI.isOperationLegal(ISD::CTLZ, XType))) { 11563 SDValue Ctlz = DAG.getNode(ISD::CTLZ, SDLoc(N0), XType, N0); 11564 return DAG.getNode(ISD::SRL, DL, XType, Ctlz, 11565 DAG.getConstant(Log2_32(XType.getSizeInBits()), 11566 getShiftAmountTy(Ctlz.getValueType()))); 11567 } 11568 // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1)) 11569 if (N1C && N1C->isNullValue() && CC == ISD::SETGT) { 11570 SDValue NegN0 = DAG.getNode(ISD::SUB, SDLoc(N0), 11571 XType, DAG.getConstant(0, XType), N0); 11572 SDValue NotN0 = DAG.getNOT(SDLoc(N0), N0, XType); 11573 return DAG.getNode(ISD::SRL, DL, XType, 11574 DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0), 11575 DAG.getConstant(XType.getSizeInBits()-1, 11576 getShiftAmountTy(XType))); 11577 } 11578 // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1)) 11579 if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) { 11580 SDValue Sign = DAG.getNode(ISD::SRL, SDLoc(N0), XType, N0, 11581 DAG.getConstant(XType.getSizeInBits()-1, 11582 getShiftAmountTy(N0.getValueType()))); 11583 return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType)); 11584 } 11585 } 11586 11587 // Check to see if this is an integer abs. 11588 // select_cc setg[te] X, 0, X, -X -> 11589 // select_cc setgt X, -1, X, -X -> 11590 // select_cc setl[te] X, 0, -X, X -> 11591 // select_cc setlt X, 1, -X, X -> 11592 // Y = sra (X, size(X)-1); xor (add (X, Y), Y) 11593 if (N1C) { 11594 ConstantSDNode *SubC = nullptr; 11595 if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) || 11596 (N1C->isAllOnesValue() && CC == ISD::SETGT)) && 11597 N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) 11598 SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0)); 11599 else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) || 11600 (N1C->isOne() && CC == ISD::SETLT)) && 11601 N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1)) 11602 SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0)); 11603 11604 EVT XType = N0.getValueType(); 11605 if (SubC && SubC->isNullValue() && XType.isInteger()) { 11606 SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0), XType, 11607 N0, 11608 DAG.getConstant(XType.getSizeInBits()-1, 11609 getShiftAmountTy(N0.getValueType()))); 11610 SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), 11611 XType, N0, Shift); 11612 AddToWorklist(Shift.getNode()); 11613 AddToWorklist(Add.getNode()); 11614 return DAG.getNode(ISD::XOR, DL, XType, Add, Shift); 11615 } 11616 } 11617 11618 return SDValue(); 11619 } 11620 11621 /// This is a stub for TargetLowering::SimplifySetCC. 11622 SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, 11623 SDValue N1, ISD::CondCode Cond, 11624 SDLoc DL, bool foldBooleans) { 11625 TargetLowering::DAGCombinerInfo 11626 DagCombineInfo(DAG, Level, false, this); 11627 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); 11628 } 11629 11630 /// Given an ISD::SDIV node expressing a divide by constant, return 11631 /// a DAG expression to select that will generate the same value by multiplying 11632 /// by a magic number. 11633 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 11634 SDValue DAGCombiner::BuildSDIV(SDNode *N) { 11635 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 11636 if (!C) 11637 return SDValue(); 11638 11639 // Avoid division by zero. 11640 if (!C->getAPIntValue()) 11641 return SDValue(); 11642 11643 std::vector<SDNode*> Built; 11644 SDValue S = 11645 TLI.BuildSDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built); 11646 11647 for (SDNode *N : Built) 11648 AddToWorklist(N); 11649 return S; 11650 } 11651 11652 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a 11653 /// DAG expression that will generate the same value by right shifting. 11654 SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { 11655 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 11656 if (!C) 11657 return SDValue(); 11658 11659 // Avoid division by zero. 11660 if (!C->getAPIntValue()) 11661 return SDValue(); 11662 11663 std::vector<SDNode *> Built; 11664 SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, &Built); 11665 11666 for (SDNode *N : Built) 11667 AddToWorklist(N); 11668 return S; 11669 } 11670 11671 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG 11672 /// expression that will generate the same value by multiplying by a magic 11673 /// number. 11674 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 11675 SDValue DAGCombiner::BuildUDIV(SDNode *N) { 11676 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 11677 if (!C) 11678 return SDValue(); 11679 11680 // Avoid division by zero. 11681 if (!C->getAPIntValue()) 11682 return SDValue(); 11683 11684 std::vector<SDNode*> Built; 11685 SDValue S = 11686 TLI.BuildUDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built); 11687 11688 for (SDNode *N : Built) 11689 AddToWorklist(N); 11690 return S; 11691 } 11692 11693 /// Return true if base is a frame index, which is known not to alias with 11694 /// anything but itself. Provides base object and offset as results. 11695 static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset, 11696 const GlobalValue *&GV, const void *&CV) { 11697 // Assume it is a primitive operation. 11698 Base = Ptr; Offset = 0; GV = nullptr; CV = nullptr; 11699 11700 // If it's an adding a simple constant then integrate the offset. 11701 if (Base.getOpcode() == ISD::ADD) { 11702 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) { 11703 Base = Base.getOperand(0); 11704 Offset += C->getZExtValue(); 11705 } 11706 } 11707 11708 // Return the underlying GlobalValue, and update the Offset. Return false 11709 // for GlobalAddressSDNode since the same GlobalAddress may be represented 11710 // by multiple nodes with different offsets. 11711 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) { 11712 GV = G->getGlobal(); 11713 Offset += G->getOffset(); 11714 return false; 11715 } 11716 11717 // Return the underlying Constant value, and update the Offset. Return false 11718 // for ConstantSDNodes since the same constant pool entry may be represented 11719 // by multiple nodes with different offsets. 11720 if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) { 11721 CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal() 11722 : (const void *)C->getConstVal(); 11723 Offset += C->getOffset(); 11724 return false; 11725 } 11726 // If it's any of the following then it can't alias with anything but itself. 11727 return isa<FrameIndexSDNode>(Base); 11728 } 11729 11730 /// Return true if there is any possibility that the two addresses overlap. 11731 bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const { 11732 // If they are the same then they must be aliases. 11733 if (Op0->getBasePtr() == Op1->getBasePtr()) return true; 11734 11735 // If they are both volatile then they cannot be reordered. 11736 if (Op0->isVolatile() && Op1->isVolatile()) return true; 11737 11738 // Gather base node and offset information. 11739 SDValue Base1, Base2; 11740 int64_t Offset1, Offset2; 11741 const GlobalValue *GV1, *GV2; 11742 const void *CV1, *CV2; 11743 bool isFrameIndex1 = FindBaseOffset(Op0->getBasePtr(), 11744 Base1, Offset1, GV1, CV1); 11745 bool isFrameIndex2 = FindBaseOffset(Op1->getBasePtr(), 11746 Base2, Offset2, GV2, CV2); 11747 11748 // If they have a same base address then check to see if they overlap. 11749 if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2))) 11750 return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 || 11751 (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1); 11752 11753 // It is possible for different frame indices to alias each other, mostly 11754 // when tail call optimization reuses return address slots for arguments. 11755 // To catch this case, look up the actual index of frame indices to compute 11756 // the real alias relationship. 11757 if (isFrameIndex1 && isFrameIndex2) { 11758 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 11759 Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex()); 11760 Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex()); 11761 return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 || 11762 (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1); 11763 } 11764 11765 // Otherwise, if we know what the bases are, and they aren't identical, then 11766 // we know they cannot alias. 11767 if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2)) 11768 return false; 11769 11770 // If we know required SrcValue1 and SrcValue2 have relatively large alignment 11771 // compared to the size and offset of the access, we may be able to prove they 11772 // do not alias. This check is conservative for now to catch cases created by 11773 // splitting vector types. 11774 if ((Op0->getOriginalAlignment() == Op1->getOriginalAlignment()) && 11775 (Op0->getSrcValueOffset() != Op1->getSrcValueOffset()) && 11776 (Op0->getMemoryVT().getSizeInBits() >> 3 == 11777 Op1->getMemoryVT().getSizeInBits() >> 3) && 11778 (Op0->getOriginalAlignment() > Op0->getMemoryVT().getSizeInBits()) >> 3) { 11779 int64_t OffAlign1 = Op0->getSrcValueOffset() % Op0->getOriginalAlignment(); 11780 int64_t OffAlign2 = Op1->getSrcValueOffset() % Op1->getOriginalAlignment(); 11781 11782 // There is no overlap between these relatively aligned accesses of similar 11783 // size, return no alias. 11784 if ((OffAlign1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign2 || 11785 (OffAlign2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign1) 11786 return false; 11787 } 11788 11789 bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 ? CombinerGlobalAA : 11790 TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA(); 11791 #ifndef NDEBUG 11792 if (CombinerAAOnlyFunc.getNumOccurrences() && 11793 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 11794 UseAA = false; 11795 #endif 11796 if (UseAA && 11797 Op0->getMemOperand()->getValue() && Op1->getMemOperand()->getValue()) { 11798 // Use alias analysis information. 11799 int64_t MinOffset = std::min(Op0->getSrcValueOffset(), 11800 Op1->getSrcValueOffset()); 11801 int64_t Overlap1 = (Op0->getMemoryVT().getSizeInBits() >> 3) + 11802 Op0->getSrcValueOffset() - MinOffset; 11803 int64_t Overlap2 = (Op1->getMemoryVT().getSizeInBits() >> 3) + 11804 Op1->getSrcValueOffset() - MinOffset; 11805 AliasAnalysis::AliasResult AAResult = 11806 AA.alias(AliasAnalysis::Location(Op0->getMemOperand()->getValue(), 11807 Overlap1, 11808 UseTBAA ? Op0->getAAInfo() : AAMDNodes()), 11809 AliasAnalysis::Location(Op1->getMemOperand()->getValue(), 11810 Overlap2, 11811 UseTBAA ? Op1->getAAInfo() : AAMDNodes())); 11812 if (AAResult == AliasAnalysis::NoAlias) 11813 return false; 11814 } 11815 11816 // Otherwise we have to assume they alias. 11817 return true; 11818 } 11819 11820 /// Walk up chain skipping non-aliasing memory nodes, 11821 /// looking for aliasing nodes and adding them to the Aliases vector. 11822 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, 11823 SmallVectorImpl<SDValue> &Aliases) { 11824 SmallVector<SDValue, 8> Chains; // List of chains to visit. 11825 SmallPtrSet<SDNode *, 16> Visited; // Visited node set. 11826 11827 // Get alias information for node. 11828 bool IsLoad = isa<LoadSDNode>(N) && !cast<LSBaseSDNode>(N)->isVolatile(); 11829 11830 // Starting off. 11831 Chains.push_back(OriginalChain); 11832 unsigned Depth = 0; 11833 11834 // Look at each chain and determine if it is an alias. If so, add it to the 11835 // aliases list. If not, then continue up the chain looking for the next 11836 // candidate. 11837 while (!Chains.empty()) { 11838 SDValue Chain = Chains.back(); 11839 Chains.pop_back(); 11840 11841 // For TokenFactor nodes, look at each operand and only continue up the 11842 // chain until we find two aliases. If we've seen two aliases, assume we'll 11843 // find more and revert to original chain since the xform is unlikely to be 11844 // profitable. 11845 // 11846 // FIXME: The depth check could be made to return the last non-aliasing 11847 // chain we found before we hit a tokenfactor rather than the original 11848 // chain. 11849 if (Depth > 6 || Aliases.size() == 2) { 11850 Aliases.clear(); 11851 Aliases.push_back(OriginalChain); 11852 return; 11853 } 11854 11855 // Don't bother if we've been before. 11856 if (!Visited.insert(Chain.getNode())) 11857 continue; 11858 11859 switch (Chain.getOpcode()) { 11860 case ISD::EntryToken: 11861 // Entry token is ideal chain operand, but handled in FindBetterChain. 11862 break; 11863 11864 case ISD::LOAD: 11865 case ISD::STORE: { 11866 // Get alias information for Chain. 11867 bool IsOpLoad = isa<LoadSDNode>(Chain.getNode()) && 11868 !cast<LSBaseSDNode>(Chain.getNode())->isVolatile(); 11869 11870 // If chain is alias then stop here. 11871 if (!(IsLoad && IsOpLoad) && 11872 isAlias(cast<LSBaseSDNode>(N), cast<LSBaseSDNode>(Chain.getNode()))) { 11873 Aliases.push_back(Chain); 11874 } else { 11875 // Look further up the chain. 11876 Chains.push_back(Chain.getOperand(0)); 11877 ++Depth; 11878 } 11879 break; 11880 } 11881 11882 case ISD::TokenFactor: 11883 // We have to check each of the operands of the token factor for "small" 11884 // token factors, so we queue them up. Adding the operands to the queue 11885 // (stack) in reverse order maintains the original order and increases the 11886 // likelihood that getNode will find a matching token factor (CSE.) 11887 if (Chain.getNumOperands() > 16) { 11888 Aliases.push_back(Chain); 11889 break; 11890 } 11891 for (unsigned n = Chain.getNumOperands(); n;) 11892 Chains.push_back(Chain.getOperand(--n)); 11893 ++Depth; 11894 break; 11895 11896 default: 11897 // For all other instructions we will just have to take what we can get. 11898 Aliases.push_back(Chain); 11899 break; 11900 } 11901 } 11902 11903 // We need to be careful here to also search for aliases through the 11904 // value operand of a store, etc. Consider the following situation: 11905 // Token1 = ... 11906 // L1 = load Token1, %52 11907 // S1 = store Token1, L1, %51 11908 // L2 = load Token1, %52+8 11909 // S2 = store Token1, L2, %51+8 11910 // Token2 = Token(S1, S2) 11911 // L3 = load Token2, %53 11912 // S3 = store Token2, L3, %52 11913 // L4 = load Token2, %53+8 11914 // S4 = store Token2, L4, %52+8 11915 // If we search for aliases of S3 (which loads address %52), and we look 11916 // only through the chain, then we'll miss the trivial dependence on L1 11917 // (which also loads from %52). We then might change all loads and 11918 // stores to use Token1 as their chain operand, which could result in 11919 // copying %53 into %52 before copying %52 into %51 (which should 11920 // happen first). 11921 // 11922 // The problem is, however, that searching for such data dependencies 11923 // can become expensive, and the cost is not directly related to the 11924 // chain depth. Instead, we'll rule out such configurations here by 11925 // insisting that we've visited all chain users (except for users 11926 // of the original chain, which is not necessary). When doing this, 11927 // we need to look through nodes we don't care about (otherwise, things 11928 // like register copies will interfere with trivial cases). 11929 11930 SmallVector<const SDNode *, 16> Worklist; 11931 for (const SDNode *N : Visited) 11932 if (N != OriginalChain.getNode()) 11933 Worklist.push_back(N); 11934 11935 while (!Worklist.empty()) { 11936 const SDNode *M = Worklist.pop_back_val(); 11937 11938 // We have already visited M, and want to make sure we've visited any uses 11939 // of M that we care about. For uses that we've not visisted, and don't 11940 // care about, queue them to the worklist. 11941 11942 for (SDNode::use_iterator UI = M->use_begin(), 11943 UIE = M->use_end(); UI != UIE; ++UI) 11944 if (UI.getUse().getValueType() == MVT::Other && Visited.insert(*UI)) { 11945 if (isa<MemIntrinsicSDNode>(*UI) || isa<MemSDNode>(*UI)) { 11946 // We've not visited this use, and we care about it (it could have an 11947 // ordering dependency with the original node). 11948 Aliases.clear(); 11949 Aliases.push_back(OriginalChain); 11950 return; 11951 } 11952 11953 // We've not visited this use, but we don't care about it. Mark it as 11954 // visited and enqueue it to the worklist. 11955 Worklist.push_back(*UI); 11956 } 11957 } 11958 } 11959 11960 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain 11961 /// (aliasing node.) 11962 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { 11963 SmallVector<SDValue, 8> Aliases; // Ops for replacing token factor. 11964 11965 // Accumulate all the aliases to this node. 11966 GatherAllAliases(N, OldChain, Aliases); 11967 11968 // If no operands then chain to entry token. 11969 if (Aliases.size() == 0) 11970 return DAG.getEntryNode(); 11971 11972 // If a single operand then chain to it. We don't need to revisit it. 11973 if (Aliases.size() == 1) 11974 return Aliases[0]; 11975 11976 // Construct a custom tailored token factor. 11977 return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Aliases); 11978 } 11979 11980 /// This is the entry point for the file. 11981 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA, 11982 CodeGenOpt::Level OptLevel) { 11983 /// This is the main entry point to this class. 11984 DAGCombiner(*this, AA, OptLevel).Run(Level); 11985 }