LLVM API Documentation

MachineInstr.cpp
Go to the documentation of this file.
00001 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // Methods common to all machine instructions.
00011 //
00012 //===----------------------------------------------------------------------===//
00013 
00014 #include "llvm/CodeGen/MachineInstr.h"
00015 #include "llvm/ADT/FoldingSet.h"
00016 #include "llvm/ADT/Hashing.h"
00017 #include "llvm/Analysis/AliasAnalysis.h"
00018 #include "llvm/CodeGen/MachineConstantPool.h"
00019 #include "llvm/CodeGen/MachineFunction.h"
00020 #include "llvm/CodeGen/MachineMemOperand.h"
00021 #include "llvm/CodeGen/MachineModuleInfo.h"
00022 #include "llvm/CodeGen/MachineRegisterInfo.h"
00023 #include "llvm/CodeGen/PseudoSourceValue.h"
00024 #include "llvm/IR/Constants.h"
00025 #include "llvm/IR/DebugInfo.h"
00026 #include "llvm/IR/Function.h"
00027 #include "llvm/IR/InlineAsm.h"
00028 #include "llvm/IR/LLVMContext.h"
00029 #include "llvm/IR/Metadata.h"
00030 #include "llvm/IR/Module.h"
00031 #include "llvm/IR/Type.h"
00032 #include "llvm/IR/Value.h"
00033 #include "llvm/MC/MCInstrDesc.h"
00034 #include "llvm/MC/MCSymbol.h"
00035 #include "llvm/Support/Debug.h"
00036 #include "llvm/Support/ErrorHandling.h"
00037 #include "llvm/Support/MathExtras.h"
00038 #include "llvm/Support/raw_ostream.h"
00039 #include "llvm/Target/TargetInstrInfo.h"
00040 #include "llvm/Target/TargetMachine.h"
00041 #include "llvm/Target/TargetRegisterInfo.h"
00042 #include "llvm/Target/TargetSubtargetInfo.h"
00043 using namespace llvm;
00044 
00045 //===----------------------------------------------------------------------===//
00046 // MachineOperand Implementation
00047 //===----------------------------------------------------------------------===//
00048 
00049 void MachineOperand::setReg(unsigned Reg) {
00050   if (getReg() == Reg) return; // No change.
00051 
00052   // Otherwise, we have to change the register.  If this operand is embedded
00053   // into a machine function, we need to update the old and new register's
00054   // use/def lists.
00055   if (MachineInstr *MI = getParent())
00056     if (MachineBasicBlock *MBB = MI->getParent())
00057       if (MachineFunction *MF = MBB->getParent()) {
00058         MachineRegisterInfo &MRI = MF->getRegInfo();
00059         MRI.removeRegOperandFromUseList(this);
00060         SmallContents.RegNo = Reg;
00061         MRI.addRegOperandToUseList(this);
00062         return;
00063       }
00064 
00065   // Otherwise, just change the register, no problem.  :)
00066   SmallContents.RegNo = Reg;
00067 }
00068 
00069 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
00070                                   const TargetRegisterInfo &TRI) {
00071   assert(TargetRegisterInfo::isVirtualRegister(Reg));
00072   if (SubIdx && getSubReg())
00073     SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
00074   setReg(Reg);
00075   if (SubIdx)
00076     setSubReg(SubIdx);
00077 }
00078 
00079 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
00080   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
00081   if (getSubReg()) {
00082     Reg = TRI.getSubReg(Reg, getSubReg());
00083     // Note that getSubReg() may return 0 if the sub-register doesn't exist.
00084     // That won't happen in legal code.
00085     setSubReg(0);
00086   }
00087   setReg(Reg);
00088 }
00089 
00090 /// Change a def to a use, or a use to a def.
00091 void MachineOperand::setIsDef(bool Val) {
00092   assert(isReg() && "Wrong MachineOperand accessor");
00093   assert((!Val || !isDebug()) && "Marking a debug operation as def");
00094   if (IsDef == Val)
00095     return;
00096   // MRI may keep uses and defs in different list positions.
00097   if (MachineInstr *MI = getParent())
00098     if (MachineBasicBlock *MBB = MI->getParent())
00099       if (MachineFunction *MF = MBB->getParent()) {
00100         MachineRegisterInfo &MRI = MF->getRegInfo();
00101         MRI.removeRegOperandFromUseList(this);
00102         IsDef = Val;
00103         MRI.addRegOperandToUseList(this);
00104         return;
00105       }
00106   IsDef = Val;
00107 }
00108 
00109 /// ChangeToImmediate - Replace this operand with a new immediate operand of
00110 /// the specified value.  If an operand is known to be an immediate already,
00111 /// the setImm method should be used.
00112 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
00113   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
00114   // If this operand is currently a register operand, and if this is in a
00115   // function, deregister the operand from the register's use/def list.
00116   if (isReg() && isOnRegUseList())
00117     if (MachineInstr *MI = getParent())
00118       if (MachineBasicBlock *MBB = MI->getParent())
00119         if (MachineFunction *MF = MBB->getParent())
00120           MF->getRegInfo().removeRegOperandFromUseList(this);
00121 
00122   OpKind = MO_Immediate;
00123   Contents.ImmVal = ImmVal;
00124 }
00125 
00126 /// ChangeToRegister - Replace this operand with a new register operand of
00127 /// the specified value.  If an operand is known to be an register already,
00128 /// the setReg method should be used.
00129 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
00130                                       bool isKill, bool isDead, bool isUndef,
00131                                       bool isDebug) {
00132   MachineRegisterInfo *RegInfo = nullptr;
00133   if (MachineInstr *MI = getParent())
00134     if (MachineBasicBlock *MBB = MI->getParent())
00135       if (MachineFunction *MF = MBB->getParent())
00136         RegInfo = &MF->getRegInfo();
00137   // If this operand is already a register operand, remove it from the
00138   // register's use/def lists.
00139   bool WasReg = isReg();
00140   if (RegInfo && WasReg)
00141     RegInfo->removeRegOperandFromUseList(this);
00142 
00143   // Change this to a register and set the reg#.
00144   OpKind = MO_Register;
00145   SmallContents.RegNo = Reg;
00146   SubReg_TargetFlags = 0;
00147   IsDef = isDef;
00148   IsImp = isImp;
00149   IsKill = isKill;
00150   IsDead = isDead;
00151   IsUndef = isUndef;
00152   IsInternalRead = false;
00153   IsEarlyClobber = false;
00154   IsDebug = isDebug;
00155   // Ensure isOnRegUseList() returns false.
00156   Contents.Reg.Prev = nullptr;
00157   // Preserve the tie when the operand was already a register.
00158   if (!WasReg)
00159     TiedTo = 0;
00160 
00161   // If this operand is embedded in a function, add the operand to the
00162   // register's use/def list.
00163   if (RegInfo)
00164     RegInfo->addRegOperandToUseList(this);
00165 }
00166 
00167 /// isIdenticalTo - Return true if this operand is identical to the specified
00168 /// operand. Note that this should stay in sync with the hash_value overload
00169 /// below.
00170 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
00171   if (getType() != Other.getType() ||
00172       getTargetFlags() != Other.getTargetFlags())
00173     return false;
00174 
00175   switch (getType()) {
00176   case MachineOperand::MO_Register:
00177     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
00178            getSubReg() == Other.getSubReg();
00179   case MachineOperand::MO_Immediate:
00180     return getImm() == Other.getImm();
00181   case MachineOperand::MO_CImmediate:
00182     return getCImm() == Other.getCImm();
00183   case MachineOperand::MO_FPImmediate:
00184     return getFPImm() == Other.getFPImm();
00185   case MachineOperand::MO_MachineBasicBlock:
00186     return getMBB() == Other.getMBB();
00187   case MachineOperand::MO_FrameIndex:
00188     return getIndex() == Other.getIndex();
00189   case MachineOperand::MO_ConstantPoolIndex:
00190   case MachineOperand::MO_TargetIndex:
00191     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
00192   case MachineOperand::MO_JumpTableIndex:
00193     return getIndex() == Other.getIndex();
00194   case MachineOperand::MO_GlobalAddress:
00195     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
00196   case MachineOperand::MO_ExternalSymbol:
00197     return !strcmp(getSymbolName(), Other.getSymbolName()) &&
00198            getOffset() == Other.getOffset();
00199   case MachineOperand::MO_BlockAddress:
00200     return getBlockAddress() == Other.getBlockAddress() &&
00201            getOffset() == Other.getOffset();
00202   case MachineOperand::MO_RegisterMask:
00203   case MachineOperand::MO_RegisterLiveOut:
00204     return getRegMask() == Other.getRegMask();
00205   case MachineOperand::MO_MCSymbol:
00206     return getMCSymbol() == Other.getMCSymbol();
00207   case MachineOperand::MO_CFIIndex:
00208     return getCFIIndex() == Other.getCFIIndex();
00209   case MachineOperand::MO_Metadata:
00210     return getMetadata() == Other.getMetadata();
00211   }
00212   llvm_unreachable("Invalid machine operand type");
00213 }
00214 
00215 // Note: this must stay exactly in sync with isIdenticalTo above.
00216 hash_code llvm::hash_value(const MachineOperand &MO) {
00217   switch (MO.getType()) {
00218   case MachineOperand::MO_Register:
00219     // Register operands don't have target flags.
00220     return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
00221   case MachineOperand::MO_Immediate:
00222     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
00223   case MachineOperand::MO_CImmediate:
00224     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
00225   case MachineOperand::MO_FPImmediate:
00226     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
00227   case MachineOperand::MO_MachineBasicBlock:
00228     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
00229   case MachineOperand::MO_FrameIndex:
00230     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
00231   case MachineOperand::MO_ConstantPoolIndex:
00232   case MachineOperand::MO_TargetIndex:
00233     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
00234                         MO.getOffset());
00235   case MachineOperand::MO_JumpTableIndex:
00236     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
00237   case MachineOperand::MO_ExternalSymbol:
00238     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
00239                         MO.getSymbolName());
00240   case MachineOperand::MO_GlobalAddress:
00241     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
00242                         MO.getOffset());
00243   case MachineOperand::MO_BlockAddress:
00244     return hash_combine(MO.getType(), MO.getTargetFlags(),
00245                         MO.getBlockAddress(), MO.getOffset());
00246   case MachineOperand::MO_RegisterMask:
00247   case MachineOperand::MO_RegisterLiveOut:
00248     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
00249   case MachineOperand::MO_Metadata:
00250     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
00251   case MachineOperand::MO_MCSymbol:
00252     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
00253   case MachineOperand::MO_CFIIndex:
00254     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex());
00255   }
00256   llvm_unreachable("Invalid machine operand type");
00257 }
00258 
00259 /// print - Print the specified machine operand.
00260 ///
00261 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
00262   // If the instruction is embedded into a basic block, we can find the
00263   // target info for the instruction.
00264   if (!TM)
00265     if (const MachineInstr *MI = getParent())
00266       if (const MachineBasicBlock *MBB = MI->getParent())
00267         if (const MachineFunction *MF = MBB->getParent())
00268           TM = &MF->getTarget();
00269   const TargetRegisterInfo *TRI =
00270       TM ? TM->getSubtargetImpl()->getRegisterInfo() : nullptr;
00271 
00272   switch (getType()) {
00273   case MachineOperand::MO_Register:
00274     OS << PrintReg(getReg(), TRI, getSubReg());
00275 
00276     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
00277         isInternalRead() || isEarlyClobber() || isTied()) {
00278       OS << '<';
00279       bool NeedComma = false;
00280       if (isDef()) {
00281         if (NeedComma) OS << ',';
00282         if (isEarlyClobber())
00283           OS << "earlyclobber,";
00284         if (isImplicit())
00285           OS << "imp-";
00286         OS << "def";
00287         NeedComma = true;
00288         // <def,read-undef> only makes sense when getSubReg() is set.
00289         // Don't clutter the output otherwise.
00290         if (isUndef() && getSubReg())
00291           OS << ",read-undef";
00292       } else if (isImplicit()) {
00293           OS << "imp-use";
00294           NeedComma = true;
00295       }
00296 
00297       if (isKill()) {
00298         if (NeedComma) OS << ',';
00299         OS << "kill";
00300         NeedComma = true;
00301       }
00302       if (isDead()) {
00303         if (NeedComma) OS << ',';
00304         OS << "dead";
00305         NeedComma = true;
00306       }
00307       if (isUndef() && isUse()) {
00308         if (NeedComma) OS << ',';
00309         OS << "undef";
00310         NeedComma = true;
00311       }
00312       if (isInternalRead()) {
00313         if (NeedComma) OS << ',';
00314         OS << "internal";
00315         NeedComma = true;
00316       }
00317       if (isTied()) {
00318         if (NeedComma) OS << ',';
00319         OS << "tied";
00320         if (TiedTo != 15)
00321           OS << unsigned(TiedTo - 1);
00322       }
00323       OS << '>';
00324     }
00325     break;
00326   case MachineOperand::MO_Immediate:
00327     OS << getImm();
00328     break;
00329   case MachineOperand::MO_CImmediate:
00330     getCImm()->getValue().print(OS, false);
00331     break;
00332   case MachineOperand::MO_FPImmediate:
00333     if (getFPImm()->getType()->isFloatTy())
00334       OS << getFPImm()->getValueAPF().convertToFloat();
00335     else
00336       OS << getFPImm()->getValueAPF().convertToDouble();
00337     break;
00338   case MachineOperand::MO_MachineBasicBlock:
00339     OS << "<BB#" << getMBB()->getNumber() << ">";
00340     break;
00341   case MachineOperand::MO_FrameIndex:
00342     OS << "<fi#" << getIndex() << '>';
00343     break;
00344   case MachineOperand::MO_ConstantPoolIndex:
00345     OS << "<cp#" << getIndex();
00346     if (getOffset()) OS << "+" << getOffset();
00347     OS << '>';
00348     break;
00349   case MachineOperand::MO_TargetIndex:
00350     OS << "<ti#" << getIndex();
00351     if (getOffset()) OS << "+" << getOffset();
00352     OS << '>';
00353     break;
00354   case MachineOperand::MO_JumpTableIndex:
00355     OS << "<jt#" << getIndex() << '>';
00356     break;
00357   case MachineOperand::MO_GlobalAddress:
00358     OS << "<ga:";
00359     getGlobal()->printAsOperand(OS, /*PrintType=*/false);
00360     if (getOffset()) OS << "+" << getOffset();
00361     OS << '>';
00362     break;
00363   case MachineOperand::MO_ExternalSymbol:
00364     OS << "<es:" << getSymbolName();
00365     if (getOffset()) OS << "+" << getOffset();
00366     OS << '>';
00367     break;
00368   case MachineOperand::MO_BlockAddress:
00369     OS << '<';
00370     getBlockAddress()->printAsOperand(OS, /*PrintType=*/false);
00371     if (getOffset()) OS << "+" << getOffset();
00372     OS << '>';
00373     break;
00374   case MachineOperand::MO_RegisterMask:
00375     OS << "<regmask>";
00376     break;
00377   case MachineOperand::MO_RegisterLiveOut:
00378     OS << "<regliveout>";
00379     break;
00380   case MachineOperand::MO_Metadata:
00381     OS << '<';
00382     getMetadata()->printAsOperand(OS, /*PrintType=*/false);
00383     OS << '>';
00384     break;
00385   case MachineOperand::MO_MCSymbol:
00386     OS << "<MCSym=" << *getMCSymbol() << '>';
00387     break;
00388   case MachineOperand::MO_CFIIndex:
00389     OS << "<call frame instruction>";
00390     break;
00391   }
00392 
00393   if (unsigned TF = getTargetFlags())
00394     OS << "[TF=" << TF << ']';
00395 }
00396 
00397 //===----------------------------------------------------------------------===//
00398 // MachineMemOperand Implementation
00399 //===----------------------------------------------------------------------===//
00400 
00401 /// getAddrSpace - Return the LLVM IR address space number that this pointer
00402 /// points into.
00403 unsigned MachinePointerInfo::getAddrSpace() const {
00404   if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0;
00405   return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace();
00406 }
00407 
00408 /// getConstantPool - Return a MachinePointerInfo record that refers to the
00409 /// constant pool.
00410 MachinePointerInfo MachinePointerInfo::getConstantPool() {
00411   return MachinePointerInfo(PseudoSourceValue::getConstantPool());
00412 }
00413 
00414 /// getFixedStack - Return a MachinePointerInfo record that refers to the
00415 /// the specified FrameIndex.
00416 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
00417   return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
00418 }
00419 
00420 MachinePointerInfo MachinePointerInfo::getJumpTable() {
00421   return MachinePointerInfo(PseudoSourceValue::getJumpTable());
00422 }
00423 
00424 MachinePointerInfo MachinePointerInfo::getGOT() {
00425   return MachinePointerInfo(PseudoSourceValue::getGOT());
00426 }
00427 
00428 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
00429   return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
00430 }
00431 
00432 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
00433                                      uint64_t s, unsigned int a,
00434                                      const AAMDNodes &AAInfo,
00435                                      const MDNode *Ranges)
00436   : PtrInfo(ptrinfo), Size(s),
00437     Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
00438     AAInfo(AAInfo), Ranges(Ranges) {
00439   assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() ||
00440           isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) &&
00441          "invalid pointer value");
00442   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
00443   assert((isLoad() || isStore()) && "Not a load/store!");
00444 }
00445 
00446 /// Profile - Gather unique data for the object.
00447 ///
00448 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
00449   ID.AddInteger(getOffset());
00450   ID.AddInteger(Size);
00451   ID.AddPointer(getOpaqueValue());
00452   ID.AddInteger(Flags);
00453 }
00454 
00455 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
00456   // The Value and Offset may differ due to CSE. But the flags and size
00457   // should be the same.
00458   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
00459   assert(MMO->getSize() == getSize() && "Size mismatch!");
00460 
00461   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
00462     // Update the alignment value.
00463     Flags = (Flags & ((1 << MOMaxBits) - 1)) |
00464       ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
00465     // Also update the base and offset, because the new alignment may
00466     // not be applicable with the old ones.
00467     PtrInfo = MMO->PtrInfo;
00468   }
00469 }
00470 
00471 /// getAlignment - Return the minimum known alignment in bytes of the
00472 /// actual memory reference.
00473 uint64_t MachineMemOperand::getAlignment() const {
00474   return MinAlign(getBaseAlignment(), getOffset());
00475 }
00476 
00477 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
00478   assert((MMO.isLoad() || MMO.isStore()) &&
00479          "SV has to be a load, store or both.");
00480 
00481   if (MMO.isVolatile())
00482     OS << "Volatile ";
00483 
00484   if (MMO.isLoad())
00485     OS << "LD";
00486   if (MMO.isStore())
00487     OS << "ST";
00488   OS << MMO.getSize();
00489 
00490   // Print the address information.
00491   OS << "[";
00492   if (const Value *V = MMO.getValue())
00493     V->printAsOperand(OS, /*PrintType=*/false);
00494   else if (const PseudoSourceValue *PSV = MMO.getPseudoValue())
00495     PSV->printCustom(OS);
00496   else
00497     OS << "<unknown>";
00498 
00499   unsigned AS = MMO.getAddrSpace();
00500   if (AS != 0)
00501     OS << "(addrspace=" << AS << ')';
00502 
00503   // If the alignment of the memory reference itself differs from the alignment
00504   // of the base pointer, print the base alignment explicitly, next to the base
00505   // pointer.
00506   if (MMO.getBaseAlignment() != MMO.getAlignment())
00507     OS << "(align=" << MMO.getBaseAlignment() << ")";
00508 
00509   if (MMO.getOffset() != 0)
00510     OS << "+" << MMO.getOffset();
00511   OS << "]";
00512 
00513   // Print the alignment of the reference.
00514   if (MMO.getBaseAlignment() != MMO.getAlignment() ||
00515       MMO.getBaseAlignment() != MMO.getSize())
00516     OS << "(align=" << MMO.getAlignment() << ")";
00517 
00518   // Print TBAA info.
00519   if (const MDNode *TBAAInfo = MMO.getAAInfo().TBAA) {
00520     OS << "(tbaa=";
00521     if (TBAAInfo->getNumOperands() > 0)
00522       TBAAInfo->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
00523     else
00524       OS << "<unknown>";
00525     OS << ")";
00526   }
00527 
00528   // Print AA scope info.
00529   if (const MDNode *ScopeInfo = MMO.getAAInfo().Scope) {
00530     OS << "(alias.scope=";
00531     if (ScopeInfo->getNumOperands() > 0)
00532       for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) {
00533         ScopeInfo->getOperand(i)->printAsOperand(OS, /*PrintType=*/false);
00534         if (i != ie-1)
00535           OS << ",";
00536       }
00537     else
00538       OS << "<unknown>";
00539     OS << ")";
00540   }
00541 
00542   // Print AA noalias scope info.
00543   if (const MDNode *NoAliasInfo = MMO.getAAInfo().NoAlias) {
00544     OS << "(noalias=";
00545     if (NoAliasInfo->getNumOperands() > 0)
00546       for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) {
00547         NoAliasInfo->getOperand(i)->printAsOperand(OS, /*PrintType=*/false);
00548         if (i != ie-1)
00549           OS << ",";
00550       }
00551     else
00552       OS << "<unknown>";
00553     OS << ")";
00554   }
00555 
00556   // Print nontemporal info.
00557   if (MMO.isNonTemporal())
00558     OS << "(nontemporal)";
00559 
00560   return OS;
00561 }
00562 
00563 //===----------------------------------------------------------------------===//
00564 // MachineInstr Implementation
00565 //===----------------------------------------------------------------------===//
00566 
00567 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
00568   if (MCID->ImplicitDefs)
00569     for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
00570       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
00571   if (MCID->ImplicitUses)
00572     for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses)
00573       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
00574 }
00575 
00576 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
00577 /// implicit operands. It reserves space for the number of operands specified by
00578 /// the MCInstrDesc.
00579 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
00580                            const DebugLoc dl, bool NoImp)
00581   : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0),
00582     Flags(0), AsmPrinterFlags(0),
00583     NumMemRefs(0), MemRefs(nullptr), debugLoc(dl) {
00584   // Reserve space for the expected number of operands.
00585   if (unsigned NumOps = MCID->getNumOperands() +
00586     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
00587     CapOperands = OperandCapacity::get(NumOps);
00588     Operands = MF.allocateOperandArray(CapOperands);
00589   }
00590 
00591   if (!NoImp)
00592     addImplicitDefUseOperands(MF);
00593 }
00594 
00595 /// MachineInstr ctor - Copies MachineInstr arg exactly
00596 ///
00597 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
00598   : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0),
00599     Flags(0), AsmPrinterFlags(0),
00600     NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
00601     debugLoc(MI.getDebugLoc()) {
00602   CapOperands = OperandCapacity::get(MI.getNumOperands());
00603   Operands = MF.allocateOperandArray(CapOperands);
00604 
00605   // Copy operands.
00606   for (unsigned i = 0; i != MI.getNumOperands(); ++i)
00607     addOperand(MF, MI.getOperand(i));
00608 
00609   // Copy all the sensible flags.
00610   setFlags(MI.Flags);
00611 }
00612 
00613 /// getRegInfo - If this instruction is embedded into a MachineFunction,
00614 /// return the MachineRegisterInfo object for the current function, otherwise
00615 /// return null.
00616 MachineRegisterInfo *MachineInstr::getRegInfo() {
00617   if (MachineBasicBlock *MBB = getParent())
00618     return &MBB->getParent()->getRegInfo();
00619   return nullptr;
00620 }
00621 
00622 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
00623 /// this instruction from their respective use lists.  This requires that the
00624 /// operands already be on their use lists.
00625 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
00626   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
00627     if (Operands[i].isReg())
00628       MRI.removeRegOperandFromUseList(&Operands[i]);
00629 }
00630 
00631 /// AddRegOperandsToUseLists - Add all of the register operands in
00632 /// this instruction from their respective use lists.  This requires that the
00633 /// operands not be on their use lists yet.
00634 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
00635   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
00636     if (Operands[i].isReg())
00637       MRI.addRegOperandToUseList(&Operands[i]);
00638 }
00639 
00640 void MachineInstr::addOperand(const MachineOperand &Op) {
00641   MachineBasicBlock *MBB = getParent();
00642   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
00643   MachineFunction *MF = MBB->getParent();
00644   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
00645   addOperand(*MF, Op);
00646 }
00647 
00648 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
00649 /// ranges. If MRI is non-null also update use-def chains.
00650 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
00651                          unsigned NumOps, MachineRegisterInfo *MRI) {
00652   if (MRI)
00653     return MRI->moveOperands(Dst, Src, NumOps);
00654 
00655   // Here it would be convenient to call memmove, so that isn't allowed because
00656   // MachineOperand has a constructor and so isn't a POD type.
00657   if (Dst < Src)
00658     for (unsigned i = 0; i != NumOps; ++i)
00659       new (Dst + i) MachineOperand(Src[i]);
00660   else
00661     for (unsigned i = NumOps; i ; --i)
00662       new (Dst + i - 1) MachineOperand(Src[i - 1]);
00663 }
00664 
00665 /// addOperand - Add the specified operand to the instruction.  If it is an
00666 /// implicit operand, it is added to the end of the operand list.  If it is
00667 /// an explicit operand it is added at the end of the explicit operand list
00668 /// (before the first implicit operand).
00669 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
00670   assert(MCID && "Cannot add operands before providing an instr descriptor");
00671 
00672   // Check if we're adding one of our existing operands.
00673   if (&Op >= Operands && &Op < Operands + NumOperands) {
00674     // This is unusual: MI->addOperand(MI->getOperand(i)).
00675     // If adding Op requires reallocating or moving existing operands around,
00676     // the Op reference could go stale. Support it by copying Op.
00677     MachineOperand CopyOp(Op);
00678     return addOperand(MF, CopyOp);
00679   }
00680 
00681   // Find the insert location for the new operand.  Implicit registers go at
00682   // the end, everything else goes before the implicit regs.
00683   //
00684   // FIXME: Allow mixed explicit and implicit operands on inline asm.
00685   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
00686   // implicit-defs, but they must not be moved around.  See the FIXME in
00687   // InstrEmitter.cpp.
00688   unsigned OpNo = getNumOperands();
00689   bool isImpReg = Op.isReg() && Op.isImplicit();
00690   if (!isImpReg && !isInlineAsm()) {
00691     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
00692       --OpNo;
00693       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
00694     }
00695   }
00696 
00697 #ifndef NDEBUG
00698   bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
00699   // OpNo now points as the desired insertion point.  Unless this is a variadic
00700   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
00701   // RegMask operands go between the explicit and implicit operands.
00702   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
00703           OpNo < MCID->getNumOperands() || isMetaDataOp) &&
00704          "Trying to add an operand to a machine instr that is already done!");
00705 #endif
00706 
00707   MachineRegisterInfo *MRI = getRegInfo();
00708 
00709   // Determine if the Operands array needs to be reallocated.
00710   // Save the old capacity and operand array.
00711   OperandCapacity OldCap = CapOperands;
00712   MachineOperand *OldOperands = Operands;
00713   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
00714     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
00715     Operands = MF.allocateOperandArray(CapOperands);
00716     // Move the operands before the insertion point.
00717     if (OpNo)
00718       moveOperands(Operands, OldOperands, OpNo, MRI);
00719   }
00720 
00721   // Move the operands following the insertion point.
00722   if (OpNo != NumOperands)
00723     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
00724                  MRI);
00725   ++NumOperands;
00726 
00727   // Deallocate the old operand array.
00728   if (OldOperands != Operands && OldOperands)
00729     MF.deallocateOperandArray(OldCap, OldOperands);
00730 
00731   // Copy Op into place. It still needs to be inserted into the MRI use lists.
00732   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
00733   NewMO->ParentMI = this;
00734 
00735   // When adding a register operand, tell MRI about it.
00736   if (NewMO->isReg()) {
00737     // Ensure isOnRegUseList() returns false, regardless of Op's status.
00738     NewMO->Contents.Reg.Prev = nullptr;
00739     // Ignore existing ties. This is not a property that can be copied.
00740     NewMO->TiedTo = 0;
00741     // Add the new operand to MRI, but only for instructions in an MBB.
00742     if (MRI)
00743       MRI->addRegOperandToUseList(NewMO);
00744     // The MCID operand information isn't accurate until we start adding
00745     // explicit operands. The implicit operands are added first, then the
00746     // explicits are inserted before them.
00747     if (!isImpReg) {
00748       // Tie uses to defs as indicated in MCInstrDesc.
00749       if (NewMO->isUse()) {
00750         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
00751         if (DefIdx != -1)
00752           tieOperands(DefIdx, OpNo);
00753       }
00754       // If the register operand is flagged as early, mark the operand as such.
00755       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
00756         NewMO->setIsEarlyClobber(true);
00757     }
00758   }
00759 }
00760 
00761 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
00762 /// fewer operand than it started with.
00763 ///
00764 void MachineInstr::RemoveOperand(unsigned OpNo) {
00765   assert(OpNo < getNumOperands() && "Invalid operand number");
00766   untieRegOperand(OpNo);
00767 
00768 #ifndef NDEBUG
00769   // Moving tied operands would break the ties.
00770   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
00771     if (Operands[i].isReg())
00772       assert(!Operands[i].isTied() && "Cannot move tied operands");
00773 #endif
00774 
00775   MachineRegisterInfo *MRI = getRegInfo();
00776   if (MRI && Operands[OpNo].isReg())
00777     MRI->removeRegOperandFromUseList(Operands + OpNo);
00778 
00779   // Don't call the MachineOperand destructor. A lot of this code depends on
00780   // MachineOperand having a trivial destructor anyway, and adding a call here
00781   // wouldn't make it 'destructor-correct'.
00782 
00783   if (unsigned N = NumOperands - 1 - OpNo)
00784     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
00785   --NumOperands;
00786 }
00787 
00788 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
00789 /// This function should be used only occasionally. The setMemRefs function
00790 /// is the primary method for setting up a MachineInstr's MemRefs list.
00791 void MachineInstr::addMemOperand(MachineFunction &MF,
00792                                  MachineMemOperand *MO) {
00793   mmo_iterator OldMemRefs = MemRefs;
00794   unsigned OldNumMemRefs = NumMemRefs;
00795 
00796   unsigned NewNum = NumMemRefs + 1;
00797   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
00798 
00799   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
00800   NewMemRefs[NewNum - 1] = MO;
00801   setMemRefs(NewMemRefs, NewMemRefs + NewNum);
00802 }
00803 
00804 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
00805   assert(!isBundledWithPred() && "Must be called on bundle header");
00806   for (MachineBasicBlock::const_instr_iterator MII = this;; ++MII) {
00807     if (MII->getDesc().getFlags() & Mask) {
00808       if (Type == AnyInBundle)
00809         return true;
00810     } else {
00811       if (Type == AllInBundle && !MII->isBundle())
00812         return false;
00813     }
00814     // This was the last instruction in the bundle.
00815     if (!MII->isBundledWithSucc())
00816       return Type == AllInBundle;
00817   }
00818 }
00819 
00820 bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
00821                                  MICheckType Check) const {
00822   // If opcodes or number of operands are not the same then the two
00823   // instructions are obviously not identical.
00824   if (Other->getOpcode() != getOpcode() ||
00825       Other->getNumOperands() != getNumOperands())
00826     return false;
00827 
00828   if (isBundle()) {
00829     // Both instructions are bundles, compare MIs inside the bundle.
00830     MachineBasicBlock::const_instr_iterator I1 = *this;
00831     MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
00832     MachineBasicBlock::const_instr_iterator I2 = *Other;
00833     MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end();
00834     while (++I1 != E1 && I1->isInsideBundle()) {
00835       ++I2;
00836       if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check))
00837         return false;
00838     }
00839   }
00840 
00841   // Check operands to make sure they match.
00842   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
00843     const MachineOperand &MO = getOperand(i);
00844     const MachineOperand &OMO = Other->getOperand(i);
00845     if (!MO.isReg()) {
00846       if (!MO.isIdenticalTo(OMO))
00847         return false;
00848       continue;
00849     }
00850 
00851     // Clients may or may not want to ignore defs when testing for equality.
00852     // For example, machine CSE pass only cares about finding common
00853     // subexpressions, so it's safe to ignore virtual register defs.
00854     if (MO.isDef()) {
00855       if (Check == IgnoreDefs)
00856         continue;
00857       else if (Check == IgnoreVRegDefs) {
00858         if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
00859             TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
00860           if (MO.getReg() != OMO.getReg())
00861             return false;
00862       } else {
00863         if (!MO.isIdenticalTo(OMO))
00864           return false;
00865         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
00866           return false;
00867       }
00868     } else {
00869       if (!MO.isIdenticalTo(OMO))
00870         return false;
00871       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
00872         return false;
00873     }
00874   }
00875   // If DebugLoc does not match then two dbg.values are not identical.
00876   if (isDebugValue())
00877     if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown()
00878         && getDebugLoc() != Other->getDebugLoc())
00879       return false;
00880   return true;
00881 }
00882 
00883 MachineInstr *MachineInstr::removeFromParent() {
00884   assert(getParent() && "Not embedded in a basic block!");
00885   return getParent()->remove(this);
00886 }
00887 
00888 MachineInstr *MachineInstr::removeFromBundle() {
00889   assert(getParent() && "Not embedded in a basic block!");
00890   return getParent()->remove_instr(this);
00891 }
00892 
00893 void MachineInstr::eraseFromParent() {
00894   assert(getParent() && "Not embedded in a basic block!");
00895   getParent()->erase(this);
00896 }
00897 
00898 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
00899   assert(getParent() && "Not embedded in a basic block!");
00900   MachineBasicBlock *MBB = getParent();
00901   MachineFunction *MF = MBB->getParent();
00902   assert(MF && "Not embedded in a function!");
00903 
00904   MachineInstr *MI = (MachineInstr *)this;
00905   MachineRegisterInfo &MRI = MF->getRegInfo();
00906 
00907   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
00908     const MachineOperand &MO = MI->getOperand(i);
00909     if (!MO.isReg() || !MO.isDef())
00910       continue;
00911     unsigned Reg = MO.getReg();
00912     if (!TargetRegisterInfo::isVirtualRegister(Reg))
00913       continue;
00914     MRI.markUsesInDebugValueAsUndef(Reg);
00915   }
00916   MI->eraseFromParent();
00917 }
00918 
00919 void MachineInstr::eraseFromBundle() {
00920   assert(getParent() && "Not embedded in a basic block!");
00921   getParent()->erase_instr(this);
00922 }
00923 
00924 /// getNumExplicitOperands - Returns the number of non-implicit operands.
00925 ///
00926 unsigned MachineInstr::getNumExplicitOperands() const {
00927   unsigned NumOperands = MCID->getNumOperands();
00928   if (!MCID->isVariadic())
00929     return NumOperands;
00930 
00931   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
00932     const MachineOperand &MO = getOperand(i);
00933     if (!MO.isReg() || !MO.isImplicit())
00934       NumOperands++;
00935   }
00936   return NumOperands;
00937 }
00938 
00939 void MachineInstr::bundleWithPred() {
00940   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
00941   setFlag(BundledPred);
00942   MachineBasicBlock::instr_iterator Pred = this;
00943   --Pred;
00944   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
00945   Pred->setFlag(BundledSucc);
00946 }
00947 
00948 void MachineInstr::bundleWithSucc() {
00949   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
00950   setFlag(BundledSucc);
00951   MachineBasicBlock::instr_iterator Succ = this;
00952   ++Succ;
00953   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
00954   Succ->setFlag(BundledPred);
00955 }
00956 
00957 void MachineInstr::unbundleFromPred() {
00958   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
00959   clearFlag(BundledPred);
00960   MachineBasicBlock::instr_iterator Pred = this;
00961   --Pred;
00962   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
00963   Pred->clearFlag(BundledSucc);
00964 }
00965 
00966 void MachineInstr::unbundleFromSucc() {
00967   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
00968   clearFlag(BundledSucc);
00969   MachineBasicBlock::instr_iterator Succ = this;
00970   ++Succ;
00971   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
00972   Succ->clearFlag(BundledPred);
00973 }
00974 
00975 bool MachineInstr::isStackAligningInlineAsm() const {
00976   if (isInlineAsm()) {
00977     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
00978     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
00979       return true;
00980   }
00981   return false;
00982 }
00983 
00984 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
00985   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
00986   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
00987   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
00988 }
00989 
00990 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
00991                                        unsigned *GroupNo) const {
00992   assert(isInlineAsm() && "Expected an inline asm instruction");
00993   assert(OpIdx < getNumOperands() && "OpIdx out of range");
00994 
00995   // Ignore queries about the initial operands.
00996   if (OpIdx < InlineAsm::MIOp_FirstOperand)
00997     return -1;
00998 
00999   unsigned Group = 0;
01000   unsigned NumOps;
01001   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
01002        i += NumOps) {
01003     const MachineOperand &FlagMO = getOperand(i);
01004     // If we reach the implicit register operands, stop looking.
01005     if (!FlagMO.isImm())
01006       return -1;
01007     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
01008     if (i + NumOps > OpIdx) {
01009       if (GroupNo)
01010         *GroupNo = Group;
01011       return i;
01012     }
01013     ++Group;
01014   }
01015   return -1;
01016 }
01017 
01018 const TargetRegisterClass*
01019 MachineInstr::getRegClassConstraint(unsigned OpIdx,
01020                                     const TargetInstrInfo *TII,
01021                                     const TargetRegisterInfo *TRI) const {
01022   assert(getParent() && "Can't have an MBB reference here!");
01023   assert(getParent()->getParent() && "Can't have an MF reference here!");
01024   const MachineFunction &MF = *getParent()->getParent();
01025 
01026   // Most opcodes have fixed constraints in their MCInstrDesc.
01027   if (!isInlineAsm())
01028     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
01029 
01030   if (!getOperand(OpIdx).isReg())
01031     return nullptr;
01032 
01033   // For tied uses on inline asm, get the constraint from the def.
01034   unsigned DefIdx;
01035   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
01036     OpIdx = DefIdx;
01037 
01038   // Inline asm stores register class constraints in the flag word.
01039   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
01040   if (FlagIdx < 0)
01041     return nullptr;
01042 
01043   unsigned Flag = getOperand(FlagIdx).getImm();
01044   unsigned RCID;
01045   if (InlineAsm::hasRegClassConstraint(Flag, RCID))
01046     return TRI->getRegClass(RCID);
01047 
01048   // Assume that all registers in a memory operand are pointers.
01049   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
01050     return TRI->getPointerRegClass(MF);
01051 
01052   return nullptr;
01053 }
01054 
01055 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
01056     unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
01057     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
01058   // Check every operands inside the bundle if we have
01059   // been asked to.
01060   if (ExploreBundle)
01061     for (ConstMIBundleOperands OpndIt(this); OpndIt.isValid() && CurRC;
01062          ++OpndIt)
01063       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
01064           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
01065   else
01066     // Otherwise, just check the current operands.
01067     for (ConstMIOperands OpndIt(this); OpndIt.isValid() && CurRC; ++OpndIt)
01068       CurRC = getRegClassConstraintEffectForVRegImpl(OpndIt.getOperandNo(), Reg,
01069                                                      CurRC, TII, TRI);
01070   return CurRC;
01071 }
01072 
01073 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
01074     unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
01075     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
01076   assert(CurRC && "Invalid initial register class");
01077   // Check if Reg is constrained by some of its use/def from MI.
01078   const MachineOperand &MO = getOperand(OpIdx);
01079   if (!MO.isReg() || MO.getReg() != Reg)
01080     return CurRC;
01081   // If yes, accumulate the constraints through the operand.
01082   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
01083 }
01084 
01085 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
01086     unsigned OpIdx, const TargetRegisterClass *CurRC,
01087     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
01088   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
01089   const MachineOperand &MO = getOperand(OpIdx);
01090   assert(MO.isReg() &&
01091          "Cannot get register constraints for non-register operand");
01092   assert(CurRC && "Invalid initial register class");
01093   if (unsigned SubIdx = MO.getSubReg()) {
01094     if (OpRC)
01095       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
01096     else
01097       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
01098   } else if (OpRC)
01099     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
01100   return CurRC;
01101 }
01102 
01103 /// Return the number of instructions inside the MI bundle, not counting the
01104 /// header instruction.
01105 unsigned MachineInstr::getBundleSize() const {
01106   MachineBasicBlock::const_instr_iterator I = this;
01107   unsigned Size = 0;
01108   while (I->isBundledWithSucc())
01109     ++Size, ++I;
01110   return Size;
01111 }
01112 
01113 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
01114 /// the specific register or -1 if it is not found. It further tightens
01115 /// the search criteria to a use that kills the register if isKill is true.
01116 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
01117                                           const TargetRegisterInfo *TRI) const {
01118   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
01119     const MachineOperand &MO = getOperand(i);
01120     if (!MO.isReg() || !MO.isUse())
01121       continue;
01122     unsigned MOReg = MO.getReg();
01123     if (!MOReg)
01124       continue;
01125     if (MOReg == Reg ||
01126         (TRI &&
01127          TargetRegisterInfo::isPhysicalRegister(MOReg) &&
01128          TargetRegisterInfo::isPhysicalRegister(Reg) &&
01129          TRI->isSubRegister(MOReg, Reg)))
01130       if (!isKill || MO.isKill())
01131         return i;
01132   }
01133   return -1;
01134 }
01135 
01136 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
01137 /// indicating if this instruction reads or writes Reg. This also considers
01138 /// partial defines.
01139 std::pair<bool,bool>
01140 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
01141                                          SmallVectorImpl<unsigned> *Ops) const {
01142   bool PartDef = false; // Partial redefine.
01143   bool FullDef = false; // Full define.
01144   bool Use = false;
01145 
01146   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
01147     const MachineOperand &MO = getOperand(i);
01148     if (!MO.isReg() || MO.getReg() != Reg)
01149       continue;
01150     if (Ops)
01151       Ops->push_back(i);
01152     if (MO.isUse())
01153       Use |= !MO.isUndef();
01154     else if (MO.getSubReg() && !MO.isUndef())
01155       // A partial <def,undef> doesn't count as reading the register.
01156       PartDef = true;
01157     else
01158       FullDef = true;
01159   }
01160   // A partial redefine uses Reg unless there is also a full define.
01161   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
01162 }
01163 
01164 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
01165 /// the specified register or -1 if it is not found. If isDead is true, defs
01166 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
01167 /// also checks if there is a def of a super-register.
01168 int
01169 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
01170                                         const TargetRegisterInfo *TRI) const {
01171   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
01172   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
01173     const MachineOperand &MO = getOperand(i);
01174     // Accept regmask operands when Overlap is set.
01175     // Ignore them when looking for a specific def operand (Overlap == false).
01176     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
01177       return i;
01178     if (!MO.isReg() || !MO.isDef())
01179       continue;
01180     unsigned MOReg = MO.getReg();
01181     bool Found = (MOReg == Reg);
01182     if (!Found && TRI && isPhys &&
01183         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
01184       if (Overlap)
01185         Found = TRI->regsOverlap(MOReg, Reg);
01186       else
01187         Found = TRI->isSubRegister(MOReg, Reg);
01188     }
01189     if (Found && (!isDead || MO.isDead()))
01190       return i;
01191   }
01192   return -1;
01193 }
01194 
01195 /// findFirstPredOperandIdx() - Find the index of the first operand in the
01196 /// operand list that is used to represent the predicate. It returns -1 if
01197 /// none is found.
01198 int MachineInstr::findFirstPredOperandIdx() const {
01199   // Don't call MCID.findFirstPredOperandIdx() because this variant
01200   // is sometimes called on an instruction that's not yet complete, and
01201   // so the number of operands is less than the MCID indicates. In
01202   // particular, the PTX target does this.
01203   const MCInstrDesc &MCID = getDesc();
01204   if (MCID.isPredicable()) {
01205     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
01206       if (MCID.OpInfo[i].isPredicate())
01207         return i;
01208   }
01209 
01210   return -1;
01211 }
01212 
01213 // MachineOperand::TiedTo is 4 bits wide.
01214 const unsigned TiedMax = 15;
01215 
01216 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
01217 ///
01218 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
01219 /// field. TiedTo can have these values:
01220 ///
01221 /// 0:              Operand is not tied to anything.
01222 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
01223 /// TiedMax:        Tied to an operand >= TiedMax-1.
01224 ///
01225 /// The tied def must be one of the first TiedMax operands on a normal
01226 /// instruction. INLINEASM instructions allow more tied defs.
01227 ///
01228 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
01229   MachineOperand &DefMO = getOperand(DefIdx);
01230   MachineOperand &UseMO = getOperand(UseIdx);
01231   assert(DefMO.isDef() && "DefIdx must be a def operand");
01232   assert(UseMO.isUse() && "UseIdx must be a use operand");
01233   assert(!DefMO.isTied() && "Def is already tied to another use");
01234   assert(!UseMO.isTied() && "Use is already tied to another def");
01235 
01236   if (DefIdx < TiedMax)
01237     UseMO.TiedTo = DefIdx + 1;
01238   else {
01239     // Inline asm can use the group descriptors to find tied operands, but on
01240     // normal instruction, the tied def must be within the first TiedMax
01241     // operands.
01242     assert(isInlineAsm() && "DefIdx out of range");
01243     UseMO.TiedTo = TiedMax;
01244   }
01245 
01246   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
01247   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
01248 }
01249 
01250 /// Given the index of a tied register operand, find the operand it is tied to.
01251 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
01252 /// which must exist.
01253 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
01254   const MachineOperand &MO = getOperand(OpIdx);
01255   assert(MO.isTied() && "Operand isn't tied");
01256 
01257   // Normally TiedTo is in range.
01258   if (MO.TiedTo < TiedMax)
01259     return MO.TiedTo - 1;
01260 
01261   // Uses on normal instructions can be out of range.
01262   if (!isInlineAsm()) {
01263     // Normal tied defs must be in the 0..TiedMax-1 range.
01264     if (MO.isUse())
01265       return TiedMax - 1;
01266     // MO is a def. Search for the tied use.
01267     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
01268       const MachineOperand &UseMO = getOperand(i);
01269       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
01270         return i;
01271     }
01272     llvm_unreachable("Can't find tied use");
01273   }
01274 
01275   // Now deal with inline asm by parsing the operand group descriptor flags.
01276   // Find the beginning of each operand group.
01277   SmallVector<unsigned, 8> GroupIdx;
01278   unsigned OpIdxGroup = ~0u;
01279   unsigned NumOps;
01280   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
01281        i += NumOps) {
01282     const MachineOperand &FlagMO = getOperand(i);
01283     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
01284     unsigned CurGroup = GroupIdx.size();
01285     GroupIdx.push_back(i);
01286     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
01287     // OpIdx belongs to this operand group.
01288     if (OpIdx > i && OpIdx < i + NumOps)
01289       OpIdxGroup = CurGroup;
01290     unsigned TiedGroup;
01291     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
01292       continue;
01293     // Operands in this group are tied to operands in TiedGroup which must be
01294     // earlier. Find the number of operands between the two groups.
01295     unsigned Delta = i - GroupIdx[TiedGroup];
01296 
01297     // OpIdx is a use tied to TiedGroup.
01298     if (OpIdxGroup == CurGroup)
01299       return OpIdx - Delta;
01300 
01301     // OpIdx is a def tied to this use group.
01302     if (OpIdxGroup == TiedGroup)
01303       return OpIdx + Delta;
01304   }
01305   llvm_unreachable("Invalid tied operand on inline asm");
01306 }
01307 
01308 /// clearKillInfo - Clears kill flags on all operands.
01309 ///
01310 void MachineInstr::clearKillInfo() {
01311   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
01312     MachineOperand &MO = getOperand(i);
01313     if (MO.isReg() && MO.isUse())
01314       MO.setIsKill(false);
01315   }
01316 }
01317 
01318 void MachineInstr::substituteRegister(unsigned FromReg,
01319                                       unsigned ToReg,
01320                                       unsigned SubIdx,
01321                                       const TargetRegisterInfo &RegInfo) {
01322   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
01323     if (SubIdx)
01324       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
01325     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
01326       MachineOperand &MO = getOperand(i);
01327       if (!MO.isReg() || MO.getReg() != FromReg)
01328         continue;
01329       MO.substPhysReg(ToReg, RegInfo);
01330     }
01331   } else {
01332     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
01333       MachineOperand &MO = getOperand(i);
01334       if (!MO.isReg() || MO.getReg() != FromReg)
01335         continue;
01336       MO.substVirtReg(ToReg, SubIdx, RegInfo);
01337     }
01338   }
01339 }
01340 
01341 /// isSafeToMove - Return true if it is safe to move this instruction. If
01342 /// SawStore is set to true, it means that there is a store (or call) between
01343 /// the instruction's location and its intended destination.
01344 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
01345                                 AliasAnalysis *AA,
01346                                 bool &SawStore) const {
01347   // Ignore stuff that we obviously can't move.
01348   //
01349   // Treat volatile loads as stores. This is not strictly necessary for
01350   // volatiles, but it is required for atomic loads. It is not allowed to move
01351   // a load across an atomic load with Ordering > Monotonic.
01352   if (mayStore() || isCall() ||
01353       (mayLoad() && hasOrderedMemoryRef())) {
01354     SawStore = true;
01355     return false;
01356   }
01357 
01358   if (isPosition() || isDebugValue() || isTerminator() ||
01359       hasUnmodeledSideEffects())
01360     return false;
01361 
01362   // See if this instruction does a load.  If so, we have to guarantee that the
01363   // loaded value doesn't change between the load and the its intended
01364   // destination. The check for isInvariantLoad gives the targe the chance to
01365   // classify the load as always returning a constant, e.g. a constant pool
01366   // load.
01367   if (mayLoad() && !isInvariantLoad(AA))
01368     // Otherwise, this is a real load.  If there is a store between the load and
01369     // end of block, we can't move it.
01370     return !SawStore;
01371 
01372   return true;
01373 }
01374 
01375 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
01376 /// or volatile memory reference, or if the information describing the memory
01377 /// reference is not available. Return false if it is known to have no ordered
01378 /// memory references.
01379 bool MachineInstr::hasOrderedMemoryRef() const {
01380   // An instruction known never to access memory won't have a volatile access.
01381   if (!mayStore() &&
01382       !mayLoad() &&
01383       !isCall() &&
01384       !hasUnmodeledSideEffects())
01385     return false;
01386 
01387   // Otherwise, if the instruction has no memory reference information,
01388   // conservatively assume it wasn't preserved.
01389   if (memoperands_empty())
01390     return true;
01391 
01392   // Check the memory reference information for ordered references.
01393   for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
01394     if (!(*I)->isUnordered())
01395       return true;
01396 
01397   return false;
01398 }
01399 
01400 /// isInvariantLoad - Return true if this instruction is loading from a
01401 /// location whose value is invariant across the function.  For example,
01402 /// loading a value from the constant pool or from the argument area
01403 /// of a function if it does not change.  This should only return true of
01404 /// *all* loads the instruction does are invariant (if it does multiple loads).
01405 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
01406   // If the instruction doesn't load at all, it isn't an invariant load.
01407   if (!mayLoad())
01408     return false;
01409 
01410   // If the instruction has lost its memoperands, conservatively assume that
01411   // it may not be an invariant load.
01412   if (memoperands_empty())
01413     return false;
01414 
01415   const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
01416 
01417   for (mmo_iterator I = memoperands_begin(),
01418        E = memoperands_end(); I != E; ++I) {
01419     if ((*I)->isVolatile()) return false;
01420     if ((*I)->isStore()) return false;
01421     if ((*I)->isInvariant()) return true;
01422 
01423 
01424     // A load from a constant PseudoSourceValue is invariant.
01425     if (const PseudoSourceValue *PSV = (*I)->getPseudoValue())
01426       if (PSV->isConstant(MFI))
01427         continue;
01428 
01429     if (const Value *V = (*I)->getValue()) {
01430       // If we have an AliasAnalysis, ask it whether the memory is constant.
01431       if (AA && AA->pointsToConstantMemory(
01432                       AliasAnalysis::Location(V, (*I)->getSize(),
01433                                               (*I)->getAAInfo())))
01434         continue;
01435     }
01436 
01437     // Otherwise assume conservatively.
01438     return false;
01439   }
01440 
01441   // Everything checks out.
01442   return true;
01443 }
01444 
01445 /// isConstantValuePHI - If the specified instruction is a PHI that always
01446 /// merges together the same virtual register, return the register, otherwise
01447 /// return 0.
01448 unsigned MachineInstr::isConstantValuePHI() const {
01449   if (!isPHI())
01450     return 0;
01451   assert(getNumOperands() >= 3 &&
01452          "It's illegal to have a PHI without source operands");
01453 
01454   unsigned Reg = getOperand(1).getReg();
01455   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
01456     if (getOperand(i).getReg() != Reg)
01457       return 0;
01458   return Reg;
01459 }
01460 
01461 bool MachineInstr::hasUnmodeledSideEffects() const {
01462   if (hasProperty(MCID::UnmodeledSideEffects))
01463     return true;
01464   if (isInlineAsm()) {
01465     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
01466     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
01467       return true;
01468   }
01469 
01470   return false;
01471 }
01472 
01473 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
01474 ///
01475 bool MachineInstr::allDefsAreDead() const {
01476   for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
01477     const MachineOperand &MO = getOperand(i);
01478     if (!MO.isReg() || MO.isUse())
01479       continue;
01480     if (!MO.isDead())
01481       return false;
01482   }
01483   return true;
01484 }
01485 
01486 /// copyImplicitOps - Copy implicit register operands from specified
01487 /// instruction to this instruction.
01488 void MachineInstr::copyImplicitOps(MachineFunction &MF,
01489                                    const MachineInstr *MI) {
01490   for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
01491        i != e; ++i) {
01492     const MachineOperand &MO = MI->getOperand(i);
01493     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
01494       addOperand(MF, MO);
01495   }
01496 }
01497 
01498 void MachineInstr::dump() const {
01499 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
01500   dbgs() << "  " << *this;
01501 #endif
01502 }
01503 
01504 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
01505                          raw_ostream &CommentOS) {
01506   const LLVMContext &Ctx = MF->getFunction()->getContext();
01507   DL.print(Ctx, CommentOS);
01508 }
01509 
01510 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM,
01511                          bool SkipOpers) const {
01512   // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
01513   const MachineFunction *MF = nullptr;
01514   const MachineRegisterInfo *MRI = nullptr;
01515   if (const MachineBasicBlock *MBB = getParent()) {
01516     MF = MBB->getParent();
01517     if (!TM && MF)
01518       TM = &MF->getTarget();
01519     if (MF)
01520       MRI = &MF->getRegInfo();
01521   }
01522 
01523   // Save a list of virtual registers.
01524   SmallVector<unsigned, 8> VirtRegs;
01525 
01526   // Print explicitly defined operands on the left of an assignment syntax.
01527   unsigned StartOp = 0, e = getNumOperands();
01528   for (; StartOp < e && getOperand(StartOp).isReg() &&
01529          getOperand(StartOp).isDef() &&
01530          !getOperand(StartOp).isImplicit();
01531        ++StartOp) {
01532     if (StartOp != 0) OS << ", ";
01533     getOperand(StartOp).print(OS, TM);
01534     unsigned Reg = getOperand(StartOp).getReg();
01535     if (TargetRegisterInfo::isVirtualRegister(Reg))
01536       VirtRegs.push_back(Reg);
01537   }
01538 
01539   if (StartOp != 0)
01540     OS << " = ";
01541 
01542   // Print the opcode name.
01543   if (TM && TM->getSubtargetImpl()->getInstrInfo())
01544     OS << TM->getSubtargetImpl()->getInstrInfo()->getName(getOpcode());
01545   else
01546     OS << "UNKNOWN";
01547 
01548   if (SkipOpers)
01549     return;
01550 
01551   // Print the rest of the operands.
01552   bool OmittedAnyCallClobbers = false;
01553   bool FirstOp = true;
01554   unsigned AsmDescOp = ~0u;
01555   unsigned AsmOpCount = 0;
01556 
01557   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
01558     // Print asm string.
01559     OS << " ";
01560     getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
01561 
01562     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
01563     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
01564     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
01565       OS << " [sideeffect]";
01566     if (ExtraInfo & InlineAsm::Extra_MayLoad)
01567       OS << " [mayload]";
01568     if (ExtraInfo & InlineAsm::Extra_MayStore)
01569       OS << " [maystore]";
01570     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
01571       OS << " [alignstack]";
01572     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
01573       OS << " [attdialect]";
01574     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
01575       OS << " [inteldialect]";
01576 
01577     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
01578     FirstOp = false;
01579   }
01580 
01581 
01582   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
01583     const MachineOperand &MO = getOperand(i);
01584 
01585     if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
01586       VirtRegs.push_back(MO.getReg());
01587 
01588     // Omit call-clobbered registers which aren't used anywhere. This makes
01589     // call instructions much less noisy on targets where calls clobber lots
01590     // of registers. Don't rely on MO.isDead() because we may be called before
01591     // LiveVariables is run, or we may be looking at a non-allocatable reg.
01592     if (MF && isCall() &&
01593         MO.isReg() && MO.isImplicit() && MO.isDef()) {
01594       unsigned Reg = MO.getReg();
01595       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
01596         const MachineRegisterInfo &MRI = MF->getRegInfo();
01597         if (MRI.use_empty(Reg)) {
01598           bool HasAliasLive = false;
01599           for (MCRegAliasIterator AI(
01600                    Reg, TM->getSubtargetImpl()->getRegisterInfo(), true);
01601                AI.isValid(); ++AI) {
01602             unsigned AliasReg = *AI;
01603             if (!MRI.use_empty(AliasReg)) {
01604               HasAliasLive = true;
01605               break;
01606             }
01607           }
01608           if (!HasAliasLive) {
01609             OmittedAnyCallClobbers = true;
01610             continue;
01611           }
01612         }
01613       }
01614     }
01615 
01616     if (FirstOp) FirstOp = false; else OS << ",";
01617     OS << " ";
01618     if (i < getDesc().NumOperands) {
01619       const MCOperandInfo &MCOI = getDesc().OpInfo[i];
01620       if (MCOI.isPredicate())
01621         OS << "pred:";
01622       if (MCOI.isOptionalDef())
01623         OS << "opt:";
01624     }
01625     if (isDebugValue() && MO.isMetadata()) {
01626       // Pretty print DBG_VALUE instructions.
01627       const MDNode *MD = MO.getMetadata();
01628       if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
01629         OS << "!\"" << MDS->getString() << '\"';
01630       else
01631         MO.print(OS, TM);
01632     } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
01633       OS << TM->getSubtargetImpl()->getRegisterInfo()->getSubRegIndexName(
01634           MO.getImm());
01635     } else if (i == AsmDescOp && MO.isImm()) {
01636       // Pretty print the inline asm operand descriptor.
01637       OS << '$' << AsmOpCount++;
01638       unsigned Flag = MO.getImm();
01639       switch (InlineAsm::getKind(Flag)) {
01640       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
01641       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
01642       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
01643       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
01644       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
01645       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
01646       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
01647       }
01648 
01649       unsigned RCID = 0;
01650       if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
01651         if (TM)
01652           OS << ':'
01653              << TM->getSubtargetImpl()
01654                     ->getRegisterInfo()
01655                     ->getRegClass(RCID)
01656                     ->getName();
01657         else
01658           OS << ":RC" << RCID;
01659       }
01660 
01661       unsigned TiedTo = 0;
01662       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
01663         OS << " tiedto:$" << TiedTo;
01664 
01665       OS << ']';
01666 
01667       // Compute the index of the next operand descriptor.
01668       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
01669     } else
01670       MO.print(OS, TM);
01671   }
01672 
01673   // Briefly indicate whether any call clobbers were omitted.
01674   if (OmittedAnyCallClobbers) {
01675     if (!FirstOp) OS << ",";
01676     OS << " ...";
01677   }
01678 
01679   bool HaveSemi = false;
01680   const unsigned PrintableFlags = FrameSetup;
01681   if (Flags & PrintableFlags) {
01682     if (!HaveSemi) OS << ";"; HaveSemi = true;
01683     OS << " flags: ";
01684 
01685     if (Flags & FrameSetup)
01686       OS << "FrameSetup";
01687   }
01688 
01689   if (!memoperands_empty()) {
01690     if (!HaveSemi) OS << ";"; HaveSemi = true;
01691 
01692     OS << " mem:";
01693     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
01694          i != e; ++i) {
01695       OS << **i;
01696       if (std::next(i) != e)
01697         OS << " ";
01698     }
01699   }
01700 
01701   // Print the regclass of any virtual registers encountered.
01702   if (MRI && !VirtRegs.empty()) {
01703     if (!HaveSemi) OS << ";"; HaveSemi = true;
01704     for (unsigned i = 0; i != VirtRegs.size(); ++i) {
01705       const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
01706       OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
01707       for (unsigned j = i+1; j != VirtRegs.size();) {
01708         if (MRI->getRegClass(VirtRegs[j]) != RC) {
01709           ++j;
01710           continue;
01711         }
01712         if (VirtRegs[i] != VirtRegs[j])
01713           OS << "," << PrintReg(VirtRegs[j]);
01714         VirtRegs.erase(VirtRegs.begin()+j);
01715       }
01716     }
01717   }
01718 
01719   // Print debug location information.
01720   if (isDebugValue() && getOperand(e - 1).isMetadata()) {
01721     if (!HaveSemi) OS << ";";
01722     DIVariable DV(getOperand(e - 1).getMetadata());
01723     OS << " line no:" <<  DV.getLineNumber();
01724     if (MDNode *InlinedAt = DV.getInlinedAt()) {
01725       DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt);
01726       if (!InlinedAtDL.isUnknown() && MF) {
01727         OS << " inlined @[ ";
01728         printDebugLoc(InlinedAtDL, MF, OS);
01729         OS << " ]";
01730       }
01731     }
01732   } else if (!debugLoc.isUnknown() && MF) {
01733     if (!HaveSemi) OS << ";";
01734     OS << " dbg:";
01735     printDebugLoc(debugLoc, MF, OS);
01736   }
01737 
01738   OS << '\n';
01739 }
01740 
01741 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
01742                                      const TargetRegisterInfo *RegInfo,
01743                                      bool AddIfNotFound) {
01744   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
01745   bool hasAliases = isPhysReg &&
01746     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
01747   bool Found = false;
01748   SmallVector<unsigned,4> DeadOps;
01749   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
01750     MachineOperand &MO = getOperand(i);
01751     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
01752       continue;
01753     unsigned Reg = MO.getReg();
01754     if (!Reg)
01755       continue;
01756 
01757     if (Reg == IncomingReg) {
01758       if (!Found) {
01759         if (MO.isKill())
01760           // The register is already marked kill.
01761           return true;
01762         if (isPhysReg && isRegTiedToDefOperand(i))
01763           // Two-address uses of physregs must not be marked kill.
01764           return true;
01765         MO.setIsKill();
01766         Found = true;
01767       }
01768     } else if (hasAliases && MO.isKill() &&
01769                TargetRegisterInfo::isPhysicalRegister(Reg)) {
01770       // A super-register kill already exists.
01771       if (RegInfo->isSuperRegister(IncomingReg, Reg))
01772         return true;
01773       if (RegInfo->isSubRegister(IncomingReg, Reg))
01774         DeadOps.push_back(i);
01775     }
01776   }
01777 
01778   // Trim unneeded kill operands.
01779   while (!DeadOps.empty()) {
01780     unsigned OpIdx = DeadOps.back();
01781     if (getOperand(OpIdx).isImplicit())
01782       RemoveOperand(OpIdx);
01783     else
01784       getOperand(OpIdx).setIsKill(false);
01785     DeadOps.pop_back();
01786   }
01787 
01788   // If not found, this means an alias of one of the operands is killed. Add a
01789   // new implicit operand if required.
01790   if (!Found && AddIfNotFound) {
01791     addOperand(MachineOperand::CreateReg(IncomingReg,
01792                                          false /*IsDef*/,
01793                                          true  /*IsImp*/,
01794                                          true  /*IsKill*/));
01795     return true;
01796   }
01797   return Found;
01798 }
01799 
01800 void MachineInstr::clearRegisterKills(unsigned Reg,
01801                                       const TargetRegisterInfo *RegInfo) {
01802   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
01803     RegInfo = nullptr;
01804   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
01805     MachineOperand &MO = getOperand(i);
01806     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
01807       continue;
01808     unsigned OpReg = MO.getReg();
01809     if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg)))
01810       MO.setIsKill(false);
01811   }
01812 }
01813 
01814 bool MachineInstr::addRegisterDead(unsigned Reg,
01815                                    const TargetRegisterInfo *RegInfo,
01816                                    bool AddIfNotFound) {
01817   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
01818   bool hasAliases = isPhysReg &&
01819     MCRegAliasIterator(Reg, RegInfo, false).isValid();
01820   bool Found = false;
01821   SmallVector<unsigned,4> DeadOps;
01822   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
01823     MachineOperand &MO = getOperand(i);
01824     if (!MO.isReg() || !MO.isDef())
01825       continue;
01826     unsigned MOReg = MO.getReg();
01827     if (!MOReg)
01828       continue;
01829 
01830     if (MOReg == Reg) {
01831       MO.setIsDead();
01832       Found = true;
01833     } else if (hasAliases && MO.isDead() &&
01834                TargetRegisterInfo::isPhysicalRegister(MOReg)) {
01835       // There exists a super-register that's marked dead.
01836       if (RegInfo->isSuperRegister(Reg, MOReg))
01837         return true;
01838       if (RegInfo->isSubRegister(Reg, MOReg))
01839         DeadOps.push_back(i);
01840     }
01841   }
01842 
01843   // Trim unneeded dead operands.
01844   while (!DeadOps.empty()) {
01845     unsigned OpIdx = DeadOps.back();
01846     if (getOperand(OpIdx).isImplicit())
01847       RemoveOperand(OpIdx);
01848     else
01849       getOperand(OpIdx).setIsDead(false);
01850     DeadOps.pop_back();
01851   }
01852 
01853   // If not found, this means an alias of one of the operands is dead. Add a
01854   // new implicit operand if required.
01855   if (Found || !AddIfNotFound)
01856     return Found;
01857 
01858   addOperand(MachineOperand::CreateReg(Reg,
01859                                        true  /*IsDef*/,
01860                                        true  /*IsImp*/,
01861                                        false /*IsKill*/,
01862                                        true  /*IsDead*/));
01863   return true;
01864 }
01865 
01866 void MachineInstr::addRegisterDefined(unsigned Reg,
01867                                       const TargetRegisterInfo *RegInfo) {
01868   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
01869     MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
01870     if (MO)
01871       return;
01872   } else {
01873     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
01874       const MachineOperand &MO = getOperand(i);
01875       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
01876           MO.getSubReg() == 0)
01877         return;
01878     }
01879   }
01880   addOperand(MachineOperand::CreateReg(Reg,
01881                                        true  /*IsDef*/,
01882                                        true  /*IsImp*/));
01883 }
01884 
01885 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
01886                                          const TargetRegisterInfo &TRI) {
01887   bool HasRegMask = false;
01888   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
01889     MachineOperand &MO = getOperand(i);
01890     if (MO.isRegMask()) {
01891       HasRegMask = true;
01892       continue;
01893     }
01894     if (!MO.isReg() || !MO.isDef()) continue;
01895     unsigned Reg = MO.getReg();
01896     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
01897     bool Dead = true;
01898     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
01899          I != E; ++I)
01900       if (TRI.regsOverlap(*I, Reg)) {
01901         Dead = false;
01902         break;
01903       }
01904     // If there are no uses, including partial uses, the def is dead.
01905     if (Dead) MO.setIsDead();
01906   }
01907 
01908   // This is a call with a register mask operand.
01909   // Mask clobbers are always dead, so add defs for the non-dead defines.
01910   if (HasRegMask)
01911     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
01912          I != E; ++I)
01913       addRegisterDefined(*I, &TRI);
01914 }
01915 
01916 unsigned
01917 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
01918   // Build up a buffer of hash code components.
01919   SmallVector<size_t, 8> HashComponents;
01920   HashComponents.reserve(MI->getNumOperands() + 1);
01921   HashComponents.push_back(MI->getOpcode());
01922   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
01923     const MachineOperand &MO = MI->getOperand(i);
01924     if (MO.isReg() && MO.isDef() &&
01925         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
01926       continue;  // Skip virtual register defs.
01927 
01928     HashComponents.push_back(hash_value(MO));
01929   }
01930   return hash_combine_range(HashComponents.begin(), HashComponents.end());
01931 }
01932 
01933 void MachineInstr::emitError(StringRef Msg) const {
01934   // Find the source location cookie.
01935   unsigned LocCookie = 0;
01936   const MDNode *LocMD = nullptr;
01937   for (unsigned i = getNumOperands(); i != 0; --i) {
01938     if (getOperand(i-1).isMetadata() &&
01939         (LocMD = getOperand(i-1).getMetadata()) &&
01940         LocMD->getNumOperands() != 0) {
01941       if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
01942         LocCookie = CI->getZExtValue();
01943         break;
01944       }
01945     }
01946   }
01947 
01948   if (const MachineBasicBlock *MBB = getParent())
01949     if (const MachineFunction *MF = MBB->getParent())
01950       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
01951   report_fatal_error(Msg);
01952 }