LLVM API Documentation

MachineVerifier.cpp
Go to the documentation of this file.
00001 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // Pass to verify generated machine code. The following is checked:
00011 //
00012 // Operand counts: All explicit operands must be present.
00013 //
00014 // Register classes: All physical and virtual register operands must be
00015 // compatible with the register class required by the instruction descriptor.
00016 //
00017 // Register live intervals: Registers must be defined only once, and must be
00018 // defined before use.
00019 //
00020 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
00021 // command-line option -verify-machineinstrs, or by defining the environment
00022 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
00023 // the verifier errors.
00024 //===----------------------------------------------------------------------===//
00025 
00026 #include "llvm/CodeGen/Passes.h"
00027 #include "llvm/ADT/DenseSet.h"
00028 #include "llvm/ADT/DepthFirstIterator.h"
00029 #include "llvm/ADT/SetOperations.h"
00030 #include "llvm/ADT/SmallVector.h"
00031 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
00032 #include "llvm/CodeGen/LiveStackAnalysis.h"
00033 #include "llvm/CodeGen/LiveVariables.h"
00034 #include "llvm/CodeGen/MachineFrameInfo.h"
00035 #include "llvm/CodeGen/MachineFunctionPass.h"
00036 #include "llvm/CodeGen/MachineMemOperand.h"
00037 #include "llvm/CodeGen/MachineRegisterInfo.h"
00038 #include "llvm/IR/BasicBlock.h"
00039 #include "llvm/IR/InlineAsm.h"
00040 #include "llvm/IR/Instructions.h"
00041 #include "llvm/MC/MCAsmInfo.h"
00042 #include "llvm/Support/Debug.h"
00043 #include "llvm/Support/ErrorHandling.h"
00044 #include "llvm/Support/FileSystem.h"
00045 #include "llvm/Support/raw_ostream.h"
00046 #include "llvm/Target/TargetInstrInfo.h"
00047 #include "llvm/Target/TargetMachine.h"
00048 #include "llvm/Target/TargetRegisterInfo.h"
00049 #include "llvm/Target/TargetSubtargetInfo.h"
00050 using namespace llvm;
00051 
00052 namespace {
00053   struct MachineVerifier {
00054 
00055     MachineVerifier(Pass *pass, const char *b) :
00056       PASS(pass),
00057       Banner(b),
00058       OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
00059       {}
00060 
00061     bool runOnMachineFunction(MachineFunction &MF);
00062 
00063     Pass *const PASS;
00064     const char *Banner;
00065     const char *const OutFileName;
00066     raw_ostream *OS;
00067     const MachineFunction *MF;
00068     const TargetMachine *TM;
00069     const TargetInstrInfo *TII;
00070     const TargetRegisterInfo *TRI;
00071     const MachineRegisterInfo *MRI;
00072 
00073     unsigned foundErrors;
00074 
00075     typedef SmallVector<unsigned, 16> RegVector;
00076     typedef SmallVector<const uint32_t*, 4> RegMaskVector;
00077     typedef DenseSet<unsigned> RegSet;
00078     typedef DenseMap<unsigned, const MachineInstr*> RegMap;
00079     typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet;
00080 
00081     const MachineInstr *FirstTerminator;
00082     BlockSet FunctionBlocks;
00083 
00084     BitVector regsReserved;
00085     RegSet regsLive;
00086     RegVector regsDefined, regsDead, regsKilled;
00087     RegMaskVector regMasks;
00088     RegSet regsLiveInButUnused;
00089 
00090     SlotIndex lastIndex;
00091 
00092     // Add Reg and any sub-registers to RV
00093     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
00094       RV.push_back(Reg);
00095       if (TargetRegisterInfo::isPhysicalRegister(Reg))
00096         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
00097           RV.push_back(*SubRegs);
00098     }
00099 
00100     struct BBInfo {
00101       // Is this MBB reachable from the MF entry point?
00102       bool reachable;
00103 
00104       // Vregs that must be live in because they are used without being
00105       // defined. Map value is the user.
00106       RegMap vregsLiveIn;
00107 
00108       // Regs killed in MBB. They may be defined again, and will then be in both
00109       // regsKilled and regsLiveOut.
00110       RegSet regsKilled;
00111 
00112       // Regs defined in MBB and live out. Note that vregs passing through may
00113       // be live out without being mentioned here.
00114       RegSet regsLiveOut;
00115 
00116       // Vregs that pass through MBB untouched. This set is disjoint from
00117       // regsKilled and regsLiveOut.
00118       RegSet vregsPassed;
00119 
00120       // Vregs that must pass through MBB because they are needed by a successor
00121       // block. This set is disjoint from regsLiveOut.
00122       RegSet vregsRequired;
00123 
00124       // Set versions of block's predecessor and successor lists.
00125       BlockSet Preds, Succs;
00126 
00127       BBInfo() : reachable(false) {}
00128 
00129       // Add register to vregsPassed if it belongs there. Return true if
00130       // anything changed.
00131       bool addPassed(unsigned Reg) {
00132         if (!TargetRegisterInfo::isVirtualRegister(Reg))
00133           return false;
00134         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
00135           return false;
00136         return vregsPassed.insert(Reg).second;
00137       }
00138 
00139       // Same for a full set.
00140       bool addPassed(const RegSet &RS) {
00141         bool changed = false;
00142         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
00143           if (addPassed(*I))
00144             changed = true;
00145         return changed;
00146       }
00147 
00148       // Add register to vregsRequired if it belongs there. Return true if
00149       // anything changed.
00150       bool addRequired(unsigned Reg) {
00151         if (!TargetRegisterInfo::isVirtualRegister(Reg))
00152           return false;
00153         if (regsLiveOut.count(Reg))
00154           return false;
00155         return vregsRequired.insert(Reg).second;
00156       }
00157 
00158       // Same for a full set.
00159       bool addRequired(const RegSet &RS) {
00160         bool changed = false;
00161         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
00162           if (addRequired(*I))
00163             changed = true;
00164         return changed;
00165       }
00166 
00167       // Same for a full map.
00168       bool addRequired(const RegMap &RM) {
00169         bool changed = false;
00170         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
00171           if (addRequired(I->first))
00172             changed = true;
00173         return changed;
00174       }
00175 
00176       // Live-out registers are either in regsLiveOut or vregsPassed.
00177       bool isLiveOut(unsigned Reg) const {
00178         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
00179       }
00180     };
00181 
00182     // Extra register info per MBB.
00183     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
00184 
00185     bool isReserved(unsigned Reg) {
00186       return Reg < regsReserved.size() && regsReserved.test(Reg);
00187     }
00188 
00189     bool isAllocatable(unsigned Reg) {
00190       return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg);
00191     }
00192 
00193     // Analysis information if available
00194     LiveVariables *LiveVars;
00195     LiveIntervals *LiveInts;
00196     LiveStacks *LiveStks;
00197     SlotIndexes *Indexes;
00198 
00199     void visitMachineFunctionBefore();
00200     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
00201     void visitMachineBundleBefore(const MachineInstr *MI);
00202     void visitMachineInstrBefore(const MachineInstr *MI);
00203     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
00204     void visitMachineInstrAfter(const MachineInstr *MI);
00205     void visitMachineBundleAfter(const MachineInstr *MI);
00206     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
00207     void visitMachineFunctionAfter();
00208 
00209     void report(const char *msg, const MachineFunction *MF);
00210     void report(const char *msg, const MachineBasicBlock *MBB);
00211     void report(const char *msg, const MachineInstr *MI);
00212     void report(const char *msg, const MachineOperand *MO, unsigned MONum);
00213     void report(const char *msg, const MachineFunction *MF,
00214                 const LiveInterval &LI);
00215     void report(const char *msg, const MachineBasicBlock *MBB,
00216                 const LiveInterval &LI);
00217     void report(const char *msg, const MachineFunction *MF,
00218                 const LiveRange &LR);
00219     void report(const char *msg, const MachineBasicBlock *MBB,
00220                 const LiveRange &LR);
00221 
00222     void verifyInlineAsm(const MachineInstr *MI);
00223 
00224     void checkLiveness(const MachineOperand *MO, unsigned MONum);
00225     void markReachable(const MachineBasicBlock *MBB);
00226     void calcRegsPassed();
00227     void checkPHIOps(const MachineBasicBlock *MBB);
00228 
00229     void calcRegsRequired();
00230     void verifyLiveVariables();
00231     void verifyLiveIntervals();
00232     void verifyLiveInterval(const LiveInterval&);
00233     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned);
00234     void verifyLiveRangeSegment(const LiveRange&,
00235                                 const LiveRange::const_iterator I, unsigned);
00236     void verifyLiveRange(const LiveRange&, unsigned);
00237 
00238     void verifyStackFrame();
00239   };
00240 
00241   struct MachineVerifierPass : public MachineFunctionPass {
00242     static char ID; // Pass ID, replacement for typeid
00243     const char *const Banner;
00244 
00245     MachineVerifierPass(const char *b = nullptr)
00246       : MachineFunctionPass(ID), Banner(b) {
00247         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
00248       }
00249 
00250     void getAnalysisUsage(AnalysisUsage &AU) const override {
00251       AU.setPreservesAll();
00252       MachineFunctionPass::getAnalysisUsage(AU);
00253     }
00254 
00255     bool runOnMachineFunction(MachineFunction &MF) override {
00256       MF.verify(this, Banner);
00257       return false;
00258     }
00259   };
00260 
00261 }
00262 
00263 char MachineVerifierPass::ID = 0;
00264 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
00265                 "Verify generated machine code", false, false)
00266 
00267 FunctionPass *llvm::createMachineVerifierPass(const char *Banner) {
00268   return new MachineVerifierPass(Banner);
00269 }
00270 
00271 void MachineFunction::verify(Pass *p, const char *Banner) const {
00272   MachineVerifier(p, Banner)
00273     .runOnMachineFunction(const_cast<MachineFunction&>(*this));
00274 }
00275 
00276 bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
00277   raw_ostream *OutFile = nullptr;
00278   if (OutFileName) {
00279     std::error_code EC;
00280     OutFile = new raw_fd_ostream(OutFileName, EC,
00281                                  sys::fs::F_Append | sys::fs::F_Text);
00282     if (EC) {
00283       errs() << "Error opening '" << OutFileName << "': " << EC.message()
00284              << '\n';
00285       exit(1);
00286     }
00287 
00288     OS = OutFile;
00289   } else {
00290     OS = &errs();
00291   }
00292 
00293   foundErrors = 0;
00294 
00295   this->MF = &MF;
00296   TM = &MF.getTarget();
00297   TII = TM->getSubtargetImpl()->getInstrInfo();
00298   TRI = TM->getSubtargetImpl()->getRegisterInfo();
00299   MRI = &MF.getRegInfo();
00300 
00301   LiveVars = nullptr;
00302   LiveInts = nullptr;
00303   LiveStks = nullptr;
00304   Indexes = nullptr;
00305   if (PASS) {
00306     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
00307     // We don't want to verify LiveVariables if LiveIntervals is available.
00308     if (!LiveInts)
00309       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
00310     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
00311     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
00312   }
00313 
00314   visitMachineFunctionBefore();
00315   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
00316        MFI!=MFE; ++MFI) {
00317     visitMachineBasicBlockBefore(MFI);
00318     // Keep track of the current bundle header.
00319     const MachineInstr *CurBundle = nullptr;
00320     // Do we expect the next instruction to be part of the same bundle?
00321     bool InBundle = false;
00322 
00323     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
00324            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
00325       if (MBBI->getParent() != MFI) {
00326         report("Bad instruction parent pointer", MFI);
00327         *OS << "Instruction: " << *MBBI;
00328         continue;
00329       }
00330 
00331       // Check for consistent bundle flags.
00332       if (InBundle && !MBBI->isBundledWithPred())
00333         report("Missing BundledPred flag, "
00334                "BundledSucc was set on predecessor", MBBI);
00335       if (!InBundle && MBBI->isBundledWithPred())
00336         report("BundledPred flag is set, "
00337                "but BundledSucc not set on predecessor", MBBI);
00338 
00339       // Is this a bundle header?
00340       if (!MBBI->isInsideBundle()) {
00341         if (CurBundle)
00342           visitMachineBundleAfter(CurBundle);
00343         CurBundle = MBBI;
00344         visitMachineBundleBefore(CurBundle);
00345       } else if (!CurBundle)
00346         report("No bundle header", MBBI);
00347       visitMachineInstrBefore(MBBI);
00348       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
00349         visitMachineOperand(&MBBI->getOperand(I), I);
00350       visitMachineInstrAfter(MBBI);
00351 
00352       // Was this the last bundled instruction?
00353       InBundle = MBBI->isBundledWithSucc();
00354     }
00355     if (CurBundle)
00356       visitMachineBundleAfter(CurBundle);
00357     if (InBundle)
00358       report("BundledSucc flag set on last instruction in block", &MFI->back());
00359     visitMachineBasicBlockAfter(MFI);
00360   }
00361   visitMachineFunctionAfter();
00362 
00363   if (OutFile)
00364     delete OutFile;
00365   else if (foundErrors)
00366     report_fatal_error("Found "+Twine(foundErrors)+" machine code errors.");
00367 
00368   // Clean up.
00369   regsLive.clear();
00370   regsDefined.clear();
00371   regsDead.clear();
00372   regsKilled.clear();
00373   regMasks.clear();
00374   regsLiveInButUnused.clear();
00375   MBBInfoMap.clear();
00376 
00377   return false;                 // no changes
00378 }
00379 
00380 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
00381   assert(MF);
00382   *OS << '\n';
00383   if (!foundErrors++) {
00384     if (Banner)
00385       *OS << "# " << Banner << '\n';
00386     MF->print(*OS, Indexes);
00387   }
00388   *OS << "*** Bad machine code: " << msg << " ***\n"
00389       << "- function:    " << MF->getName() << "\n";
00390 }
00391 
00392 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
00393   assert(MBB);
00394   report(msg, MBB->getParent());
00395   *OS << "- basic block: BB#" << MBB->getNumber()
00396       << ' ' << MBB->getName()
00397       << " (" << (const void*)MBB << ')';
00398   if (Indexes)
00399     *OS << " [" << Indexes->getMBBStartIdx(MBB)
00400         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
00401   *OS << '\n';
00402 }
00403 
00404 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
00405   assert(MI);
00406   report(msg, MI->getParent());
00407   *OS << "- instruction: ";
00408   if (Indexes && Indexes->hasIndex(MI))
00409     *OS << Indexes->getInstructionIndex(MI) << '\t';
00410   MI->print(*OS, TM);
00411 }
00412 
00413 void MachineVerifier::report(const char *msg,
00414                              const MachineOperand *MO, unsigned MONum) {
00415   assert(MO);
00416   report(msg, MO->getParent());
00417   *OS << "- operand " << MONum << ":   ";
00418   MO->print(*OS, TM);
00419   *OS << "\n";
00420 }
00421 
00422 void MachineVerifier::report(const char *msg, const MachineFunction *MF,
00423                              const LiveInterval &LI) {
00424   report(msg, MF);
00425   *OS << "- interval:    " << LI << '\n';
00426 }
00427 
00428 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB,
00429                              const LiveInterval &LI) {
00430   report(msg, MBB);
00431   *OS << "- interval:    " << LI << '\n';
00432 }
00433 
00434 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB,
00435                              const LiveRange &LR) {
00436   report(msg, MBB);
00437   *OS << "- liverange:    " << LR << "\n";
00438 }
00439 
00440 void MachineVerifier::report(const char *msg, const MachineFunction *MF,
00441                              const LiveRange &LR) {
00442   report(msg, MF);
00443   *OS << "- liverange:    " << LR << "\n";
00444 }
00445 
00446 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
00447   BBInfo &MInfo = MBBInfoMap[MBB];
00448   if (!MInfo.reachable) {
00449     MInfo.reachable = true;
00450     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
00451            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
00452       markReachable(*SuI);
00453   }
00454 }
00455 
00456 void MachineVerifier::visitMachineFunctionBefore() {
00457   lastIndex = SlotIndex();
00458   regsReserved = MRI->getReservedRegs();
00459 
00460   // A sub-register of a reserved register is also reserved
00461   for (int Reg = regsReserved.find_first(); Reg>=0;
00462        Reg = regsReserved.find_next(Reg)) {
00463     for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
00464       // FIXME: This should probably be:
00465       // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register");
00466       regsReserved.set(*SubRegs);
00467     }
00468   }
00469 
00470   markReachable(&MF->front());
00471 
00472   // Build a set of the basic blocks in the function.
00473   FunctionBlocks.clear();
00474   for (const auto &MBB : *MF) {
00475     FunctionBlocks.insert(&MBB);
00476     BBInfo &MInfo = MBBInfoMap[&MBB];
00477 
00478     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
00479     if (MInfo.Preds.size() != MBB.pred_size())
00480       report("MBB has duplicate entries in its predecessor list.", &MBB);
00481 
00482     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
00483     if (MInfo.Succs.size() != MBB.succ_size())
00484       report("MBB has duplicate entries in its successor list.", &MBB);
00485   }
00486 
00487   // Check that the register use lists are sane.
00488   MRI->verifyUseLists();
00489 
00490   verifyStackFrame();
00491 }
00492 
00493 // Does iterator point to a and b as the first two elements?
00494 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
00495                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
00496   if (*i == a)
00497     return *++i == b;
00498   if (*i == b)
00499     return *++i == a;
00500   return false;
00501 }
00502 
00503 void
00504 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
00505   FirstTerminator = nullptr;
00506 
00507   if (MRI->isSSA()) {
00508     // If this block has allocatable physical registers live-in, check that
00509     // it is an entry block or landing pad.
00510     for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
00511            LE = MBB->livein_end();
00512          LI != LE; ++LI) {
00513       unsigned reg = *LI;
00514       if (isAllocatable(reg) && !MBB->isLandingPad() &&
00515           MBB != MBB->getParent()->begin()) {
00516         report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB);
00517       }
00518     }
00519   }
00520 
00521   // Count the number of landing pad successors.
00522   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
00523   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
00524        E = MBB->succ_end(); I != E; ++I) {
00525     if ((*I)->isLandingPad())
00526       LandingPadSuccs.insert(*I);
00527     if (!FunctionBlocks.count(*I))
00528       report("MBB has successor that isn't part of the function.", MBB);
00529     if (!MBBInfoMap[*I].Preds.count(MBB)) {
00530       report("Inconsistent CFG", MBB);
00531       *OS << "MBB is not in the predecessor list of the successor BB#"
00532           << (*I)->getNumber() << ".\n";
00533     }
00534   }
00535 
00536   // Check the predecessor list.
00537   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
00538        E = MBB->pred_end(); I != E; ++I) {
00539     if (!FunctionBlocks.count(*I))
00540       report("MBB has predecessor that isn't part of the function.", MBB);
00541     if (!MBBInfoMap[*I].Succs.count(MBB)) {
00542       report("Inconsistent CFG", MBB);
00543       *OS << "MBB is not in the successor list of the predecessor BB#"
00544           << (*I)->getNumber() << ".\n";
00545     }
00546   }
00547 
00548   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
00549   const BasicBlock *BB = MBB->getBasicBlock();
00550   if (LandingPadSuccs.size() > 1 &&
00551       !(AsmInfo &&
00552         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
00553         BB && isa<SwitchInst>(BB->getTerminator())))
00554     report("MBB has more than one landing pad successor", MBB);
00555 
00556   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
00557   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
00558   SmallVector<MachineOperand, 4> Cond;
00559   if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
00560                           TBB, FBB, Cond)) {
00561     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
00562     // check whether its answers match up with reality.
00563     if (!TBB && !FBB) {
00564       // Block falls through to its successor.
00565       MachineFunction::const_iterator MBBI = MBB;
00566       ++MBBI;
00567       if (MBBI == MF->end()) {
00568         // It's possible that the block legitimately ends with a noreturn
00569         // call or an unreachable, in which case it won't actually fall
00570         // out the bottom of the function.
00571       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
00572         // It's possible that the block legitimately ends with a noreturn
00573         // call or an unreachable, in which case it won't actuall fall
00574         // out of the block.
00575       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
00576         report("MBB exits via unconditional fall-through but doesn't have "
00577                "exactly one CFG successor!", MBB);
00578       } else if (!MBB->isSuccessor(MBBI)) {
00579         report("MBB exits via unconditional fall-through but its successor "
00580                "differs from its CFG successor!", MBB);
00581       }
00582       if (!MBB->empty() && MBB->back().isBarrier() &&
00583           !TII->isPredicated(&MBB->back())) {
00584         report("MBB exits via unconditional fall-through but ends with a "
00585                "barrier instruction!", MBB);
00586       }
00587       if (!Cond.empty()) {
00588         report("MBB exits via unconditional fall-through but has a condition!",
00589                MBB);
00590       }
00591     } else if (TBB && !FBB && Cond.empty()) {
00592       // Block unconditionally branches somewhere.
00593       if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
00594         report("MBB exits via unconditional branch but doesn't have "
00595                "exactly one CFG successor!", MBB);
00596       } else if (!MBB->isSuccessor(TBB)) {
00597         report("MBB exits via unconditional branch but the CFG "
00598                "successor doesn't match the actual successor!", MBB);
00599       }
00600       if (MBB->empty()) {
00601         report("MBB exits via unconditional branch but doesn't contain "
00602                "any instructions!", MBB);
00603       } else if (!MBB->back().isBarrier()) {
00604         report("MBB exits via unconditional branch but doesn't end with a "
00605                "barrier instruction!", MBB);
00606       } else if (!MBB->back().isTerminator()) {
00607         report("MBB exits via unconditional branch but the branch isn't a "
00608                "terminator instruction!", MBB);
00609       }
00610     } else if (TBB && !FBB && !Cond.empty()) {
00611       // Block conditionally branches somewhere, otherwise falls through.
00612       MachineFunction::const_iterator MBBI = MBB;
00613       ++MBBI;
00614       if (MBBI == MF->end()) {
00615         report("MBB conditionally falls through out of function!", MBB);
00616       } else if (MBB->succ_size() == 1) {
00617         // A conditional branch with only one successor is weird, but allowed.
00618         if (&*MBBI != TBB)
00619           report("MBB exits via conditional branch/fall-through but only has "
00620                  "one CFG successor!", MBB);
00621         else if (TBB != *MBB->succ_begin())
00622           report("MBB exits via conditional branch/fall-through but the CFG "
00623                  "successor don't match the actual successor!", MBB);
00624       } else if (MBB->succ_size() != 2) {
00625         report("MBB exits via conditional branch/fall-through but doesn't have "
00626                "exactly two CFG successors!", MBB);
00627       } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
00628         report("MBB exits via conditional branch/fall-through but the CFG "
00629                "successors don't match the actual successors!", MBB);
00630       }
00631       if (MBB->empty()) {
00632         report("MBB exits via conditional branch/fall-through but doesn't "
00633                "contain any instructions!", MBB);
00634       } else if (MBB->back().isBarrier()) {
00635         report("MBB exits via conditional branch/fall-through but ends with a "
00636                "barrier instruction!", MBB);
00637       } else if (!MBB->back().isTerminator()) {
00638         report("MBB exits via conditional branch/fall-through but the branch "
00639                "isn't a terminator instruction!", MBB);
00640       }
00641     } else if (TBB && FBB) {
00642       // Block conditionally branches somewhere, otherwise branches
00643       // somewhere else.
00644       if (MBB->succ_size() == 1) {
00645         // A conditional branch with only one successor is weird, but allowed.
00646         if (FBB != TBB)
00647           report("MBB exits via conditional branch/branch through but only has "
00648                  "one CFG successor!", MBB);
00649         else if (TBB != *MBB->succ_begin())
00650           report("MBB exits via conditional branch/branch through but the CFG "
00651                  "successor don't match the actual successor!", MBB);
00652       } else if (MBB->succ_size() != 2) {
00653         report("MBB exits via conditional branch/branch but doesn't have "
00654                "exactly two CFG successors!", MBB);
00655       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
00656         report("MBB exits via conditional branch/branch but the CFG "
00657                "successors don't match the actual successors!", MBB);
00658       }
00659       if (MBB->empty()) {
00660         report("MBB exits via conditional branch/branch but doesn't "
00661                "contain any instructions!", MBB);
00662       } else if (!MBB->back().isBarrier()) {
00663         report("MBB exits via conditional branch/branch but doesn't end with a "
00664                "barrier instruction!", MBB);
00665       } else if (!MBB->back().isTerminator()) {
00666         report("MBB exits via conditional branch/branch but the branch "
00667                "isn't a terminator instruction!", MBB);
00668       }
00669       if (Cond.empty()) {
00670         report("MBB exits via conditinal branch/branch but there's no "
00671                "condition!", MBB);
00672       }
00673     } else {
00674       report("AnalyzeBranch returned invalid data!", MBB);
00675     }
00676   }
00677 
00678   regsLive.clear();
00679   for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
00680          E = MBB->livein_end(); I != E; ++I) {
00681     if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
00682       report("MBB live-in list contains non-physical register", MBB);
00683       continue;
00684     }
00685     for (MCSubRegIterator SubRegs(*I, TRI, /*IncludeSelf=*/true);
00686          SubRegs.isValid(); ++SubRegs)
00687       regsLive.insert(*SubRegs);
00688   }
00689   regsLiveInButUnused = regsLive;
00690 
00691   const MachineFrameInfo *MFI = MF->getFrameInfo();
00692   assert(MFI && "Function has no frame info");
00693   BitVector PR = MFI->getPristineRegs(MBB);
00694   for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
00695     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
00696          SubRegs.isValid(); ++SubRegs)
00697       regsLive.insert(*SubRegs);
00698   }
00699 
00700   regsKilled.clear();
00701   regsDefined.clear();
00702 
00703   if (Indexes)
00704     lastIndex = Indexes->getMBBStartIdx(MBB);
00705 }
00706 
00707 // This function gets called for all bundle headers, including normal
00708 // stand-alone unbundled instructions.
00709 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
00710   if (Indexes && Indexes->hasIndex(MI)) {
00711     SlotIndex idx = Indexes->getInstructionIndex(MI);
00712     if (!(idx > lastIndex)) {
00713       report("Instruction index out of order", MI);
00714       *OS << "Last instruction was at " << lastIndex << '\n';
00715     }
00716     lastIndex = idx;
00717   }
00718 
00719   // Ensure non-terminators don't follow terminators.
00720   // Ignore predicated terminators formed by if conversion.
00721   // FIXME: If conversion shouldn't need to violate this rule.
00722   if (MI->isTerminator() && !TII->isPredicated(MI)) {
00723     if (!FirstTerminator)
00724       FirstTerminator = MI;
00725   } else if (FirstTerminator) {
00726     report("Non-terminator instruction after the first terminator", MI);
00727     *OS << "First terminator was:\t" << *FirstTerminator;
00728   }
00729 }
00730 
00731 // The operands on an INLINEASM instruction must follow a template.
00732 // Verify that the flag operands make sense.
00733 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
00734   // The first two operands on INLINEASM are the asm string and global flags.
00735   if (MI->getNumOperands() < 2) {
00736     report("Too few operands on inline asm", MI);
00737     return;
00738   }
00739   if (!MI->getOperand(0).isSymbol())
00740     report("Asm string must be an external symbol", MI);
00741   if (!MI->getOperand(1).isImm())
00742     report("Asm flags must be an immediate", MI);
00743   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
00744   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16.
00745   if (!isUInt<5>(MI->getOperand(1).getImm()))
00746     report("Unknown asm flags", &MI->getOperand(1), 1);
00747 
00748   assert(InlineAsm::MIOp_FirstOperand == 2 && "Asm format changed");
00749 
00750   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
00751   unsigned NumOps;
00752   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
00753     const MachineOperand &MO = MI->getOperand(OpNo);
00754     // There may be implicit ops after the fixed operands.
00755     if (!MO.isImm())
00756       break;
00757     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
00758   }
00759 
00760   if (OpNo > MI->getNumOperands())
00761     report("Missing operands in last group", MI);
00762 
00763   // An optional MDNode follows the groups.
00764   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
00765     ++OpNo;
00766 
00767   // All trailing operands must be implicit registers.
00768   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
00769     const MachineOperand &MO = MI->getOperand(OpNo);
00770     if (!MO.isReg() || !MO.isImplicit())
00771       report("Expected implicit register after groups", &MO, OpNo);
00772   }
00773 }
00774 
00775 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
00776   const MCInstrDesc &MCID = MI->getDesc();
00777   if (MI->getNumOperands() < MCID.getNumOperands()) {
00778     report("Too few operands", MI);
00779     *OS << MCID.getNumOperands() << " operands expected, but "
00780         << MI->getNumOperands() << " given.\n";
00781   }
00782 
00783   // Check the tied operands.
00784   if (MI->isInlineAsm())
00785     verifyInlineAsm(MI);
00786 
00787   // Check the MachineMemOperands for basic consistency.
00788   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
00789        E = MI->memoperands_end(); I != E; ++I) {
00790     if ((*I)->isLoad() && !MI->mayLoad())
00791       report("Missing mayLoad flag", MI);
00792     if ((*I)->isStore() && !MI->mayStore())
00793       report("Missing mayStore flag", MI);
00794   }
00795 
00796   // Debug values must not have a slot index.
00797   // Other instructions must have one, unless they are inside a bundle.
00798   if (LiveInts) {
00799     bool mapped = !LiveInts->isNotInMIMap(MI);
00800     if (MI->isDebugValue()) {
00801       if (mapped)
00802         report("Debug instruction has a slot index", MI);
00803     } else if (MI->isInsideBundle()) {
00804       if (mapped)
00805         report("Instruction inside bundle has a slot index", MI);
00806     } else {
00807       if (!mapped)
00808         report("Missing slot index", MI);
00809     }
00810   }
00811 
00812   StringRef ErrorInfo;
00813   if (!TII->verifyInstruction(MI, ErrorInfo))
00814     report(ErrorInfo.data(), MI);
00815 }
00816 
00817 void
00818 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
00819   const MachineInstr *MI = MO->getParent();
00820   const MCInstrDesc &MCID = MI->getDesc();
00821 
00822   // The first MCID.NumDefs operands must be explicit register defines
00823   if (MONum < MCID.getNumDefs()) {
00824     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
00825     if (!MO->isReg())
00826       report("Explicit definition must be a register", MO, MONum);
00827     else if (!MO->isDef() && !MCOI.isOptionalDef())
00828       report("Explicit definition marked as use", MO, MONum);
00829     else if (MO->isImplicit())
00830       report("Explicit definition marked as implicit", MO, MONum);
00831   } else if (MONum < MCID.getNumOperands()) {
00832     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
00833     // Don't check if it's the last operand in a variadic instruction. See,
00834     // e.g., LDM_RET in the arm back end.
00835     if (MO->isReg() &&
00836         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
00837       if (MO->isDef() && !MCOI.isOptionalDef())
00838         report("Explicit operand marked as def", MO, MONum);
00839       if (MO->isImplicit())
00840         report("Explicit operand marked as implicit", MO, MONum);
00841     }
00842 
00843     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
00844     if (TiedTo != -1) {
00845       if (!MO->isReg())
00846         report("Tied use must be a register", MO, MONum);
00847       else if (!MO->isTied())
00848         report("Operand should be tied", MO, MONum);
00849       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
00850         report("Tied def doesn't match MCInstrDesc", MO, MONum);
00851     } else if (MO->isReg() && MO->isTied())
00852       report("Explicit operand should not be tied", MO, MONum);
00853   } else {
00854     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
00855     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
00856       report("Extra explicit operand on non-variadic instruction", MO, MONum);
00857   }
00858 
00859   switch (MO->getType()) {
00860   case MachineOperand::MO_Register: {
00861     const unsigned Reg = MO->getReg();
00862     if (!Reg)
00863       return;
00864     if (MRI->tracksLiveness() && !MI->isDebugValue())
00865       checkLiveness(MO, MONum);
00866 
00867     // Verify the consistency of tied operands.
00868     if (MO->isTied()) {
00869       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
00870       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
00871       if (!OtherMO.isReg())
00872         report("Must be tied to a register", MO, MONum);
00873       if (!OtherMO.isTied())
00874         report("Missing tie flags on tied operand", MO, MONum);
00875       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
00876         report("Inconsistent tie links", MO, MONum);
00877       if (MONum < MCID.getNumDefs()) {
00878         if (OtherIdx < MCID.getNumOperands()) {
00879           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
00880             report("Explicit def tied to explicit use without tie constraint",
00881                    MO, MONum);
00882         } else {
00883           if (!OtherMO.isImplicit())
00884             report("Explicit def should be tied to implicit use", MO, MONum);
00885         }
00886       }
00887     }
00888 
00889     // Verify two-address constraints after leaving SSA form.
00890     unsigned DefIdx;
00891     if (!MRI->isSSA() && MO->isUse() &&
00892         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
00893         Reg != MI->getOperand(DefIdx).getReg())
00894       report("Two-address instruction operands must be identical", MO, MONum);
00895 
00896     // Check register classes.
00897     if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
00898       unsigned SubIdx = MO->getSubReg();
00899 
00900       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
00901         if (SubIdx) {
00902           report("Illegal subregister index for physical register", MO, MONum);
00903           return;
00904         }
00905         if (const TargetRegisterClass *DRC =
00906               TII->getRegClass(MCID, MONum, TRI, *MF)) {
00907           if (!DRC->contains(Reg)) {
00908             report("Illegal physical register for instruction", MO, MONum);
00909             *OS << TRI->getName(Reg) << " is not a "
00910                 << DRC->getName() << " register.\n";
00911           }
00912         }
00913       } else {
00914         // Virtual register.
00915         const TargetRegisterClass *RC = MRI->getRegClass(Reg);
00916         if (SubIdx) {
00917           const TargetRegisterClass *SRC =
00918             TRI->getSubClassWithSubReg(RC, SubIdx);
00919           if (!SRC) {
00920             report("Invalid subregister index for virtual register", MO, MONum);
00921             *OS << "Register class " << RC->getName()
00922                 << " does not support subreg index " << SubIdx << "\n";
00923             return;
00924           }
00925           if (RC != SRC) {
00926             report("Invalid register class for subregister index", MO, MONum);
00927             *OS << "Register class " << RC->getName()
00928                 << " does not fully support subreg index " << SubIdx << "\n";
00929             return;
00930           }
00931         }
00932         if (const TargetRegisterClass *DRC =
00933               TII->getRegClass(MCID, MONum, TRI, *MF)) {
00934           if (SubIdx) {
00935             const TargetRegisterClass *SuperRC =
00936               TRI->getLargestLegalSuperClass(RC);
00937             if (!SuperRC) {
00938               report("No largest legal super class exists.", MO, MONum);
00939               return;
00940             }
00941             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
00942             if (!DRC) {
00943               report("No matching super-reg register class.", MO, MONum);
00944               return;
00945             }
00946           }
00947           if (!RC->hasSuperClassEq(DRC)) {
00948             report("Illegal virtual register for instruction", MO, MONum);
00949             *OS << "Expected a " << DRC->getName() << " register, but got a "
00950                 << RC->getName() << " register\n";
00951           }
00952         }
00953       }
00954     }
00955     break;
00956   }
00957 
00958   case MachineOperand::MO_RegisterMask:
00959     regMasks.push_back(MO->getRegMask());
00960     break;
00961 
00962   case MachineOperand::MO_MachineBasicBlock:
00963     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
00964       report("PHI operand is not in the CFG", MO, MONum);
00965     break;
00966 
00967   case MachineOperand::MO_FrameIndex:
00968     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
00969         LiveInts && !LiveInts->isNotInMIMap(MI)) {
00970       LiveInterval &LI = LiveStks->getInterval(MO->getIndex());
00971       SlotIndex Idx = LiveInts->getInstructionIndex(MI);
00972       if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) {
00973         report("Instruction loads from dead spill slot", MO, MONum);
00974         *OS << "Live stack: " << LI << '\n';
00975       }
00976       if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) {
00977         report("Instruction stores to dead spill slot", MO, MONum);
00978         *OS << "Live stack: " << LI << '\n';
00979       }
00980     }
00981     break;
00982 
00983   default:
00984     break;
00985   }
00986 }
00987 
00988 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
00989   const MachineInstr *MI = MO->getParent();
00990   const unsigned Reg = MO->getReg();
00991 
00992   // Both use and def operands can read a register.
00993   if (MO->readsReg()) {
00994     regsLiveInButUnused.erase(Reg);
00995 
00996     if (MO->isKill())
00997       addRegWithSubRegs(regsKilled, Reg);
00998 
00999     // Check that LiveVars knows this kill.
01000     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
01001         MO->isKill()) {
01002       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
01003       if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end())
01004         report("Kill missing from LiveVariables", MO, MONum);
01005     }
01006 
01007     // Check LiveInts liveness and kill.
01008     if (LiveInts && !LiveInts->isNotInMIMap(MI)) {
01009       SlotIndex UseIdx = LiveInts->getInstructionIndex(MI);
01010       // Check the cached regunit intervals.
01011       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
01012         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
01013           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) {
01014             LiveQueryResult LRQ = LR->Query(UseIdx);
01015             if (!LRQ.valueIn()) {
01016               report("No live segment at use", MO, MONum);
01017               *OS << UseIdx << " is not live in " << PrintRegUnit(*Units, TRI)
01018                   << ' ' << *LR << '\n';
01019             }
01020             if (MO->isKill() && !LRQ.isKill()) {
01021               report("Live range continues after kill flag", MO, MONum);
01022               *OS << PrintRegUnit(*Units, TRI) << ' ' << *LR << '\n';
01023             }
01024           }
01025         }
01026       }
01027 
01028       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
01029         if (LiveInts->hasInterval(Reg)) {
01030           // This is a virtual register interval.
01031           const LiveInterval &LI = LiveInts->getInterval(Reg);
01032           LiveQueryResult LRQ = LI.Query(UseIdx);
01033           if (!LRQ.valueIn()) {
01034             report("No live segment at use", MO, MONum);
01035             *OS << UseIdx << " is not live in " << LI << '\n';
01036           }
01037           // Check for extra kill flags.
01038           // Note that we allow missing kill flags for now.
01039           if (MO->isKill() && !LRQ.isKill()) {
01040             report("Live range continues after kill flag", MO, MONum);
01041             *OS << "Live range: " << LI << '\n';
01042           }
01043         } else {
01044           report("Virtual register has no live interval", MO, MONum);
01045         }
01046       }
01047     }
01048 
01049     // Use of a dead register.
01050     if (!regsLive.count(Reg)) {
01051       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
01052         // Reserved registers may be used even when 'dead'.
01053         if (!isReserved(Reg))
01054           report("Using an undefined physical register", MO, MONum);
01055       } else if (MRI->def_empty(Reg)) {
01056         report("Reading virtual register without a def", MO, MONum);
01057       } else {
01058         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
01059         // We don't know which virtual registers are live in, so only complain
01060         // if vreg was killed in this MBB. Otherwise keep track of vregs that
01061         // must be live in. PHI instructions are handled separately.
01062         if (MInfo.regsKilled.count(Reg))
01063           report("Using a killed virtual register", MO, MONum);
01064         else if (!MI->isPHI())
01065           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
01066       }
01067     }
01068   }
01069 
01070   if (MO->isDef()) {
01071     // Register defined.
01072     // TODO: verify that earlyclobber ops are not used.
01073     if (MO->isDead())
01074       addRegWithSubRegs(regsDead, Reg);
01075     else
01076       addRegWithSubRegs(regsDefined, Reg);
01077 
01078     // Verify SSA form.
01079     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
01080         std::next(MRI->def_begin(Reg)) != MRI->def_end())
01081       report("Multiple virtual register defs in SSA form", MO, MONum);
01082 
01083     // Check LiveInts for a live segment, but only for virtual registers.
01084     if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) &&
01085         !LiveInts->isNotInMIMap(MI)) {
01086       SlotIndex DefIdx = LiveInts->getInstructionIndex(MI);
01087       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
01088       if (LiveInts->hasInterval(Reg)) {
01089         const LiveInterval &LI = LiveInts->getInterval(Reg);
01090         if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) {
01091           assert(VNI && "NULL valno is not allowed");
01092           if (VNI->def != DefIdx) {
01093             report("Inconsistent valno->def", MO, MONum);
01094             *OS << "Valno " << VNI->id << " is not defined at "
01095               << DefIdx << " in " << LI << '\n';
01096           }
01097         } else {
01098           report("No live segment at def", MO, MONum);
01099           *OS << DefIdx << " is not live in " << LI << '\n';
01100         }
01101         // Check that, if the dead def flag is present, LiveInts agree.
01102         if (MO->isDead()) {
01103           LiveQueryResult LRQ = LI.Query(DefIdx);
01104           if (!LRQ.isDeadDef()) {
01105             report("Live range continues after dead def flag", MO, MONum);
01106             *OS << "Live range: " << LI << '\n';
01107           }
01108         }
01109       } else {
01110         report("Virtual register has no Live interval", MO, MONum);
01111       }
01112     }
01113   }
01114 }
01115 
01116 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
01117 }
01118 
01119 // This function gets called after visiting all instructions in a bundle. The
01120 // argument points to the bundle header.
01121 // Normal stand-alone instructions are also considered 'bundles', and this
01122 // function is called for all of them.
01123 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
01124   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
01125   set_union(MInfo.regsKilled, regsKilled);
01126   set_subtract(regsLive, regsKilled); regsKilled.clear();
01127   // Kill any masked registers.
01128   while (!regMasks.empty()) {
01129     const uint32_t *Mask = regMasks.pop_back_val();
01130     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
01131       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
01132           MachineOperand::clobbersPhysReg(Mask, *I))
01133         regsDead.push_back(*I);
01134   }
01135   set_subtract(regsLive, regsDead);   regsDead.clear();
01136   set_union(regsLive, regsDefined);   regsDefined.clear();
01137 }
01138 
01139 void
01140 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
01141   MBBInfoMap[MBB].regsLiveOut = regsLive;
01142   regsLive.clear();
01143 
01144   if (Indexes) {
01145     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
01146     if (!(stop > lastIndex)) {
01147       report("Block ends before last instruction index", MBB);
01148       *OS << "Block ends at " << stop
01149           << " last instruction was at " << lastIndex << '\n';
01150     }
01151     lastIndex = stop;
01152   }
01153 }
01154 
01155 // Calculate the largest possible vregsPassed sets. These are the registers that
01156 // can pass through an MBB live, but may not be live every time. It is assumed
01157 // that all vregsPassed sets are empty before the call.
01158 void MachineVerifier::calcRegsPassed() {
01159   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
01160   // have any vregsPassed.
01161   SmallPtrSet<const MachineBasicBlock*, 8> todo;
01162   for (const auto &MBB : *MF) {
01163     BBInfo &MInfo = MBBInfoMap[&MBB];
01164     if (!MInfo.reachable)
01165       continue;
01166     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
01167            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
01168       BBInfo &SInfo = MBBInfoMap[*SuI];
01169       if (SInfo.addPassed(MInfo.regsLiveOut))
01170         todo.insert(*SuI);
01171     }
01172   }
01173 
01174   // Iteratively push vregsPassed to successors. This will converge to the same
01175   // final state regardless of DenseSet iteration order.
01176   while (!todo.empty()) {
01177     const MachineBasicBlock *MBB = *todo.begin();
01178     todo.erase(MBB);
01179     BBInfo &MInfo = MBBInfoMap[MBB];
01180     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
01181            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
01182       if (*SuI == MBB)
01183         continue;
01184       BBInfo &SInfo = MBBInfoMap[*SuI];
01185       if (SInfo.addPassed(MInfo.vregsPassed))
01186         todo.insert(*SuI);
01187     }
01188   }
01189 }
01190 
01191 // Calculate the set of virtual registers that must be passed through each basic
01192 // block in order to satisfy the requirements of successor blocks. This is very
01193 // similar to calcRegsPassed, only backwards.
01194 void MachineVerifier::calcRegsRequired() {
01195   // First push live-in regs to predecessors' vregsRequired.
01196   SmallPtrSet<const MachineBasicBlock*, 8> todo;
01197   for (const auto &MBB : *MF) {
01198     BBInfo &MInfo = MBBInfoMap[&MBB];
01199     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
01200            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
01201       BBInfo &PInfo = MBBInfoMap[*PrI];
01202       if (PInfo.addRequired(MInfo.vregsLiveIn))
01203         todo.insert(*PrI);
01204     }
01205   }
01206 
01207   // Iteratively push vregsRequired to predecessors. This will converge to the
01208   // same final state regardless of DenseSet iteration order.
01209   while (!todo.empty()) {
01210     const MachineBasicBlock *MBB = *todo.begin();
01211     todo.erase(MBB);
01212     BBInfo &MInfo = MBBInfoMap[MBB];
01213     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
01214            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
01215       if (*PrI == MBB)
01216         continue;
01217       BBInfo &SInfo = MBBInfoMap[*PrI];
01218       if (SInfo.addRequired(MInfo.vregsRequired))
01219         todo.insert(*PrI);
01220     }
01221   }
01222 }
01223 
01224 // Check PHI instructions at the beginning of MBB. It is assumed that
01225 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
01226 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
01227   SmallPtrSet<const MachineBasicBlock*, 8> seen;
01228   for (const auto &BBI : *MBB) {
01229     if (!BBI.isPHI())
01230       break;
01231     seen.clear();
01232 
01233     for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
01234       unsigned Reg = BBI.getOperand(i).getReg();
01235       const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB();
01236       if (!Pre->isSuccessor(MBB))
01237         continue;
01238       seen.insert(Pre);
01239       BBInfo &PrInfo = MBBInfoMap[Pre];
01240       if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
01241         report("PHI operand is not live-out from predecessor",
01242                &BBI.getOperand(i), i);
01243     }
01244 
01245     // Did we see all predecessors?
01246     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
01247            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
01248       if (!seen.count(*PrI)) {
01249         report("Missing PHI operand", &BBI);
01250         *OS << "BB#" << (*PrI)->getNumber()
01251             << " is a predecessor according to the CFG.\n";
01252       }
01253     }
01254   }
01255 }
01256 
01257 void MachineVerifier::visitMachineFunctionAfter() {
01258   calcRegsPassed();
01259 
01260   for (const auto &MBB : *MF) {
01261     BBInfo &MInfo = MBBInfoMap[&MBB];
01262 
01263     // Skip unreachable MBBs.
01264     if (!MInfo.reachable)
01265       continue;
01266 
01267     checkPHIOps(&MBB);
01268   }
01269 
01270   // Now check liveness info if available
01271   calcRegsRequired();
01272 
01273   // Check for killed virtual registers that should be live out.
01274   for (const auto &MBB : *MF) {
01275     BBInfo &MInfo = MBBInfoMap[&MBB];
01276     for (RegSet::iterator
01277          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
01278          ++I)
01279       if (MInfo.regsKilled.count(*I)) {
01280         report("Virtual register killed in block, but needed live out.", &MBB);
01281         *OS << "Virtual register " << PrintReg(*I)
01282             << " is used after the block.\n";
01283       }
01284   }
01285 
01286   if (!MF->empty()) {
01287     BBInfo &MInfo = MBBInfoMap[&MF->front()];
01288     for (RegSet::iterator
01289          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
01290          ++I)
01291       report("Virtual register def doesn't dominate all uses.",
01292              MRI->getVRegDef(*I));
01293   }
01294 
01295   if (LiveVars)
01296     verifyLiveVariables();
01297   if (LiveInts)
01298     verifyLiveIntervals();
01299 }
01300 
01301 void MachineVerifier::verifyLiveVariables() {
01302   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
01303   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
01304     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
01305     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
01306     for (const auto &MBB : *MF) {
01307       BBInfo &MInfo = MBBInfoMap[&MBB];
01308 
01309       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
01310       if (MInfo.vregsRequired.count(Reg)) {
01311         if (!VI.AliveBlocks.test(MBB.getNumber())) {
01312           report("LiveVariables: Block missing from AliveBlocks", &MBB);
01313           *OS << "Virtual register " << PrintReg(Reg)
01314               << " must be live through the block.\n";
01315         }
01316       } else {
01317         if (VI.AliveBlocks.test(MBB.getNumber())) {
01318           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
01319           *OS << "Virtual register " << PrintReg(Reg)
01320               << " is not needed live through the block.\n";
01321         }
01322       }
01323     }
01324   }
01325 }
01326 
01327 void MachineVerifier::verifyLiveIntervals() {
01328   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
01329   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
01330     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
01331 
01332     // Spilling and splitting may leave unused registers around. Skip them.
01333     if (MRI->reg_nodbg_empty(Reg))
01334       continue;
01335 
01336     if (!LiveInts->hasInterval(Reg)) {
01337       report("Missing live interval for virtual register", MF);
01338       *OS << PrintReg(Reg, TRI) << " still has defs or uses\n";
01339       continue;
01340     }
01341 
01342     const LiveInterval &LI = LiveInts->getInterval(Reg);
01343     assert(Reg == LI.reg && "Invalid reg to interval mapping");
01344     verifyLiveInterval(LI);
01345   }
01346 
01347   // Verify all the cached regunit intervals.
01348   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
01349     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
01350       verifyLiveRange(*LR, i);
01351 }
01352 
01353 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
01354                                            const VNInfo *VNI,
01355                                            unsigned Reg) {
01356   if (VNI->isUnused())
01357     return;
01358 
01359   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
01360 
01361   if (!DefVNI) {
01362     report("Valno not live at def and not marked unused", MF, LR);
01363     *OS << "Valno #" << VNI->id << '\n';
01364     return;
01365   }
01366 
01367   if (DefVNI != VNI) {
01368     report("Live segment at def has different valno", MF, LR);
01369     *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
01370         << " where valno #" << DefVNI->id << " is live\n";
01371     return;
01372   }
01373 
01374   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
01375   if (!MBB) {
01376     report("Invalid definition index", MF, LR);
01377     *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
01378         << " in " << LR << '\n';
01379     return;
01380   }
01381 
01382   if (VNI->isPHIDef()) {
01383     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
01384       report("PHIDef value is not defined at MBB start", MBB, LR);
01385       *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
01386           << ", not at the beginning of BB#" << MBB->getNumber() << '\n';
01387     }
01388     return;
01389   }
01390 
01391   // Non-PHI def.
01392   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
01393   if (!MI) {
01394     report("No instruction at def index", MBB, LR);
01395     *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
01396     return;
01397   }
01398 
01399   if (Reg != 0) {
01400     bool hasDef = false;
01401     bool isEarlyClobber = false;
01402     for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
01403       if (!MOI->isReg() || !MOI->isDef())
01404         continue;
01405       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
01406         if (MOI->getReg() != Reg)
01407           continue;
01408       } else {
01409         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
01410             !TRI->hasRegUnit(MOI->getReg(), Reg))
01411           continue;
01412       }
01413       hasDef = true;
01414       if (MOI->isEarlyClobber())
01415         isEarlyClobber = true;
01416     }
01417 
01418     if (!hasDef) {
01419       report("Defining instruction does not modify register", MI);
01420       *OS << "Valno #" << VNI->id << " in " << LR << '\n';
01421     }
01422 
01423     // Early clobber defs begin at USE slots, but other defs must begin at
01424     // DEF slots.
01425     if (isEarlyClobber) {
01426       if (!VNI->def.isEarlyClobber()) {
01427         report("Early clobber def must be at an early-clobber slot", MBB, LR);
01428         *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
01429       }
01430     } else if (!VNI->def.isRegister()) {
01431       report("Non-PHI, non-early clobber def must be at a register slot",
01432              MBB, LR);
01433       *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
01434     }
01435   }
01436 }
01437 
01438 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
01439                                              const LiveRange::const_iterator I,
01440                                              unsigned Reg) {
01441   const LiveRange::Segment &S = *I;
01442   const VNInfo *VNI = S.valno;
01443   assert(VNI && "Live segment has no valno");
01444 
01445   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
01446     report("Foreign valno in live segment", MF, LR);
01447     *OS << S << " has a bad valno\n";
01448   }
01449 
01450   if (VNI->isUnused()) {
01451     report("Live segment valno is marked unused", MF, LR);
01452     *OS << S << '\n';
01453   }
01454 
01455   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
01456   if (!MBB) {
01457     report("Bad start of live segment, no basic block", MF, LR);
01458     *OS << S << '\n';
01459     return;
01460   }
01461   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
01462   if (S.start != MBBStartIdx && S.start != VNI->def) {
01463     report("Live segment must begin at MBB entry or valno def", MBB, LR);
01464     *OS << S << '\n';
01465   }
01466 
01467   const MachineBasicBlock *EndMBB =
01468     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
01469   if (!EndMBB) {
01470     report("Bad end of live segment, no basic block", MF, LR);
01471     *OS << S << '\n';
01472     return;
01473   }
01474 
01475   // No more checks for live-out segments.
01476   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
01477     return;
01478 
01479   // RegUnit intervals are allowed dead phis.
01480   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
01481       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
01482     return;
01483 
01484   // The live segment is ending inside EndMBB
01485   const MachineInstr *MI =
01486     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
01487   if (!MI) {
01488     report("Live segment doesn't end at a valid instruction", EndMBB, LR);
01489     *OS << S << '\n';
01490     return;
01491   }
01492 
01493   // The block slot must refer to a basic block boundary.
01494   if (S.end.isBlock()) {
01495     report("Live segment ends at B slot of an instruction", EndMBB, LR);
01496     *OS << S << '\n';
01497   }
01498 
01499   if (S.end.isDead()) {
01500     // Segment ends on the dead slot.
01501     // That means there must be a dead def.
01502     if (!SlotIndex::isSameInstr(S.start, S.end)) {
01503       report("Live segment ending at dead slot spans instructions", EndMBB, LR);
01504       *OS << S << '\n';
01505     }
01506   }
01507 
01508   // A live segment can only end at an early-clobber slot if it is being
01509   // redefined by an early-clobber def.
01510   if (S.end.isEarlyClobber()) {
01511     if (I+1 == LR.end() || (I+1)->start != S.end) {
01512       report("Live segment ending at early clobber slot must be "
01513              "redefined by an EC def in the same instruction", EndMBB, LR);
01514       *OS << S << '\n';
01515     }
01516   }
01517 
01518   // The following checks only apply to virtual registers. Physreg liveness
01519   // is too weird to check.
01520   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
01521     // A live segment can end with either a redefinition, a kill flag on a
01522     // use, or a dead flag on a def.
01523     bool hasRead = false;
01524     for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
01525       if (!MOI->isReg() || MOI->getReg() != Reg)
01526         continue;
01527       if (MOI->readsReg())
01528         hasRead = true;
01529     }
01530     if (!S.end.isDead()) {
01531       if (!hasRead) {
01532         report("Instruction ending live segment doesn't read the register", MI);
01533         *OS << S << " in " << LR << '\n';
01534       }
01535     }
01536   }
01537 
01538   // Now check all the basic blocks in this live segment.
01539   MachineFunction::const_iterator MFI = MBB;
01540   // Is this live segment the beginning of a non-PHIDef VN?
01541   if (S.start == VNI->def && !VNI->isPHIDef()) {
01542     // Not live-in to any blocks.
01543     if (MBB == EndMBB)
01544       return;
01545     // Skip this block.
01546     ++MFI;
01547   }
01548   for (;;) {
01549     assert(LiveInts->isLiveInToMBB(LR, MFI));
01550     // We don't know how to track physregs into a landing pad.
01551     if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
01552         MFI->isLandingPad()) {
01553       if (&*MFI == EndMBB)
01554         break;
01555       ++MFI;
01556       continue;
01557     }
01558 
01559     // Is VNI a PHI-def in the current block?
01560     bool IsPHI = VNI->isPHIDef() &&
01561       VNI->def == LiveInts->getMBBStartIdx(MFI);
01562 
01563     // Check that VNI is live-out of all predecessors.
01564     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
01565          PE = MFI->pred_end(); PI != PE; ++PI) {
01566       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
01567       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
01568 
01569       // All predecessors must have a live-out value.
01570       if (!PVNI) {
01571         report("Register not marked live out of predecessor", *PI, LR);
01572         *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber()
01573             << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before "
01574             << PEnd << '\n';
01575         continue;
01576       }
01577 
01578       // Only PHI-defs can take different predecessor values.
01579       if (!IsPHI && PVNI != VNI) {
01580         report("Different value live out of predecessor", *PI, LR);
01581         *OS << "Valno #" << PVNI->id << " live out of BB#"
01582             << (*PI)->getNumber() << '@' << PEnd
01583             << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber()
01584             << '@' << LiveInts->getMBBStartIdx(MFI) << '\n';
01585       }
01586     }
01587     if (&*MFI == EndMBB)
01588       break;
01589     ++MFI;
01590   }
01591 }
01592 
01593 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg) {
01594   for (LiveRange::const_vni_iterator I = LR.vni_begin(), E = LR.vni_end();
01595        I != E; ++I)
01596     verifyLiveRangeValue(LR, *I, Reg);
01597 
01598   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
01599     verifyLiveRangeSegment(LR, I, Reg);
01600 }
01601 
01602 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
01603   verifyLiveRange(LI, LI.reg);
01604 
01605   // Check the LI only has one connected component.
01606   if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
01607     ConnectedVNInfoEqClasses ConEQ(*LiveInts);
01608     unsigned NumComp = ConEQ.Classify(&LI);
01609     if (NumComp > 1) {
01610       report("Multiple connected components in live interval", MF, LI);
01611       for (unsigned comp = 0; comp != NumComp; ++comp) {
01612         *OS << comp << ": valnos";
01613         for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
01614              E = LI.vni_end(); I!=E; ++I)
01615           if (comp == ConEQ.getEqClass(*I))
01616             *OS << ' ' << (*I)->id;
01617         *OS << '\n';
01618       }
01619     }
01620   }
01621 }
01622 
01623 namespace {
01624   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
01625   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
01626   // value is zero.
01627   // We use a bool plus an integer to capture the stack state.
01628   struct StackStateOfBB {
01629     StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false),
01630       ExitIsSetup(false) { }
01631     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
01632       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
01633       ExitIsSetup(ExitSetup) { }
01634     // Can be negative, which means we are setting up a frame.
01635     int EntryValue;
01636     int ExitValue;
01637     bool EntryIsSetup;
01638     bool ExitIsSetup;
01639   };
01640 }
01641 
01642 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
01643 /// by a FrameDestroy <n>, stack adjustments are identical on all
01644 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
01645 void MachineVerifier::verifyStackFrame() {
01646   int FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
01647   int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
01648 
01649   SmallVector<StackStateOfBB, 8> SPState;
01650   SPState.resize(MF->getNumBlockIDs());
01651   SmallPtrSet<const MachineBasicBlock*, 8> Reachable;
01652 
01653   // Visit the MBBs in DFS order.
01654   for (df_ext_iterator<const MachineFunction*,
01655                        SmallPtrSet<const MachineBasicBlock*, 8> >
01656        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
01657        DFI != DFE; ++DFI) {
01658     const MachineBasicBlock *MBB = *DFI;
01659 
01660     StackStateOfBB BBState;
01661     // Check the exit state of the DFS stack predecessor.
01662     if (DFI.getPathLength() >= 2) {
01663       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
01664       assert(Reachable.count(StackPred) &&
01665              "DFS stack predecessor is already visited.\n");
01666       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
01667       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
01668       BBState.ExitValue = BBState.EntryValue;
01669       BBState.ExitIsSetup = BBState.EntryIsSetup;
01670     }
01671 
01672     // Update stack state by checking contents of MBB.
01673     for (const auto &I : *MBB) {
01674       if (I.getOpcode() == FrameSetupOpcode) {
01675         // The first operand of a FrameOpcode should be i32.
01676         int Size = I.getOperand(0).getImm();
01677         assert(Size >= 0 &&
01678           "Value should be non-negative in FrameSetup and FrameDestroy.\n");
01679 
01680         if (BBState.ExitIsSetup)
01681           report("FrameSetup is after another FrameSetup", &I);
01682         BBState.ExitValue -= Size;
01683         BBState.ExitIsSetup = true;
01684       }
01685 
01686       if (I.getOpcode() == FrameDestroyOpcode) {
01687         // The first operand of a FrameOpcode should be i32.
01688         int Size = I.getOperand(0).getImm();
01689         assert(Size >= 0 &&
01690           "Value should be non-negative in FrameSetup and FrameDestroy.\n");
01691 
01692         if (!BBState.ExitIsSetup)
01693           report("FrameDestroy is not after a FrameSetup", &I);
01694         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
01695                                                BBState.ExitValue;
01696         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
01697           report("FrameDestroy <n> is after FrameSetup <m>", &I);
01698           *OS << "FrameDestroy <" << Size << "> is after FrameSetup <"
01699               << AbsSPAdj << ">.\n";
01700         }
01701         BBState.ExitValue += Size;
01702         BBState.ExitIsSetup = false;
01703       }
01704     }
01705     SPState[MBB->getNumber()] = BBState;
01706 
01707     // Make sure the exit state of any predecessor is consistent with the entry
01708     // state.
01709     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
01710          E = MBB->pred_end(); I != E; ++I) {
01711       if (Reachable.count(*I) &&
01712           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
01713            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
01714         report("The exit stack state of a predecessor is inconsistent.", MBB);
01715         *OS << "Predecessor BB#" << (*I)->getNumber() << " has exit state ("
01716             << SPState[(*I)->getNumber()].ExitValue << ", "
01717             << SPState[(*I)->getNumber()].ExitIsSetup
01718             << "), while BB#" << MBB->getNumber() << " has entry state ("
01719             << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
01720       }
01721     }
01722 
01723     // Make sure the entry state of any successor is consistent with the exit
01724     // state.
01725     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
01726          E = MBB->succ_end(); I != E; ++I) {
01727       if (Reachable.count(*I) &&
01728           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
01729            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
01730         report("The entry stack state of a successor is inconsistent.", MBB);
01731         *OS << "Successor BB#" << (*I)->getNumber() << " has entry state ("
01732             << SPState[(*I)->getNumber()].EntryValue << ", "
01733             << SPState[(*I)->getNumber()].EntryIsSetup
01734             << "), while BB#" << MBB->getNumber() << " has exit state ("
01735             << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
01736       }
01737     }
01738 
01739     // Make sure a basic block with return ends with zero stack adjustment.
01740     if (!MBB->empty() && MBB->back().isReturn()) {
01741       if (BBState.ExitIsSetup)
01742         report("A return block ends with a FrameSetup.", MBB);
01743       if (BBState.ExitValue)
01744         report("A return block ends with a nonzero stack adjustment.", MBB);
01745     }
01746   }
01747 }