LLVM API Documentation
00001 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file defines the interfaces that PPC uses to lower LLVM code into a 00011 // selection DAG. 00012 // 00013 //===----------------------------------------------------------------------===// 00014 00015 #ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H 00016 #define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H 00017 00018 #include "PPC.h" 00019 #include "PPCInstrInfo.h" 00020 #include "PPCRegisterInfo.h" 00021 #include "llvm/CodeGen/CallingConvLower.h" 00022 #include "llvm/CodeGen/SelectionDAG.h" 00023 #include "llvm/Target/TargetLowering.h" 00024 00025 namespace llvm { 00026 namespace PPCISD { 00027 enum NodeType { 00028 // Start the numbering where the builtin ops and target ops leave off. 00029 FIRST_NUMBER = ISD::BUILTIN_OP_END, 00030 00031 /// FSEL - Traditional three-operand fsel node. 00032 /// 00033 FSEL, 00034 00035 /// FCFID - The FCFID instruction, taking an f64 operand and producing 00036 /// and f64 value containing the FP representation of the integer that 00037 /// was temporarily in the f64 operand. 00038 FCFID, 00039 00040 /// Newer FCFID[US] integer-to-floating-point conversion instructions for 00041 /// unsigned integers and single-precision outputs. 00042 FCFIDU, FCFIDS, FCFIDUS, 00043 00044 /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64 00045 /// operand, producing an f64 value containing the integer representation 00046 /// of that FP value. 00047 FCTIDZ, FCTIWZ, 00048 00049 /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for 00050 /// unsigned integers. 00051 FCTIDUZ, FCTIWUZ, 00052 00053 /// Reciprocal estimate instructions (unary FP ops). 00054 FRE, FRSQRTE, 00055 00056 // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking 00057 // three v4f32 operands and producing a v4f32 result. 00058 VMADDFP, VNMSUBFP, 00059 00060 /// VPERM - The PPC VPERM Instruction. 00061 /// 00062 VPERM, 00063 00064 /// Hi/Lo - These represent the high and low 16-bit parts of a global 00065 /// address respectively. These nodes have two operands, the first of 00066 /// which must be a TargetGlobalAddress, and the second of which must be a 00067 /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C', 00068 /// though these are usually folded into other nodes. 00069 Hi, Lo, 00070 00071 TOC_ENTRY, 00072 00073 /// The following two target-specific nodes are used for calls through 00074 /// function pointers in the 64-bit SVR4 ABI. 00075 00076 /// Like a regular LOAD but additionally taking/producing a flag. 00077 LOAD, 00078 00079 /// Like LOAD (taking/producing a flag), but using r2 as hard-coded 00080 /// destination. 00081 LOAD_TOC, 00082 00083 /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX) 00084 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to 00085 /// compute an allocation on the stack. 00086 DYNALLOC, 00087 00088 /// GlobalBaseReg - On Darwin, this node represents the result of the mflr 00089 /// at function entry, used for PIC code. 00090 GlobalBaseReg, 00091 00092 /// These nodes represent the 32-bit PPC shifts that operate on 6-bit 00093 /// shift amounts. These nodes are generated by the multi-precision shift 00094 /// code. 00095 SRL, SRA, SHL, 00096 00097 /// CALL - A direct function call. 00098 /// CALL_NOP is a call with the special NOP which follows 64-bit 00099 /// SVR4 calls. 00100 CALL, CALL_NOP, 00101 00102 /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a 00103 /// MTCTR instruction. 00104 MTCTR, 00105 00106 /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a 00107 /// BCTRL instruction. 00108 BCTRL, 00109 00110 /// Return with a flag operand, matched by 'blr' 00111 RET_FLAG, 00112 00113 /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction. 00114 /// This copies the bits corresponding to the specified CRREG into the 00115 /// resultant GPR. Bits corresponding to other CR regs are undefined. 00116 MFOCRF, 00117 00118 // FIXME: Remove these once the ANDI glue bug is fixed: 00119 /// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the 00120 /// eq or gt bit of CR0 after executing andi. x, 1. This is used to 00121 /// implement truncation of i32 or i64 to i1. 00122 ANDIo_1_EQ_BIT, ANDIo_1_GT_BIT, 00123 00124 // EH_SJLJ_SETJMP - SjLj exception handling setjmp. 00125 EH_SJLJ_SETJMP, 00126 00127 // EH_SJLJ_LONGJMP - SjLj exception handling longjmp. 00128 EH_SJLJ_LONGJMP, 00129 00130 /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP* 00131 /// instructions. For lack of better number, we use the opcode number 00132 /// encoding for the OPC field to identify the compare. For example, 838 00133 /// is VCMPGTSH. 00134 VCMP, 00135 00136 /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the 00137 /// altivec VCMP*o instructions. For lack of better number, we use the 00138 /// opcode number encoding for the OPC field to identify the compare. For 00139 /// example, 838 is VCMPGTSH. 00140 VCMPo, 00141 00142 /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This 00143 /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the 00144 /// condition register to branch on, OPC is the branch opcode to use (e.g. 00145 /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is 00146 /// an optional input flag argument. 00147 COND_BRANCH, 00148 00149 /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based 00150 /// loops. 00151 BDNZ, BDZ, 00152 00153 /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding 00154 /// towards zero. Used only as part of the long double-to-int 00155 /// conversion sequence. 00156 FADDRTZ, 00157 00158 /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register. 00159 MFFS, 00160 00161 /// LARX = This corresponds to PPC l{w|d}arx instrcution: load and 00162 /// reserve indexed. This is used to implement atomic operations. 00163 LARX, 00164 00165 /// STCX = This corresponds to PPC stcx. instrcution: store conditional 00166 /// indexed. This is used to implement atomic operations. 00167 STCX, 00168 00169 /// TC_RETURN - A tail call return. 00170 /// operand #0 chain 00171 /// operand #1 callee (register or absolute) 00172 /// operand #2 stack adjustment 00173 /// operand #3 optional in flag 00174 TC_RETURN, 00175 00176 /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls 00177 CR6SET, 00178 CR6UNSET, 00179 00180 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS 00181 /// on PPC32. 00182 PPC32_GOT, 00183 00184 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and 00185 /// local dynamic TLS on PPC32. 00186 PPC32_PICGOT, 00187 00188 /// G8RC = ADDIS_GOT_TPREL_HA %X2, Symbol - Used by the initial-exec 00189 /// TLS model, produces an ADDIS8 instruction that adds the GOT 00190 /// base to sym\@got\@tprel\@ha. 00191 ADDIS_GOT_TPREL_HA, 00192 00193 /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec 00194 /// TLS model, produces a LD instruction with base register G8RReg 00195 /// and offset sym\@got\@tprel\@l. This completes the addition that 00196 /// finds the offset of "sym" relative to the thread pointer. 00197 LD_GOT_TPREL_L, 00198 00199 /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS 00200 /// model, produces an ADD instruction that adds the contents of 00201 /// G8RReg to the thread pointer. Symbol contains a relocation 00202 /// sym\@tls which is to be replaced by the thread pointer and 00203 /// identifies to the linker that the instruction is part of a 00204 /// TLS sequence. 00205 ADD_TLS, 00206 00207 /// G8RC = ADDIS_TLSGD_HA %X2, Symbol - For the general-dynamic TLS 00208 /// model, produces an ADDIS8 instruction that adds the GOT base 00209 /// register to sym\@got\@tlsgd\@ha. 00210 ADDIS_TLSGD_HA, 00211 00212 /// G8RC = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS 00213 /// model, produces an ADDI8 instruction that adds G8RReg to 00214 /// sym\@got\@tlsgd\@l. 00215 ADDI_TLSGD_L, 00216 00217 /// G8RC = GET_TLS_ADDR %X3, Symbol - For the general-dynamic TLS 00218 /// model, produces a call to __tls_get_addr(sym\@tlsgd). 00219 GET_TLS_ADDR, 00220 00221 /// G8RC = ADDIS_TLSLD_HA %X2, Symbol - For the local-dynamic TLS 00222 /// model, produces an ADDIS8 instruction that adds the GOT base 00223 /// register to sym\@got\@tlsld\@ha. 00224 ADDIS_TLSLD_HA, 00225 00226 /// G8RC = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS 00227 /// model, produces an ADDI8 instruction that adds G8RReg to 00228 /// sym\@got\@tlsld\@l. 00229 ADDI_TLSLD_L, 00230 00231 /// G8RC = GET_TLSLD_ADDR %X3, Symbol - For the local-dynamic TLS 00232 /// model, produces a call to __tls_get_addr(sym\@tlsld). 00233 GET_TLSLD_ADDR, 00234 00235 /// G8RC = ADDIS_DTPREL_HA %X3, Symbol, Chain - For the 00236 /// local-dynamic TLS model, produces an ADDIS8 instruction 00237 /// that adds X3 to sym\@dtprel\@ha. The Chain operand is needed 00238 /// to tie this in place following a copy to %X3 from the result 00239 /// of a GET_TLSLD_ADDR. 00240 ADDIS_DTPREL_HA, 00241 00242 /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS 00243 /// model, produces an ADDI8 instruction that adds G8RReg to 00244 /// sym\@got\@dtprel\@l. 00245 ADDI_DTPREL_L, 00246 00247 /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded 00248 /// during instruction selection to optimize a BUILD_VECTOR into 00249 /// operations on splats. This is necessary to avoid losing these 00250 /// optimizations due to constant folding. 00251 VADD_SPLAT, 00252 00253 /// CHAIN = SC CHAIN, Imm128 - System call. The 7-bit unsigned 00254 /// operand identifies the operating system entry point. 00255 SC, 00256 00257 /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a 00258 /// byte-swapping store instruction. It byte-swaps the low "Type" bits of 00259 /// the GPRC input, then stores it through Ptr. Type can be either i16 or 00260 /// i32. 00261 STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE, 00262 00263 /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a 00264 /// byte-swapping load instruction. It loads "Type" bits, byte swaps it, 00265 /// then puts it in the bottom bits of the GPRC. TYPE can be either i16 00266 /// or i32. 00267 LBRX, 00268 00269 /// STFIWX - The STFIWX instruction. The first operand is an input token 00270 /// chain, then an f64 value to store, then an address to store it to. 00271 STFIWX, 00272 00273 /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point 00274 /// load which sign-extends from a 32-bit integer value into the 00275 /// destination 64-bit register. 00276 LFIWAX, 00277 00278 /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point 00279 /// load which zero-extends from a 32-bit integer value into the 00280 /// destination 64-bit register. 00281 LFIWZX, 00282 00283 /// G8RC = ADDIS_TOC_HA %X2, Symbol - For medium and large code model, 00284 /// produces an ADDIS8 instruction that adds the TOC base register to 00285 /// sym\@toc\@ha. 00286 ADDIS_TOC_HA, 00287 00288 /// G8RC = LD_TOC_L Symbol, G8RReg - For medium and large code model, 00289 /// produces a LD instruction with base register G8RReg and offset 00290 /// sym\@toc\@l. Preceded by an ADDIS_TOC_HA to form a full 32-bit offset. 00291 LD_TOC_L, 00292 00293 /// G8RC = ADDI_TOC_L G8RReg, Symbol - For medium code model, produces 00294 /// an ADDI8 instruction that adds G8RReg to sym\@toc\@l. 00295 /// Preceded by an ADDIS_TOC_HA to form a full 32-bit offset. 00296 ADDI_TOC_L 00297 }; 00298 } 00299 00300 /// Define some predicates that are used for node matching. 00301 namespace PPC { 00302 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 00303 /// VPKUHUM instruction. 00304 bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 00305 SelectionDAG &DAG); 00306 00307 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 00308 /// VPKUWUM instruction. 00309 bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 00310 SelectionDAG &DAG); 00311 00312 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 00313 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). 00314 bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 00315 unsigned ShuffleKind, SelectionDAG &DAG); 00316 00317 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 00318 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). 00319 bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 00320 unsigned ShuffleKind, SelectionDAG &DAG); 00321 00322 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the 00323 /// shift amount, otherwise return -1. 00324 int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 00325 SelectionDAG &DAG); 00326 00327 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 00328 /// specifies a splat of a single element that is suitable for input to 00329 /// VSPLTB/VSPLTH/VSPLTW. 00330 bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize); 00331 00332 /// isAllNegativeZeroVector - Returns true if all elements of build_vector 00333 /// are -0.0. 00334 bool isAllNegativeZeroVector(SDNode *N); 00335 00336 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 00337 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 00338 unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize, SelectionDAG &DAG); 00339 00340 /// get_VSPLTI_elt - If this is a build_vector of constants which can be 00341 /// formed by using a vspltis[bhw] instruction of the specified element 00342 /// size, return the constant being splatted. The ByteSize field indicates 00343 /// the number of bytes of each element [124] -> [bhw]. 00344 SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG); 00345 } 00346 00347 class PPCSubtarget; 00348 class PPCTargetLowering : public TargetLowering { 00349 const PPCSubtarget &Subtarget; 00350 00351 public: 00352 explicit PPCTargetLowering(PPCTargetMachine &TM); 00353 00354 /// getTargetNodeName() - This method returns the name of a target specific 00355 /// DAG node. 00356 const char *getTargetNodeName(unsigned Opcode) const override; 00357 00358 MVT getScalarShiftAmountTy(EVT LHSTy) const override { return MVT::i32; } 00359 00360 /// getSetCCResultType - Return the ISD::SETCC ValueType 00361 EVT getSetCCResultType(LLVMContext &Context, EVT VT) const override; 00362 00363 /// getPreIndexedAddressParts - returns true by value, base pointer and 00364 /// offset pointer and addressing mode by reference if the node's address 00365 /// can be legally represented as pre-indexed load / store address. 00366 bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, 00367 SDValue &Offset, 00368 ISD::MemIndexedMode &AM, 00369 SelectionDAG &DAG) const override; 00370 00371 /// SelectAddressRegReg - Given the specified addressed, check to see if it 00372 /// can be represented as an indexed [r+r] operation. Returns false if it 00373 /// can be more efficiently represented with [r+imm]. 00374 bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index, 00375 SelectionDAG &DAG) const; 00376 00377 /// SelectAddressRegImm - Returns true if the address N can be represented 00378 /// by a base register plus a signed 16-bit displacement [r+imm], and if it 00379 /// is not better represented as reg+reg. If Aligned is true, only accept 00380 /// displacements suitable for STD and friends, i.e. multiples of 4. 00381 bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base, 00382 SelectionDAG &DAG, bool Aligned) const; 00383 00384 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 00385 /// represented as an indexed [r+r] operation. 00386 bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index, 00387 SelectionDAG &DAG) const; 00388 00389 Sched::Preference getSchedulingPreference(SDNode *N) const override; 00390 00391 /// LowerOperation - Provide custom lowering hooks for some operations. 00392 /// 00393 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override; 00394 00395 /// ReplaceNodeResults - Replace the results of node with an illegal result 00396 /// type with new values built out of custom code. 00397 /// 00398 void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results, 00399 SelectionDAG &DAG) const override; 00400 00401 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override; 00402 00403 unsigned getRegisterByName(const char* RegName, EVT VT) const override; 00404 00405 void computeKnownBitsForTargetNode(const SDValue Op, 00406 APInt &KnownZero, 00407 APInt &KnownOne, 00408 const SelectionDAG &DAG, 00409 unsigned Depth = 0) const override; 00410 00411 MachineBasicBlock * 00412 EmitInstrWithCustomInserter(MachineInstr *MI, 00413 MachineBasicBlock *MBB) const override; 00414 MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI, 00415 MachineBasicBlock *MBB, bool is64Bit, 00416 unsigned BinOpcode) const; 00417 MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI, 00418 MachineBasicBlock *MBB, 00419 bool is8bit, unsigned Opcode) const; 00420 00421 MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI, 00422 MachineBasicBlock *MBB) const; 00423 00424 MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI, 00425 MachineBasicBlock *MBB) const; 00426 00427 ConstraintType 00428 getConstraintType(const std::string &Constraint) const override; 00429 00430 /// Examine constraint string and operand type and determine a weight value. 00431 /// The operand object must already have been set up with the operand type. 00432 ConstraintWeight getSingleConstraintMatchWeight( 00433 AsmOperandInfo &info, const char *constraint) const override; 00434 00435 std::pair<unsigned, const TargetRegisterClass*> 00436 getRegForInlineAsmConstraint(const std::string &Constraint, 00437 MVT VT) const override; 00438 00439 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 00440 /// function arguments in the caller parameter area. This is the actual 00441 /// alignment, not its logarithm. 00442 unsigned getByValTypeAlignment(Type *Ty) const override; 00443 00444 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 00445 /// vector. If it is invalid, don't add anything to Ops. 00446 void LowerAsmOperandForConstraint(SDValue Op, 00447 std::string &Constraint, 00448 std::vector<SDValue> &Ops, 00449 SelectionDAG &DAG) const override; 00450 00451 /// isLegalAddressingMode - Return true if the addressing mode represented 00452 /// by AM is legal for this target, for a load/store of the specified type. 00453 bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override; 00454 00455 /// isLegalICmpImmediate - Return true if the specified immediate is legal 00456 /// icmp immediate, that is the target has icmp instructions which can 00457 /// compare a register against the immediate without having to materialize 00458 /// the immediate into a register. 00459 bool isLegalICmpImmediate(int64_t Imm) const override; 00460 00461 /// isLegalAddImmediate - Return true if the specified immediate is legal 00462 /// add immediate, that is the target has add instructions which can 00463 /// add a register and the immediate without having to materialize 00464 /// the immediate into a register. 00465 bool isLegalAddImmediate(int64_t Imm) const override; 00466 00467 /// isTruncateFree - Return true if it's free to truncate a value of 00468 /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in 00469 /// register X1 to i32 by referencing its sub-register R1. 00470 bool isTruncateFree(Type *Ty1, Type *Ty2) const override; 00471 bool isTruncateFree(EVT VT1, EVT VT2) const override; 00472 00473 /// \brief Returns true if it is beneficial to convert a load of a constant 00474 /// to just the constant itself. 00475 bool shouldConvertConstantLoadToIntImm(const APInt &Imm, 00476 Type *Ty) const override; 00477 00478 bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override; 00479 00480 bool getTgtMemIntrinsic(IntrinsicInfo &Info, 00481 const CallInst &I, 00482 unsigned Intrinsic) const override; 00483 00484 /// getOptimalMemOpType - Returns the target specific optimal type for load 00485 /// and store operations as a result of memset, memcpy, and memmove 00486 /// lowering. If DstAlign is zero that means it's safe to destination 00487 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 00488 /// means there isn't a need to check it against alignment requirement, 00489 /// probably because the source does not need to be loaded. If 'IsMemset' is 00490 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 00491 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 00492 /// source is constant so it does not need to be loaded. 00493 /// It returns EVT::Other if the type should be determined using generic 00494 /// target-independent logic. 00495 EVT 00496 getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, 00497 bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, 00498 MachineFunction &MF) const override; 00499 00500 /// Is unaligned memory access allowed for the given type, and is it fast 00501 /// relative to software emulation. 00502 bool allowsMisalignedMemoryAccesses(EVT VT, 00503 unsigned AddrSpace, 00504 unsigned Align = 1, 00505 bool *Fast = nullptr) const override; 00506 00507 /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster 00508 /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be 00509 /// expanded to FMAs when this method returns true, otherwise fmuladd is 00510 /// expanded to fmul + fadd. 00511 bool isFMAFasterThanFMulAndFAdd(EVT VT) const override; 00512 00513 // Should we expand the build vector with shuffles? 00514 bool 00515 shouldExpandBuildVectorWithShuffles(EVT VT, 00516 unsigned DefinedValues) const override; 00517 00518 /// createFastISel - This method returns a target-specific FastISel object, 00519 /// or null if the target does not support "fast" instruction selection. 00520 FastISel *createFastISel(FunctionLoweringInfo &FuncInfo, 00521 const TargetLibraryInfo *LibInfo) const override; 00522 00523 /// \brief Returns true if an argument of type Ty needs to be passed in a 00524 /// contiguous block of registers in calling convention CallConv. 00525 bool functionArgumentNeedsConsecutiveRegisters( 00526 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override { 00527 // We support any array type as "consecutive" block in the parameter 00528 // save area. The element type defines the alignment requirement and 00529 // whether the argument should go in GPRs, FPRs, or VRs if available. 00530 // 00531 // Note that clang uses this capability both to implement the ELFv2 00532 // homogeneous float/vector aggregate ABI, and to avoid having to use 00533 // "byval" when passing aggregates that might fully fit in registers. 00534 return Ty->isArrayTy(); 00535 } 00536 00537 private: 00538 SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const; 00539 SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const; 00540 00541 bool 00542 IsEligibleForTailCallOptimization(SDValue Callee, 00543 CallingConv::ID CalleeCC, 00544 bool isVarArg, 00545 const SmallVectorImpl<ISD::InputArg> &Ins, 00546 SelectionDAG& DAG) const; 00547 00548 SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, 00549 int SPDiff, 00550 SDValue Chain, 00551 SDValue &LROpOut, 00552 SDValue &FPOpOut, 00553 bool isDarwinABI, 00554 SDLoc dl) const; 00555 00556 SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const; 00557 SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const; 00558 SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const; 00559 SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const; 00560 SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const; 00561 SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const; 00562 SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const; 00563 SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const; 00564 SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const; 00565 SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const; 00566 SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG, 00567 const PPCSubtarget &Subtarget) const; 00568 SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG, 00569 const PPCSubtarget &Subtarget) const; 00570 SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG, 00571 const PPCSubtarget &Subtarget) const; 00572 SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, 00573 const PPCSubtarget &Subtarget) const; 00574 SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG, 00575 const PPCSubtarget &Subtarget) const; 00576 SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const; 00577 SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const; 00578 SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const; 00579 SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const; 00580 SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, SDLoc dl) const; 00581 SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const; 00582 SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const; 00583 SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const; 00584 SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const; 00585 SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const; 00586 SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const; 00587 SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const; 00588 SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const; 00589 SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const; 00590 SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const; 00591 SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const; 00592 00593 SDValue LowerCallResult(SDValue Chain, SDValue InFlag, 00594 CallingConv::ID CallConv, bool isVarArg, 00595 const SmallVectorImpl<ISD::InputArg> &Ins, 00596 SDLoc dl, SelectionDAG &DAG, 00597 SmallVectorImpl<SDValue> &InVals) const; 00598 SDValue FinishCall(CallingConv::ID CallConv, SDLoc dl, bool isTailCall, 00599 bool isVarArg, 00600 SelectionDAG &DAG, 00601 SmallVector<std::pair<unsigned, SDValue>, 8> 00602 &RegsToPass, 00603 SDValue InFlag, SDValue Chain, 00604 SDValue &Callee, 00605 int SPDiff, unsigned NumBytes, 00606 const SmallVectorImpl<ISD::InputArg> &Ins, 00607 SmallVectorImpl<SDValue> &InVals) const; 00608 00609 SDValue 00610 LowerFormalArguments(SDValue Chain, 00611 CallingConv::ID CallConv, bool isVarArg, 00612 const SmallVectorImpl<ISD::InputArg> &Ins, 00613 SDLoc dl, SelectionDAG &DAG, 00614 SmallVectorImpl<SDValue> &InVals) const override; 00615 00616 SDValue 00617 LowerCall(TargetLowering::CallLoweringInfo &CLI, 00618 SmallVectorImpl<SDValue> &InVals) const override; 00619 00620 bool 00621 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, 00622 bool isVarArg, 00623 const SmallVectorImpl<ISD::OutputArg> &Outs, 00624 LLVMContext &Context) const override; 00625 00626 SDValue 00627 LowerReturn(SDValue Chain, 00628 CallingConv::ID CallConv, bool isVarArg, 00629 const SmallVectorImpl<ISD::OutputArg> &Outs, 00630 const SmallVectorImpl<SDValue> &OutVals, 00631 SDLoc dl, SelectionDAG &DAG) const override; 00632 00633 SDValue 00634 extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, SelectionDAG &DAG, 00635 SDValue ArgVal, SDLoc dl) const; 00636 00637 SDValue 00638 LowerFormalArguments_Darwin(SDValue Chain, 00639 CallingConv::ID CallConv, bool isVarArg, 00640 const SmallVectorImpl<ISD::InputArg> &Ins, 00641 SDLoc dl, SelectionDAG &DAG, 00642 SmallVectorImpl<SDValue> &InVals) const; 00643 SDValue 00644 LowerFormalArguments_64SVR4(SDValue Chain, 00645 CallingConv::ID CallConv, bool isVarArg, 00646 const SmallVectorImpl<ISD::InputArg> &Ins, 00647 SDLoc dl, SelectionDAG &DAG, 00648 SmallVectorImpl<SDValue> &InVals) const; 00649 SDValue 00650 LowerFormalArguments_32SVR4(SDValue Chain, 00651 CallingConv::ID CallConv, bool isVarArg, 00652 const SmallVectorImpl<ISD::InputArg> &Ins, 00653 SDLoc dl, SelectionDAG &DAG, 00654 SmallVectorImpl<SDValue> &InVals) const; 00655 00656 SDValue 00657 createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff, 00658 SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 00659 SelectionDAG &DAG, SDLoc dl) const; 00660 00661 SDValue 00662 LowerCall_Darwin(SDValue Chain, SDValue Callee, 00663 CallingConv::ID CallConv, 00664 bool isVarArg, bool isTailCall, 00665 const SmallVectorImpl<ISD::OutputArg> &Outs, 00666 const SmallVectorImpl<SDValue> &OutVals, 00667 const SmallVectorImpl<ISD::InputArg> &Ins, 00668 SDLoc dl, SelectionDAG &DAG, 00669 SmallVectorImpl<SDValue> &InVals) const; 00670 SDValue 00671 LowerCall_64SVR4(SDValue Chain, SDValue Callee, 00672 CallingConv::ID CallConv, 00673 bool isVarArg, bool isTailCall, 00674 const SmallVectorImpl<ISD::OutputArg> &Outs, 00675 const SmallVectorImpl<SDValue> &OutVals, 00676 const SmallVectorImpl<ISD::InputArg> &Ins, 00677 SDLoc dl, SelectionDAG &DAG, 00678 SmallVectorImpl<SDValue> &InVals) const; 00679 SDValue 00680 LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv, 00681 bool isVarArg, bool isTailCall, 00682 const SmallVectorImpl<ISD::OutputArg> &Outs, 00683 const SmallVectorImpl<SDValue> &OutVals, 00684 const SmallVectorImpl<ISD::InputArg> &Ins, 00685 SDLoc dl, SelectionDAG &DAG, 00686 SmallVectorImpl<SDValue> &InVals) const; 00687 00688 SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const; 00689 SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const; 00690 00691 SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const; 00692 SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const; 00693 SDValue DAGCombineFastRecip(SDValue Op, DAGCombinerInfo &DCI) const; 00694 SDValue DAGCombineFastRecipFSQRT(SDValue Op, DAGCombinerInfo &DCI) const; 00695 00696 CCAssignFn *useFastISelCCs(unsigned Flag) const; 00697 }; 00698 00699 namespace PPC { 00700 FastISel *createFastISel(FunctionLoweringInfo &FuncInfo, 00701 const TargetLibraryInfo *LibInfo); 00702 } 00703 00704 bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 00705 CCValAssign::LocInfo &LocInfo, 00706 ISD::ArgFlagsTy &ArgFlags, 00707 CCState &State); 00708 00709 bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 00710 MVT &LocVT, 00711 CCValAssign::LocInfo &LocInfo, 00712 ISD::ArgFlagsTy &ArgFlags, 00713 CCState &State); 00714 00715 bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 00716 MVT &LocVT, 00717 CCValAssign::LocInfo &LocInfo, 00718 ISD::ArgFlagsTy &ArgFlags, 00719 CCState &State); 00720 } 00721 00722 #endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H