LLVM API Documentation
00001 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements the generic RegisterCoalescer interface which 00011 // is used as the common interface used by all clients and 00012 // implementations of register coalescing. 00013 // 00014 //===----------------------------------------------------------------------===// 00015 00016 #include "RegisterCoalescer.h" 00017 #include "llvm/ADT/STLExtras.h" 00018 #include "llvm/ADT/SmallSet.h" 00019 #include "llvm/ADT/Statistic.h" 00020 #include "llvm/Analysis/AliasAnalysis.h" 00021 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 00022 #include "llvm/CodeGen/LiveRangeEdit.h" 00023 #include "llvm/CodeGen/MachineFrameInfo.h" 00024 #include "llvm/CodeGen/MachineInstr.h" 00025 #include "llvm/CodeGen/MachineLoopInfo.h" 00026 #include "llvm/CodeGen/MachineRegisterInfo.h" 00027 #include "llvm/CodeGen/Passes.h" 00028 #include "llvm/CodeGen/RegisterClassInfo.h" 00029 #include "llvm/CodeGen/VirtRegMap.h" 00030 #include "llvm/IR/Value.h" 00031 #include "llvm/Pass.h" 00032 #include "llvm/Support/CommandLine.h" 00033 #include "llvm/Support/Debug.h" 00034 #include "llvm/Support/ErrorHandling.h" 00035 #include "llvm/Support/raw_ostream.h" 00036 #include "llvm/Target/TargetInstrInfo.h" 00037 #include "llvm/Target/TargetMachine.h" 00038 #include "llvm/Target/TargetRegisterInfo.h" 00039 #include "llvm/Target/TargetSubtargetInfo.h" 00040 #include <algorithm> 00041 #include <cmath> 00042 using namespace llvm; 00043 00044 #define DEBUG_TYPE "regalloc" 00045 00046 STATISTIC(numJoins , "Number of interval joins performed"); 00047 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 00048 STATISTIC(numCommutes , "Number of instruction commuting performed"); 00049 STATISTIC(numExtends , "Number of copies extended"); 00050 STATISTIC(NumReMats , "Number of instructions re-materialized"); 00051 STATISTIC(NumInflated , "Number of register classes inflated"); 00052 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 00053 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 00054 00055 static cl::opt<bool> 00056 EnableJoining("join-liveintervals", 00057 cl::desc("Coalesce copies (default=true)"), 00058 cl::init(true)); 00059 00060 // Temporary flag to test critical edge unsplitting. 00061 static cl::opt<bool> 00062 EnableJoinSplits("join-splitedges", 00063 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 00064 00065 // Temporary flag to test global copy optimization. 00066 static cl::opt<cl::boolOrDefault> 00067 EnableGlobalCopies("join-globalcopies", 00068 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 00069 cl::init(cl::BOU_UNSET), cl::Hidden); 00070 00071 static cl::opt<bool> 00072 VerifyCoalescing("verify-coalescing", 00073 cl::desc("Verify machine instrs before and after register coalescing"), 00074 cl::Hidden); 00075 00076 namespace { 00077 class RegisterCoalescer : public MachineFunctionPass, 00078 private LiveRangeEdit::Delegate { 00079 MachineFunction* MF; 00080 MachineRegisterInfo* MRI; 00081 const TargetMachine* TM; 00082 const TargetRegisterInfo* TRI; 00083 const TargetInstrInfo* TII; 00084 LiveIntervals *LIS; 00085 const MachineLoopInfo* Loops; 00086 AliasAnalysis *AA; 00087 RegisterClassInfo RegClassInfo; 00088 00089 /// \brief True if the coalescer should aggressively coalesce global copies 00090 /// in favor of keeping local copies. 00091 bool JoinGlobalCopies; 00092 00093 /// \brief True if the coalescer should aggressively coalesce fall-thru 00094 /// blocks exclusively containing copies. 00095 bool JoinSplitEdges; 00096 00097 /// WorkList - Copy instructions yet to be coalesced. 00098 SmallVector<MachineInstr*, 8> WorkList; 00099 SmallVector<MachineInstr*, 8> LocalWorkList; 00100 00101 /// ErasedInstrs - Set of instruction pointers that have been erased, and 00102 /// that may be present in WorkList. 00103 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 00104 00105 /// Dead instructions that are about to be deleted. 00106 SmallVector<MachineInstr*, 8> DeadDefs; 00107 00108 /// Virtual registers to be considered for register class inflation. 00109 SmallVector<unsigned, 8> InflateRegs; 00110 00111 /// Recursively eliminate dead defs in DeadDefs. 00112 void eliminateDeadDefs(); 00113 00114 /// LiveRangeEdit callback. 00115 void LRE_WillEraseInstruction(MachineInstr *MI) override; 00116 00117 /// coalesceLocals - coalesce the LocalWorkList. 00118 void coalesceLocals(); 00119 00120 /// joinAllIntervals - join compatible live intervals 00121 void joinAllIntervals(); 00122 00123 /// copyCoalesceInMBB - Coalesce copies in the specified MBB, putting 00124 /// copies that cannot yet be coalesced into WorkList. 00125 void copyCoalesceInMBB(MachineBasicBlock *MBB); 00126 00127 /// copyCoalesceWorkList - Try to coalesce all copies in CurrList. Return 00128 /// true if any progress was made. 00129 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 00130 00131 /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg, 00132 /// which are the src/dst of the copy instruction CopyMI. This returns 00133 /// true if the copy was successfully coalesced away. If it is not 00134 /// currently possible to coalesce this interval, but it may be possible if 00135 /// other things get coalesced, then it returns true by reference in 00136 /// 'Again'. 00137 bool joinCopy(MachineInstr *TheCopy, bool &Again); 00138 00139 /// joinIntervals - Attempt to join these two intervals. On failure, this 00140 /// returns false. The output "SrcInt" will not have been modified, so we 00141 /// can use this information below to update aliases. 00142 bool joinIntervals(CoalescerPair &CP); 00143 00144 /// Attempt joining two virtual registers. Return true on success. 00145 bool joinVirtRegs(CoalescerPair &CP); 00146 00147 /// Attempt joining with a reserved physreg. 00148 bool joinReservedPhysReg(CoalescerPair &CP); 00149 00150 /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy. If 00151 /// the source value number is defined by a copy from the destination reg 00152 /// see if we can merge these two destination reg valno# into a single 00153 /// value number, eliminating a copy. 00154 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 00155 00156 /// hasOtherReachingDefs - Return true if there are definitions of IntB 00157 /// other than BValNo val# that can reach uses of AValno val# of IntA. 00158 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 00159 VNInfo *AValNo, VNInfo *BValNo); 00160 00161 /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy. 00162 /// If the source value number is defined by a commutable instruction and 00163 /// its other operand is coalesced to the copy dest register, see if we 00164 /// can transform the copy into a noop by commuting the definition. 00165 bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI); 00166 00167 /// reMaterializeTrivialDef - If the source of a copy is defined by a 00168 /// trivial computation, replace the copy by rematerialize the definition. 00169 bool reMaterializeTrivialDef(CoalescerPair &CP, MachineInstr *CopyMI, 00170 bool &IsDefCopy); 00171 00172 /// canJoinPhys - Return true if a physreg copy should be joined. 00173 bool canJoinPhys(const CoalescerPair &CP); 00174 00175 /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and 00176 /// update the subregister number if it is not zero. If DstReg is a 00177 /// physical register and the existing subregister number of the def / use 00178 /// being updated is not zero, make sure to set it to the correct physical 00179 /// subregister. 00180 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); 00181 00182 /// eliminateUndefCopy - Handle copies of undef values. 00183 bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP); 00184 00185 public: 00186 static char ID; // Class identification, replacement for typeinfo 00187 RegisterCoalescer() : MachineFunctionPass(ID) { 00188 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 00189 } 00190 00191 void getAnalysisUsage(AnalysisUsage &AU) const override; 00192 00193 void releaseMemory() override; 00194 00195 /// runOnMachineFunction - pass entry point 00196 bool runOnMachineFunction(MachineFunction&) override; 00197 00198 /// print - Implement the dump method. 00199 void print(raw_ostream &O, const Module* = nullptr) const override; 00200 }; 00201 } /// end anonymous namespace 00202 00203 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 00204 00205 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 00206 "Simple Register Coalescing", false, false) 00207 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 00208 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 00209 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 00210 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 00211 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 00212 "Simple Register Coalescing", false, false) 00213 00214 char RegisterCoalescer::ID = 0; 00215 00216 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI, 00217 unsigned &Src, unsigned &Dst, 00218 unsigned &SrcSub, unsigned &DstSub) { 00219 if (MI->isCopy()) { 00220 Dst = MI->getOperand(0).getReg(); 00221 DstSub = MI->getOperand(0).getSubReg(); 00222 Src = MI->getOperand(1).getReg(); 00223 SrcSub = MI->getOperand(1).getSubReg(); 00224 } else if (MI->isSubregToReg()) { 00225 Dst = MI->getOperand(0).getReg(); 00226 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 00227 MI->getOperand(3).getImm()); 00228 Src = MI->getOperand(2).getReg(); 00229 SrcSub = MI->getOperand(2).getSubReg(); 00230 } else 00231 return false; 00232 return true; 00233 } 00234 00235 // Return true if this block should be vacated by the coalescer to eliminate 00236 // branches. The important cases to handle in the coalescer are critical edges 00237 // split during phi elimination which contain only copies. Simple blocks that 00238 // contain non-branches should also be vacated, but this can be handled by an 00239 // earlier pass similar to early if-conversion. 00240 static bool isSplitEdge(const MachineBasicBlock *MBB) { 00241 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 00242 return false; 00243 00244 for (const auto &MI : *MBB) { 00245 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 00246 return false; 00247 } 00248 return true; 00249 } 00250 00251 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 00252 SrcReg = DstReg = 0; 00253 SrcIdx = DstIdx = 0; 00254 NewRC = nullptr; 00255 Flipped = CrossClass = false; 00256 00257 unsigned Src, Dst, SrcSub, DstSub; 00258 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 00259 return false; 00260 Partial = SrcSub || DstSub; 00261 00262 // If one register is a physreg, it must be Dst. 00263 if (TargetRegisterInfo::isPhysicalRegister(Src)) { 00264 if (TargetRegisterInfo::isPhysicalRegister(Dst)) 00265 return false; 00266 std::swap(Src, Dst); 00267 std::swap(SrcSub, DstSub); 00268 Flipped = true; 00269 } 00270 00271 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 00272 00273 if (TargetRegisterInfo::isPhysicalRegister(Dst)) { 00274 // Eliminate DstSub on a physreg. 00275 if (DstSub) { 00276 Dst = TRI.getSubReg(Dst, DstSub); 00277 if (!Dst) return false; 00278 DstSub = 0; 00279 } 00280 00281 // Eliminate SrcSub by picking a corresponding Dst superregister. 00282 if (SrcSub) { 00283 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 00284 if (!Dst) return false; 00285 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 00286 return false; 00287 } 00288 } else { 00289 // Both registers are virtual. 00290 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 00291 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 00292 00293 // Both registers have subreg indices. 00294 if (SrcSub && DstSub) { 00295 // Copies between different sub-registers are never coalescable. 00296 if (Src == Dst && SrcSub != DstSub) 00297 return false; 00298 00299 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 00300 SrcIdx, DstIdx); 00301 if (!NewRC) 00302 return false; 00303 } else if (DstSub) { 00304 // SrcReg will be merged with a sub-register of DstReg. 00305 SrcIdx = DstSub; 00306 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 00307 } else if (SrcSub) { 00308 // DstReg will be merged with a sub-register of SrcReg. 00309 DstIdx = SrcSub; 00310 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 00311 } else { 00312 // This is a straight copy without sub-registers. 00313 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 00314 } 00315 00316 // The combined constraint may be impossible to satisfy. 00317 if (!NewRC) 00318 return false; 00319 00320 // Prefer SrcReg to be a sub-register of DstReg. 00321 // FIXME: Coalescer should support subregs symmetrically. 00322 if (DstIdx && !SrcIdx) { 00323 std::swap(Src, Dst); 00324 std::swap(SrcIdx, DstIdx); 00325 Flipped = !Flipped; 00326 } 00327 00328 CrossClass = NewRC != DstRC || NewRC != SrcRC; 00329 } 00330 // Check our invariants 00331 assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual"); 00332 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) && 00333 "Cannot have a physical SubIdx"); 00334 SrcReg = Src; 00335 DstReg = Dst; 00336 return true; 00337 } 00338 00339 bool CoalescerPair::flip() { 00340 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 00341 return false; 00342 std::swap(SrcReg, DstReg); 00343 std::swap(SrcIdx, DstIdx); 00344 Flipped = !Flipped; 00345 return true; 00346 } 00347 00348 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 00349 if (!MI) 00350 return false; 00351 unsigned Src, Dst, SrcSub, DstSub; 00352 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 00353 return false; 00354 00355 // Find the virtual register that is SrcReg. 00356 if (Dst == SrcReg) { 00357 std::swap(Src, Dst); 00358 std::swap(SrcSub, DstSub); 00359 } else if (Src != SrcReg) { 00360 return false; 00361 } 00362 00363 // Now check that Dst matches DstReg. 00364 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 00365 if (!TargetRegisterInfo::isPhysicalRegister(Dst)) 00366 return false; 00367 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 00368 // DstSub could be set for a physreg from INSERT_SUBREG. 00369 if (DstSub) 00370 Dst = TRI.getSubReg(Dst, DstSub); 00371 // Full copy of Src. 00372 if (!SrcSub) 00373 return DstReg == Dst; 00374 // This is a partial register copy. Check that the parts match. 00375 return TRI.getSubReg(DstReg, SrcSub) == Dst; 00376 } else { 00377 // DstReg is virtual. 00378 if (DstReg != Dst) 00379 return false; 00380 // Registers match, do the subregisters line up? 00381 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 00382 TRI.composeSubRegIndices(DstIdx, DstSub); 00383 } 00384 } 00385 00386 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 00387 AU.setPreservesCFG(); 00388 AU.addRequired<AliasAnalysis>(); 00389 AU.addRequired<LiveIntervals>(); 00390 AU.addPreserved<LiveIntervals>(); 00391 AU.addPreserved<SlotIndexes>(); 00392 AU.addRequired<MachineLoopInfo>(); 00393 AU.addPreserved<MachineLoopInfo>(); 00394 AU.addPreservedID(MachineDominatorsID); 00395 MachineFunctionPass::getAnalysisUsage(AU); 00396 } 00397 00398 void RegisterCoalescer::eliminateDeadDefs() { 00399 SmallVector<unsigned, 8> NewRegs; 00400 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 00401 nullptr, this).eliminateDeadDefs(DeadDefs); 00402 } 00403 00404 // Callback from eliminateDeadDefs(). 00405 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 00406 // MI may be in WorkList. Make sure we don't visit it. 00407 ErasedInstrs.insert(MI); 00408 } 00409 00410 /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA 00411 /// being the source and IntB being the dest, thus this defines a value number 00412 /// in IntB. If the source value number (in IntA) is defined by a copy from B, 00413 /// see if we can merge these two pieces of B into a single value number, 00414 /// eliminating a copy. For example: 00415 /// 00416 /// A3 = B0 00417 /// ... 00418 /// B1 = A3 <- this copy 00419 /// 00420 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1 00421 /// value number to be replaced with B0 (which simplifies the B liveinterval). 00422 /// 00423 /// This returns true if an interval was modified. 00424 /// 00425 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 00426 MachineInstr *CopyMI) { 00427 assert(!CP.isPartial() && "This doesn't work for partial copies."); 00428 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 00429 00430 LiveInterval &IntA = 00431 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 00432 LiveInterval &IntB = 00433 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 00434 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(); 00435 00436 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 00437 // the example above. 00438 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 00439 if (BS == IntB.end()) return false; 00440 VNInfo *BValNo = BS->valno; 00441 00442 // Get the location that B is defined at. Two options: either this value has 00443 // an unknown definition point or it is defined at CopyIdx. If unknown, we 00444 // can't process it. 00445 if (BValNo->def != CopyIdx) return false; 00446 00447 // AValNo is the value number in A that defines the copy, A3 in the example. 00448 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 00449 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 00450 // The live segment might not exist after fun with physreg coalescing. 00451 if (AS == IntA.end()) return false; 00452 VNInfo *AValNo = AS->valno; 00453 00454 // If AValNo is defined as a copy from IntB, we can potentially process this. 00455 // Get the instruction that defines this value number. 00456 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 00457 // Don't allow any partial copies, even if isCoalescable() allows them. 00458 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 00459 return false; 00460 00461 // Get the Segment in IntB that this value number starts with. 00462 LiveInterval::iterator ValS = 00463 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 00464 if (ValS == IntB.end()) 00465 return false; 00466 00467 // Make sure that the end of the live segment is inside the same block as 00468 // CopyMI. 00469 MachineInstr *ValSEndInst = 00470 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 00471 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 00472 return false; 00473 00474 // Okay, we now know that ValS ends in the same block that the CopyMI 00475 // live-range starts. If there are no intervening live segments between them 00476 // in IntB, we can merge them. 00477 if (ValS+1 != BS) return false; 00478 00479 DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI)); 00480 00481 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 00482 // We are about to delete CopyMI, so need to remove it as the 'instruction 00483 // that defines this value #'. Update the valnum with the new defining 00484 // instruction #. 00485 BValNo->def = FillerStart; 00486 00487 // Okay, we can merge them. We need to insert a new liverange: 00488 // [ValS.end, BS.begin) of either value number, then we merge the 00489 // two value numbers. 00490 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 00491 00492 // Okay, merge "B1" into the same value number as "B0". 00493 if (BValNo != ValS->valno) 00494 IntB.MergeValueNumberInto(BValNo, ValS->valno); 00495 DEBUG(dbgs() << " result = " << IntB << '\n'); 00496 00497 // If the source instruction was killing the source register before the 00498 // merge, unset the isKill marker given the live range has been extended. 00499 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true); 00500 if (UIdx != -1) { 00501 ValSEndInst->getOperand(UIdx).setIsKill(false); 00502 } 00503 00504 // Rewrite the copy. If the copy instruction was killing the destination 00505 // register before the merge, find the last use and trim the live range. That 00506 // will also add the isKill marker. 00507 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI); 00508 if (AS->end == CopyIdx) 00509 LIS->shrinkToUses(&IntA); 00510 00511 ++numExtends; 00512 return true; 00513 } 00514 00515 /// hasOtherReachingDefs - Return true if there are definitions of IntB 00516 /// other than BValNo val# that can reach uses of AValno val# of IntA. 00517 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 00518 LiveInterval &IntB, 00519 VNInfo *AValNo, 00520 VNInfo *BValNo) { 00521 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 00522 // the PHI values. 00523 if (LIS->hasPHIKill(IntA, AValNo)) 00524 return true; 00525 00526 for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end(); 00527 AI != AE; ++AI) { 00528 if (AI->valno != AValNo) continue; 00529 LiveInterval::iterator BI = 00530 std::upper_bound(IntB.begin(), IntB.end(), AI->start); 00531 if (BI != IntB.begin()) 00532 --BI; 00533 for (; BI != IntB.end() && AI->end >= BI->start; ++BI) { 00534 if (BI->valno == BValNo) 00535 continue; 00536 if (BI->start <= AI->start && BI->end > AI->start) 00537 return true; 00538 if (BI->start > AI->start && BI->start < AI->end) 00539 return true; 00540 } 00541 } 00542 return false; 00543 } 00544 00545 /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy with 00546 /// IntA being the source and IntB being the dest, thus this defines a value 00547 /// number in IntB. If the source value number (in IntA) is defined by a 00548 /// commutable instruction and its other operand is coalesced to the copy dest 00549 /// register, see if we can transform the copy into a noop by commuting the 00550 /// definition. For example, 00551 /// 00552 /// A3 = op A2 B0<kill> 00553 /// ... 00554 /// B1 = A3 <- this copy 00555 /// ... 00556 /// = op A3 <- more uses 00557 /// 00558 /// ==> 00559 /// 00560 /// B2 = op B0 A2<kill> 00561 /// ... 00562 /// B1 = B2 <- now an identify copy 00563 /// ... 00564 /// = op B2 <- more uses 00565 /// 00566 /// This returns true if an interval was modified. 00567 /// 00568 bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 00569 MachineInstr *CopyMI) { 00570 assert (!CP.isPhys()); 00571 00572 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(); 00573 00574 LiveInterval &IntA = 00575 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 00576 LiveInterval &IntB = 00577 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 00578 00579 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 00580 // the example above. 00581 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 00582 if (!BValNo || BValNo->def != CopyIdx) 00583 return false; 00584 00585 // AValNo is the value number in A that defines the copy, A3 in the example. 00586 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 00587 assert(AValNo && "COPY source not live"); 00588 if (AValNo->isPHIDef() || AValNo->isUnused()) 00589 return false; 00590 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 00591 if (!DefMI) 00592 return false; 00593 if (!DefMI->isCommutable()) 00594 return false; 00595 // If DefMI is a two-address instruction then commuting it will change the 00596 // destination register. 00597 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); 00598 assert(DefIdx != -1); 00599 unsigned UseOpIdx; 00600 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 00601 return false; 00602 unsigned Op1, Op2, NewDstIdx; 00603 if (!TII->findCommutedOpIndices(DefMI, Op1, Op2)) 00604 return false; 00605 if (Op1 == UseOpIdx) 00606 NewDstIdx = Op2; 00607 else if (Op2 == UseOpIdx) 00608 NewDstIdx = Op1; 00609 else 00610 return false; 00611 00612 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 00613 unsigned NewReg = NewDstMO.getReg(); 00614 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill()) 00615 return false; 00616 00617 // Make sure there are no other definitions of IntB that would reach the 00618 // uses which the new definition can reach. 00619 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 00620 return false; 00621 00622 // If some of the uses of IntA.reg is already coalesced away, return false. 00623 // It's not possible to determine whether it's safe to perform the coalescing. 00624 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) { 00625 MachineInstr *UseMI = MO.getParent(); 00626 unsigned OpNo = &MO - &UseMI->getOperand(0); 00627 SlotIndex UseIdx = LIS->getInstructionIndex(UseMI); 00628 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 00629 if (US == IntA.end() || US->valno != AValNo) 00630 continue; 00631 // If this use is tied to a def, we can't rewrite the register. 00632 if (UseMI->isRegTiedToDefOperand(OpNo)) 00633 return false; 00634 } 00635 00636 DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 00637 << *DefMI); 00638 00639 // At this point we have decided that it is legal to do this 00640 // transformation. Start by commuting the instruction. 00641 MachineBasicBlock *MBB = DefMI->getParent(); 00642 MachineInstr *NewMI = TII->commuteInstruction(DefMI); 00643 if (!NewMI) 00644 return false; 00645 if (TargetRegisterInfo::isVirtualRegister(IntA.reg) && 00646 TargetRegisterInfo::isVirtualRegister(IntB.reg) && 00647 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg))) 00648 return false; 00649 if (NewMI != DefMI) { 00650 LIS->ReplaceMachineInstrInMaps(DefMI, NewMI); 00651 MachineBasicBlock::iterator Pos = DefMI; 00652 MBB->insert(Pos, NewMI); 00653 MBB->erase(DefMI); 00654 } 00655 unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false); 00656 NewMI->getOperand(OpIdx).setIsKill(); 00657 00658 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 00659 // A = or A, B 00660 // ... 00661 // B = A 00662 // ... 00663 // C = A<kill> 00664 // ... 00665 // = B 00666 00667 // Update uses of IntA of the specific Val# with IntB. 00668 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg), 00669 UE = MRI->use_end(); UI != UE;) { 00670 MachineOperand &UseMO = *UI; 00671 MachineInstr *UseMI = UseMO.getParent(); 00672 ++UI; 00673 if (UseMI->isDebugValue()) { 00674 // FIXME These don't have an instruction index. Not clear we have enough 00675 // info to decide whether to do this replacement or not. For now do it. 00676 UseMO.setReg(NewReg); 00677 continue; 00678 } 00679 SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true); 00680 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 00681 if (US == IntA.end() || US->valno != AValNo) 00682 continue; 00683 // Kill flags are no longer accurate. They are recomputed after RA. 00684 UseMO.setIsKill(false); 00685 if (TargetRegisterInfo::isPhysicalRegister(NewReg)) 00686 UseMO.substPhysReg(NewReg, *TRI); 00687 else 00688 UseMO.setReg(NewReg); 00689 if (UseMI == CopyMI) 00690 continue; 00691 if (!UseMI->isCopy()) 00692 continue; 00693 if (UseMI->getOperand(0).getReg() != IntB.reg || 00694 UseMI->getOperand(0).getSubReg()) 00695 continue; 00696 00697 // This copy will become a noop. If it's defining a new val#, merge it into 00698 // BValNo. 00699 SlotIndex DefIdx = UseIdx.getRegSlot(); 00700 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 00701 if (!DVNI) 00702 continue; 00703 DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 00704 assert(DVNI->def == DefIdx); 00705 BValNo = IntB.MergeValueNumberInto(BValNo, DVNI); 00706 ErasedInstrs.insert(UseMI); 00707 LIS->RemoveMachineInstrFromMaps(UseMI); 00708 UseMI->eraseFromParent(); 00709 } 00710 00711 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 00712 // is updated. 00713 VNInfo *ValNo = BValNo; 00714 ValNo->def = AValNo->def; 00715 for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end(); 00716 AI != AE; ++AI) { 00717 if (AI->valno != AValNo) continue; 00718 IntB.addSegment(LiveInterval::Segment(AI->start, AI->end, ValNo)); 00719 } 00720 DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 00721 00722 IntA.removeValNo(AValNo); 00723 DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 00724 ++numCommutes; 00725 return true; 00726 } 00727 00728 /// reMaterializeTrivialDef - If the source of a copy is defined by a trivial 00729 /// computation, replace the copy by rematerialize the definition. 00730 bool RegisterCoalescer::reMaterializeTrivialDef(CoalescerPair &CP, 00731 MachineInstr *CopyMI, 00732 bool &IsDefCopy) { 00733 IsDefCopy = false; 00734 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 00735 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 00736 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 00737 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 00738 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) 00739 return false; 00740 00741 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 00742 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI); 00743 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 00744 assert(ValNo && "CopyMI input register not live"); 00745 if (ValNo->isPHIDef() || ValNo->isUnused()) 00746 return false; 00747 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 00748 if (!DefMI) 00749 return false; 00750 if (DefMI->isCopyLike()) { 00751 IsDefCopy = true; 00752 return false; 00753 } 00754 if (!TII->isAsCheapAsAMove(DefMI)) 00755 return false; 00756 if (!TII->isTriviallyReMaterializable(DefMI, AA)) 00757 return false; 00758 bool SawStore = false; 00759 if (!DefMI->isSafeToMove(TII, AA, SawStore)) 00760 return false; 00761 const MCInstrDesc &MCID = DefMI->getDesc(); 00762 if (MCID.getNumDefs() != 1) 00763 return false; 00764 // Only support subregister destinations when the def is read-undef. 00765 MachineOperand &DstOperand = CopyMI->getOperand(0); 00766 unsigned CopyDstReg = DstOperand.getReg(); 00767 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 00768 return false; 00769 00770 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 00771 // the register substantially (beyond both source and dest size). This is bad 00772 // for performance since it can cascade through a function, introducing many 00773 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 00774 // around after a few subreg copies). 00775 if (SrcIdx && DstIdx) 00776 return false; 00777 00778 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 00779 if (!DefMI->isImplicitDef()) { 00780 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 00781 unsigned NewDstReg = DstReg; 00782 00783 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 00784 DefMI->getOperand(0).getSubReg()); 00785 if (NewDstIdx) 00786 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 00787 00788 // Finally, make sure that the physical subregister that will be 00789 // constructed later is permitted for the instruction. 00790 if (!DefRC->contains(NewDstReg)) 00791 return false; 00792 } else { 00793 // Theoretically, some stack frame reference could exist. Just make sure 00794 // it hasn't actually happened. 00795 assert(TargetRegisterInfo::isVirtualRegister(DstReg) && 00796 "Only expect to deal with virtual or physical registers"); 00797 } 00798 } 00799 00800 MachineBasicBlock *MBB = CopyMI->getParent(); 00801 MachineBasicBlock::iterator MII = 00802 std::next(MachineBasicBlock::iterator(CopyMI)); 00803 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, DefMI, *TRI); 00804 MachineInstr *NewMI = std::prev(MII); 00805 00806 LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI); 00807 CopyMI->eraseFromParent(); 00808 ErasedInstrs.insert(CopyMI); 00809 00810 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 00811 // We need to remember these so we can add intervals once we insert 00812 // NewMI into SlotIndexes. 00813 SmallVector<unsigned, 4> NewMIImplDefs; 00814 for (unsigned i = NewMI->getDesc().getNumOperands(), 00815 e = NewMI->getNumOperands(); i != e; ++i) { 00816 MachineOperand &MO = NewMI->getOperand(i); 00817 if (MO.isReg()) { 00818 assert(MO.isDef() && MO.isImplicit() && MO.isDead() && 00819 TargetRegisterInfo::isPhysicalRegister(MO.getReg())); 00820 NewMIImplDefs.push_back(MO.getReg()); 00821 } 00822 } 00823 00824 if (TargetRegisterInfo::isVirtualRegister(DstReg)) { 00825 const TargetRegisterClass *NewRC = CP.getNewRC(); 00826 unsigned NewIdx = NewMI->getOperand(0).getSubReg(); 00827 00828 if (NewIdx) 00829 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 00830 else 00831 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 00832 00833 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 00834 MRI->setRegClass(DstReg, NewRC); 00835 00836 updateRegDefsUses(DstReg, DstReg, DstIdx); 00837 NewMI->getOperand(0).setSubReg(NewIdx); 00838 } else if (NewMI->getOperand(0).getReg() != CopyDstReg) { 00839 // The New instruction may be defining a sub-register of what's actually 00840 // been asked for. If so it must implicitly define the whole thing. 00841 assert(TargetRegisterInfo::isPhysicalRegister(DstReg) && 00842 "Only expect virtual or physical registers in remat"); 00843 NewMI->getOperand(0).setIsDead(true); 00844 NewMI->addOperand(MachineOperand::CreateReg(CopyDstReg, 00845 true /*IsDef*/, 00846 true /*IsImp*/, 00847 false /*IsKill*/)); 00848 // Record small dead def live-ranges for all the subregisters 00849 // of the destination register. 00850 // Otherwise, variables that live through may miss some 00851 // interferences, thus creating invalid allocation. 00852 // E.g., i386 code: 00853 // vreg1 = somedef ; vreg1 GR8 00854 // vreg2 = remat ; vreg2 GR32 00855 // CL = COPY vreg2.sub_8bit 00856 // = somedef vreg1 ; vreg1 GR8 00857 // => 00858 // vreg1 = somedef ; vreg1 GR8 00859 // ECX<def, dead> = remat ; CL<imp-def> 00860 // = somedef vreg1 ; vreg1 GR8 00861 // vreg1 will see the inteferences with CL but not with CH since 00862 // no live-ranges would have been created for ECX. 00863 // Fix that! 00864 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 00865 for (MCRegUnitIterator Units(NewMI->getOperand(0).getReg(), TRI); 00866 Units.isValid(); ++Units) 00867 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 00868 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 00869 } 00870 00871 if (NewMI->getOperand(0).getSubReg()) 00872 NewMI->getOperand(0).setIsUndef(); 00873 00874 // CopyMI may have implicit operands, transfer them over to the newly 00875 // rematerialized instruction. And update implicit def interval valnos. 00876 for (unsigned i = CopyMI->getDesc().getNumOperands(), 00877 e = CopyMI->getNumOperands(); i != e; ++i) { 00878 MachineOperand &MO = CopyMI->getOperand(i); 00879 if (MO.isReg()) { 00880 assert(MO.isImplicit() && "No explicit operands after implict operands."); 00881 // Discard VReg implicit defs. 00882 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { 00883 NewMI->addOperand(MO); 00884 } 00885 } 00886 } 00887 00888 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 00889 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 00890 unsigned Reg = NewMIImplDefs[i]; 00891 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 00892 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 00893 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 00894 } 00895 00896 DEBUG(dbgs() << "Remat: " << *NewMI); 00897 ++NumReMats; 00898 00899 // The source interval can become smaller because we removed a use. 00900 LIS->shrinkToUses(&SrcInt, &DeadDefs); 00901 if (!DeadDefs.empty()) 00902 eliminateDeadDefs(); 00903 00904 return true; 00905 } 00906 00907 /// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef> 00908 /// values, it only removes local variables. When we have a copy like: 00909 /// 00910 /// %vreg1 = COPY %vreg2<undef> 00911 /// 00912 /// We delete the copy and remove the corresponding value number from %vreg1. 00913 /// Any uses of that value number are marked as <undef>. 00914 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI, 00915 const CoalescerPair &CP) { 00916 SlotIndex Idx = LIS->getInstructionIndex(CopyMI); 00917 LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg()); 00918 if (SrcInt->liveAt(Idx)) 00919 return false; 00920 LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg()); 00921 if (DstInt->liveAt(Idx)) 00922 return false; 00923 00924 // No intervals are live-in to CopyMI - it is undef. 00925 if (CP.isFlipped()) 00926 DstInt = SrcInt; 00927 SrcInt = nullptr; 00928 00929 VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot()); 00930 assert(DeadVNI && "No value defined in DstInt"); 00931 DstInt->removeValNo(DeadVNI); 00932 00933 // Find new undef uses. 00934 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstInt->reg)) { 00935 if (MO.isDef() || MO.isUndef()) 00936 continue; 00937 MachineInstr *MI = MO.getParent(); 00938 SlotIndex Idx = LIS->getInstructionIndex(MI); 00939 if (DstInt->liveAt(Idx)) 00940 continue; 00941 MO.setIsUndef(true); 00942 DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI); 00943 } 00944 return true; 00945 } 00946 00947 /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and 00948 /// update the subregister number if it is not zero. If DstReg is a 00949 /// physical register and the existing subregister number of the def / use 00950 /// being updated is not zero, make sure to set it to the correct physical 00951 /// subregister. 00952 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, 00953 unsigned DstReg, 00954 unsigned SubIdx) { 00955 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 00956 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 00957 00958 SmallPtrSet<MachineInstr*, 8> Visited; 00959 for (MachineRegisterInfo::reg_instr_iterator 00960 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 00961 I != E; ) { 00962 MachineInstr *UseMI = &*(I++); 00963 00964 // Each instruction can only be rewritten once because sub-register 00965 // composition is not always idempotent. When SrcReg != DstReg, rewriting 00966 // the UseMI operands removes them from the SrcReg use-def chain, but when 00967 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 00968 // operands mentioning the virtual register. 00969 if (SrcReg == DstReg && !Visited.insert(UseMI)) 00970 continue; 00971 00972 SmallVector<unsigned,8> Ops; 00973 bool Reads, Writes; 00974 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 00975 00976 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 00977 // because SrcReg is a sub-register. 00978 if (DstInt && !Reads && SubIdx) 00979 Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI)); 00980 00981 // Replace SrcReg with DstReg in all UseMI operands. 00982 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 00983 MachineOperand &MO = UseMI->getOperand(Ops[i]); 00984 00985 // Adjust <undef> flags in case of sub-register joins. We don't want to 00986 // turn a full def into a read-modify-write sub-register def and vice 00987 // versa. 00988 if (SubIdx && MO.isDef()) 00989 MO.setIsUndef(!Reads); 00990 00991 if (DstIsPhys) 00992 MO.substPhysReg(DstReg, *TRI); 00993 else 00994 MO.substVirtReg(DstReg, SubIdx, *TRI); 00995 } 00996 00997 DEBUG({ 00998 dbgs() << "\t\tupdated: "; 00999 if (!UseMI->isDebugValue()) 01000 dbgs() << LIS->getInstructionIndex(UseMI) << "\t"; 01001 dbgs() << *UseMI; 01002 }); 01003 } 01004 } 01005 01006 /// canJoinPhys - Return true if a copy involving a physreg should be joined. 01007 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 01008 /// Always join simple intervals that are defined by a single copy from a 01009 /// reserved register. This doesn't increase register pressure, so it is 01010 /// always beneficial. 01011 if (!MRI->isReserved(CP.getDstReg())) { 01012 DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 01013 return false; 01014 } 01015 01016 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 01017 if (CP.isFlipped() && JoinVInt.containsOneValue()) 01018 return true; 01019 01020 DEBUG(dbgs() << "\tCannot join defs into reserved register.\n"); 01021 return false; 01022 } 01023 01024 /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg, 01025 /// which are the src/dst of the copy instruction CopyMI. This returns true 01026 /// if the copy was successfully coalesced away. If it is not currently 01027 /// possible to coalesce this interval, but it may be possible if other 01028 /// things get coalesced, then it returns true by reference in 'Again'. 01029 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 01030 01031 Again = false; 01032 DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI); 01033 01034 CoalescerPair CP(*TRI); 01035 if (!CP.setRegisters(CopyMI)) { 01036 DEBUG(dbgs() << "\tNot coalescable.\n"); 01037 return false; 01038 } 01039 01040 if (CP.getNewRC()) { 01041 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 01042 auto DstRC = MRI->getRegClass(CP.getDstReg()); 01043 unsigned SrcIdx = CP.getSrcIdx(); 01044 unsigned DstIdx = CP.getDstIdx(); 01045 if (CP.isFlipped()) { 01046 std::swap(SrcIdx, DstIdx); 01047 std::swap(SrcRC, DstRC); 01048 } 01049 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 01050 CP.getNewRC())) { 01051 DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 01052 return false; 01053 } 01054 } 01055 01056 // Dead code elimination. This really should be handled by MachineDCE, but 01057 // sometimes dead copies slip through, and we can't generate invalid live 01058 // ranges. 01059 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 01060 DEBUG(dbgs() << "\tCopy is dead.\n"); 01061 DeadDefs.push_back(CopyMI); 01062 eliminateDeadDefs(); 01063 return true; 01064 } 01065 01066 // Eliminate undefs. 01067 if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) { 01068 DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n"); 01069 LIS->RemoveMachineInstrFromMaps(CopyMI); 01070 CopyMI->eraseFromParent(); 01071 return false; // Not coalescable. 01072 } 01073 01074 // Coalesced copies are normally removed immediately, but transformations 01075 // like removeCopyByCommutingDef() can inadvertently create identity copies. 01076 // When that happens, just join the values and remove the copy. 01077 if (CP.getSrcReg() == CP.getDstReg()) { 01078 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 01079 DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 01080 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(CopyMI)); 01081 if (VNInfo *DefVNI = LRQ.valueDefined()) { 01082 VNInfo *ReadVNI = LRQ.valueIn(); 01083 assert(ReadVNI && "No value before copy and no <undef> flag."); 01084 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 01085 LI.MergeValueNumberInto(DefVNI, ReadVNI); 01086 DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 01087 } 01088 LIS->RemoveMachineInstrFromMaps(CopyMI); 01089 CopyMI->eraseFromParent(); 01090 return true; 01091 } 01092 01093 // Enforce policies. 01094 if (CP.isPhys()) { 01095 DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI) 01096 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) 01097 << '\n'); 01098 if (!canJoinPhys(CP)) { 01099 // Before giving up coalescing, if definition of source is defined by 01100 // trivial computation, try rematerializing it. 01101 bool IsDefCopy; 01102 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 01103 return true; 01104 if (IsDefCopy) 01105 Again = true; // May be possible to coalesce later. 01106 return false; 01107 } 01108 } else { 01109 DEBUG({ 01110 dbgs() << "\tConsidering merging to " << CP.getNewRC()->getName() 01111 << " with "; 01112 if (CP.getDstIdx() && CP.getSrcIdx()) 01113 dbgs() << PrintReg(CP.getDstReg()) << " in " 01114 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 01115 << PrintReg(CP.getSrcReg()) << " in " 01116 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 01117 else 01118 dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in " 01119 << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 01120 }); 01121 01122 // When possible, let DstReg be the larger interval. 01123 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 01124 LIS->getInterval(CP.getDstReg()).size()) 01125 CP.flip(); 01126 } 01127 01128 // Okay, attempt to join these two intervals. On failure, this returns false. 01129 // Otherwise, if one of the intervals being joined is a physreg, this method 01130 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 01131 // been modified, so we can use this information below to update aliases. 01132 if (!joinIntervals(CP)) { 01133 // Coalescing failed. 01134 01135 // If definition of source is defined by trivial computation, try 01136 // rematerializing it. 01137 bool IsDefCopy; 01138 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 01139 return true; 01140 01141 // If we can eliminate the copy without merging the live segments, do so 01142 // now. 01143 if (!CP.isPartial() && !CP.isPhys()) { 01144 if (adjustCopiesBackFrom(CP, CopyMI) || 01145 removeCopyByCommutingDef(CP, CopyMI)) { 01146 LIS->RemoveMachineInstrFromMaps(CopyMI); 01147 CopyMI->eraseFromParent(); 01148 DEBUG(dbgs() << "\tTrivial!\n"); 01149 return true; 01150 } 01151 } 01152 01153 // Otherwise, we are unable to join the intervals. 01154 DEBUG(dbgs() << "\tInterference!\n"); 01155 Again = true; // May be possible to coalesce later. 01156 return false; 01157 } 01158 01159 // Coalescing to a virtual register that is of a sub-register class of the 01160 // other. Make sure the resulting register is set to the right register class. 01161 if (CP.isCrossClass()) { 01162 ++numCrossRCs; 01163 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 01164 } 01165 01166 // Removing sub-register copies can ease the register class constraints. 01167 // Make sure we attempt to inflate the register class of DstReg. 01168 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 01169 InflateRegs.push_back(CP.getDstReg()); 01170 01171 // CopyMI has been erased by joinIntervals at this point. Remove it from 01172 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 01173 // to the work list. This keeps ErasedInstrs from growing needlessly. 01174 ErasedInstrs.erase(CopyMI); 01175 01176 // Rewrite all SrcReg operands to DstReg. 01177 // Also update DstReg operands to include DstIdx if it is set. 01178 if (CP.getDstIdx()) 01179 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 01180 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 01181 01182 // SrcReg is guaranteed to be the register whose live interval that is 01183 // being merged. 01184 LIS->removeInterval(CP.getSrcReg()); 01185 01186 // Update regalloc hint. 01187 TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 01188 01189 DEBUG({ 01190 dbgs() << "\tJoined. Result = "; 01191 if (CP.isPhys()) 01192 dbgs() << PrintReg(CP.getDstReg(), TRI); 01193 else 01194 dbgs() << LIS->getInterval(CP.getDstReg()); 01195 dbgs() << '\n'; 01196 }); 01197 01198 ++numJoins; 01199 return true; 01200 } 01201 01202 /// Attempt joining with a reserved physreg. 01203 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 01204 assert(CP.isPhys() && "Must be a physreg copy"); 01205 assert(MRI->isReserved(CP.getDstReg()) && "Not a reserved register"); 01206 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 01207 DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 01208 01209 assert(CP.isFlipped() && RHS.containsOneValue() && 01210 "Invalid join with reserved register"); 01211 01212 // Optimization for reserved registers like ESP. We can only merge with a 01213 // reserved physreg if RHS has a single value that is a copy of CP.DstReg(). 01214 // The live range of the reserved register will look like a set of dead defs 01215 // - we don't properly track the live range of reserved registers. 01216 01217 // Deny any overlapping intervals. This depends on all the reserved 01218 // register live ranges to look like dead defs. 01219 for (MCRegUnitIterator UI(CP.getDstReg(), TRI); UI.isValid(); ++UI) 01220 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 01221 DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n'); 01222 return false; 01223 } 01224 01225 // Skip any value computations, we are not adding new values to the 01226 // reserved register. Also skip merging the live ranges, the reserved 01227 // register live range doesn't need to be accurate as long as all the 01228 // defs are there. 01229 01230 // Delete the identity copy. 01231 MachineInstr *CopyMI = MRI->getVRegDef(RHS.reg); 01232 LIS->RemoveMachineInstrFromMaps(CopyMI); 01233 CopyMI->eraseFromParent(); 01234 01235 // We don't track kills for reserved registers. 01236 MRI->clearKillFlags(CP.getSrcReg()); 01237 01238 return true; 01239 } 01240 01241 //===----------------------------------------------------------------------===// 01242 // Interference checking and interval joining 01243 //===----------------------------------------------------------------------===// 01244 // 01245 // In the easiest case, the two live ranges being joined are disjoint, and 01246 // there is no interference to consider. It is quite common, though, to have 01247 // overlapping live ranges, and we need to check if the interference can be 01248 // resolved. 01249 // 01250 // The live range of a single SSA value forms a sub-tree of the dominator tree. 01251 // This means that two SSA values overlap if and only if the def of one value 01252 // is contained in the live range of the other value. As a special case, the 01253 // overlapping values can be defined at the same index. 01254 // 01255 // The interference from an overlapping def can be resolved in these cases: 01256 // 01257 // 1. Coalescable copies. The value is defined by a copy that would become an 01258 // identity copy after joining SrcReg and DstReg. The copy instruction will 01259 // be removed, and the value will be merged with the source value. 01260 // 01261 // There can be several copies back and forth, causing many values to be 01262 // merged into one. We compute a list of ultimate values in the joined live 01263 // range as well as a mappings from the old value numbers. 01264 // 01265 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 01266 // predecessors have a live out value. It doesn't cause real interference, 01267 // and can be merged into the value it overlaps. Like a coalescable copy, it 01268 // can be erased after joining. 01269 // 01270 // 3. Copy of external value. The overlapping def may be a copy of a value that 01271 // is already in the other register. This is like a coalescable copy, but 01272 // the live range of the source register must be trimmed after erasing the 01273 // copy instruction: 01274 // 01275 // %src = COPY %ext 01276 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 01277 // 01278 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 01279 // defining one lane at a time: 01280 // 01281 // %dst:ssub0<def,read-undef> = FOO 01282 // %src = BAR 01283 // %dst:ssub1<def> = COPY %src 01284 // 01285 // The live range of %src overlaps the %dst value defined by FOO, but 01286 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 01287 // which was undef anyway. 01288 // 01289 // The value mapping is more complicated in this case. The final live range 01290 // will have different value numbers for both FOO and BAR, but there is no 01291 // simple mapping from old to new values. It may even be necessary to add 01292 // new PHI values. 01293 // 01294 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 01295 // is live, but never read. This can happen because we don't compute 01296 // individual live ranges per lane. 01297 // 01298 // %dst<def> = FOO 01299 // %src = BAR 01300 // %dst:ssub1<def> = COPY %src 01301 // 01302 // This kind of interference is only resolved locally. If the clobbered 01303 // lane value escapes the block, the join is aborted. 01304 01305 namespace { 01306 /// Track information about values in a single virtual register about to be 01307 /// joined. Objects of this class are always created in pairs - one for each 01308 /// side of the CoalescerPair. 01309 class JoinVals { 01310 LiveInterval &LI; 01311 01312 // Location of this register in the final joined register. 01313 // Either CP.DstIdx or CP.SrcIdx. 01314 unsigned SubIdx; 01315 01316 // Values that will be present in the final live range. 01317 SmallVectorImpl<VNInfo*> &NewVNInfo; 01318 01319 const CoalescerPair &CP; 01320 LiveIntervals *LIS; 01321 SlotIndexes *Indexes; 01322 const TargetRegisterInfo *TRI; 01323 01324 // Value number assignments. Maps value numbers in LI to entries in NewVNInfo. 01325 // This is suitable for passing to LiveInterval::join(). 01326 SmallVector<int, 8> Assignments; 01327 01328 // Conflict resolution for overlapping values. 01329 enum ConflictResolution { 01330 // No overlap, simply keep this value. 01331 CR_Keep, 01332 01333 // Merge this value into OtherVNI and erase the defining instruction. 01334 // Used for IMPLICIT_DEF, coalescable copies, and copies from external 01335 // values. 01336 CR_Erase, 01337 01338 // Merge this value into OtherVNI but keep the defining instruction. 01339 // This is for the special case where OtherVNI is defined by the same 01340 // instruction. 01341 CR_Merge, 01342 01343 // Keep this value, and have it replace OtherVNI where possible. This 01344 // complicates value mapping since OtherVNI maps to two different values 01345 // before and after this def. 01346 // Used when clobbering undefined or dead lanes. 01347 CR_Replace, 01348 01349 // Unresolved conflict. Visit later when all values have been mapped. 01350 CR_Unresolved, 01351 01352 // Unresolvable conflict. Abort the join. 01353 CR_Impossible 01354 }; 01355 01356 // Per-value info for LI. The lane bit masks are all relative to the final 01357 // joined register, so they can be compared directly between SrcReg and 01358 // DstReg. 01359 struct Val { 01360 ConflictResolution Resolution; 01361 01362 // Lanes written by this def, 0 for unanalyzed values. 01363 unsigned WriteLanes; 01364 01365 // Lanes with defined values in this register. Other lanes are undef and 01366 // safe to clobber. 01367 unsigned ValidLanes; 01368 01369 // Value in LI being redefined by this def. 01370 VNInfo *RedefVNI; 01371 01372 // Value in the other live range that overlaps this def, if any. 01373 VNInfo *OtherVNI; 01374 01375 // Is this value an IMPLICIT_DEF that can be erased? 01376 // 01377 // IMPLICIT_DEF values should only exist at the end of a basic block that 01378 // is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 01379 // safely erased if they are overlapping a live value in the other live 01380 // interval. 01381 // 01382 // Weird control flow graphs and incomplete PHI handling in 01383 // ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 01384 // longer live ranges. Such IMPLICIT_DEF values should be treated like 01385 // normal values. 01386 bool ErasableImplicitDef; 01387 01388 // True when the live range of this value will be pruned because of an 01389 // overlapping CR_Replace value in the other live range. 01390 bool Pruned; 01391 01392 // True once Pruned above has been computed. 01393 bool PrunedComputed; 01394 01395 Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0), 01396 RedefVNI(nullptr), OtherVNI(nullptr), ErasableImplicitDef(false), 01397 Pruned(false), PrunedComputed(false) {} 01398 01399 bool isAnalyzed() const { return WriteLanes != 0; } 01400 }; 01401 01402 // One entry per value number in LI. 01403 SmallVector<Val, 8> Vals; 01404 01405 unsigned computeWriteLanes(const MachineInstr *DefMI, bool &Redef); 01406 VNInfo *stripCopies(VNInfo *VNI); 01407 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 01408 void computeAssignment(unsigned ValNo, JoinVals &Other); 01409 bool taintExtent(unsigned, unsigned, JoinVals&, 01410 SmallVectorImpl<std::pair<SlotIndex, unsigned> >&); 01411 bool usesLanes(MachineInstr *MI, unsigned, unsigned, unsigned); 01412 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 01413 01414 public: 01415 JoinVals(LiveInterval &li, unsigned subIdx, 01416 SmallVectorImpl<VNInfo*> &newVNInfo, 01417 const CoalescerPair &cp, 01418 LiveIntervals *lis, 01419 const TargetRegisterInfo *tri) 01420 : LI(li), SubIdx(subIdx), NewVNInfo(newVNInfo), CP(cp), LIS(lis), 01421 Indexes(LIS->getSlotIndexes()), TRI(tri), 01422 Assignments(LI.getNumValNums(), -1), Vals(LI.getNumValNums()) 01423 {} 01424 01425 /// Analyze defs in LI and compute a value mapping in NewVNInfo. 01426 /// Returns false if any conflicts were impossible to resolve. 01427 bool mapValues(JoinVals &Other); 01428 01429 /// Try to resolve conflicts that require all values to be mapped. 01430 /// Returns false if any conflicts were impossible to resolve. 01431 bool resolveConflicts(JoinVals &Other); 01432 01433 /// Prune the live range of values in Other.LI where they would conflict with 01434 /// CR_Replace values in LI. Collect end points for restoring the live range 01435 /// after joining. 01436 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints); 01437 01438 /// Erase any machine instructions that have been coalesced away. 01439 /// Add erased instructions to ErasedInstrs. 01440 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 01441 /// the erased instrs. 01442 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 01443 SmallVectorImpl<unsigned> &ShrinkRegs); 01444 01445 /// Get the value assignments suitable for passing to LiveInterval::join. 01446 const int *getAssignments() const { return Assignments.data(); } 01447 }; 01448 } // end anonymous namespace 01449 01450 /// Compute the bitmask of lanes actually written by DefMI. 01451 /// Set Redef if there are any partial register definitions that depend on the 01452 /// previous value of the register. 01453 unsigned JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) { 01454 unsigned L = 0; 01455 for (ConstMIOperands MO(DefMI); MO.isValid(); ++MO) { 01456 if (!MO->isReg() || MO->getReg() != LI.reg || !MO->isDef()) 01457 continue; 01458 L |= TRI->getSubRegIndexLaneMask( 01459 TRI->composeSubRegIndices(SubIdx, MO->getSubReg())); 01460 if (MO->readsReg()) 01461 Redef = true; 01462 } 01463 return L; 01464 } 01465 01466 /// Find the ultimate value that VNI was copied from. 01467 VNInfo *JoinVals::stripCopies(VNInfo *VNI) { 01468 while (!VNI->isPHIDef()) { 01469 MachineInstr *MI = Indexes->getInstructionFromIndex(VNI->def); 01470 assert(MI && "No defining instruction"); 01471 if (!MI->isFullCopy()) 01472 break; 01473 unsigned Reg = MI->getOperand(1).getReg(); 01474 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 01475 break; 01476 LiveQueryResult LRQ = LIS->getInterval(Reg).Query(VNI->def); 01477 if (!LRQ.valueIn()) 01478 break; 01479 VNI = LRQ.valueIn(); 01480 } 01481 return VNI; 01482 } 01483 01484 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 01485 /// Return a conflict resolution when possible, but leave the hard cases as 01486 /// CR_Unresolved. 01487 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 01488 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 01489 /// The recursion always goes upwards in the dominator tree, making loops 01490 /// impossible. 01491 JoinVals::ConflictResolution 01492 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 01493 Val &V = Vals[ValNo]; 01494 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 01495 VNInfo *VNI = LI.getValNumInfo(ValNo); 01496 if (VNI->isUnused()) { 01497 V.WriteLanes = ~0u; 01498 return CR_Keep; 01499 } 01500 01501 // Get the instruction defining this value, compute the lanes written. 01502 const MachineInstr *DefMI = nullptr; 01503 if (VNI->isPHIDef()) { 01504 // Conservatively assume that all lanes in a PHI are valid. 01505 V.ValidLanes = V.WriteLanes = TRI->getSubRegIndexLaneMask(SubIdx); 01506 } else { 01507 DefMI = Indexes->getInstructionFromIndex(VNI->def); 01508 bool Redef = false; 01509 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 01510 01511 // If this is a read-modify-write instruction, there may be more valid 01512 // lanes than the ones written by this instruction. 01513 // This only covers partial redef operands. DefMI may have normal use 01514 // operands reading the register. They don't contribute valid lanes. 01515 // 01516 // This adds ssub1 to the set of valid lanes in %src: 01517 // 01518 // %src:ssub1<def> = FOO 01519 // 01520 // This leaves only ssub1 valid, making any other lanes undef: 01521 // 01522 // %src:ssub1<def,read-undef> = FOO %src:ssub2 01523 // 01524 // The <read-undef> flag on the def operand means that old lane values are 01525 // not important. 01526 if (Redef) { 01527 V.RedefVNI = LI.Query(VNI->def).valueIn(); 01528 assert(V.RedefVNI && "Instruction is reading nonexistent value"); 01529 computeAssignment(V.RedefVNI->id, Other); 01530 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 01531 } 01532 01533 // An IMPLICIT_DEF writes undef values. 01534 if (DefMI->isImplicitDef()) { 01535 // We normally expect IMPLICIT_DEF values to be live only until the end 01536 // of their block. If the value is really live longer and gets pruned in 01537 // another block, this flag is cleared again. 01538 V.ErasableImplicitDef = true; 01539 V.ValidLanes &= ~V.WriteLanes; 01540 } 01541 } 01542 01543 // Find the value in Other that overlaps VNI->def, if any. 01544 LiveQueryResult OtherLRQ = Other.LI.Query(VNI->def); 01545 01546 // It is possible that both values are defined by the same instruction, or 01547 // the values are PHIs defined in the same block. When that happens, the two 01548 // values should be merged into one, but not into any preceding value. 01549 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 01550 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 01551 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 01552 01553 // One value stays, the other is merged. Keep the earlier one, or the first 01554 // one we see. 01555 if (OtherVNI->def < VNI->def) 01556 Other.computeAssignment(OtherVNI->id, *this); 01557 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 01558 // This is an early-clobber def overlapping a live-in value in the other 01559 // register. Not mergeable. 01560 V.OtherVNI = OtherLRQ.valueIn(); 01561 return CR_Impossible; 01562 } 01563 V.OtherVNI = OtherVNI; 01564 Val &OtherV = Other.Vals[OtherVNI->id]; 01565 // Keep this value, check for conflicts when analyzing OtherVNI. 01566 if (!OtherV.isAnalyzed()) 01567 return CR_Keep; 01568 // Both sides have been analyzed now. 01569 // Allow overlapping PHI values. Any real interference would show up in a 01570 // predecessor, the PHI itself can't introduce any conflicts. 01571 if (VNI->isPHIDef()) 01572 return CR_Merge; 01573 if (V.ValidLanes & OtherV.ValidLanes) 01574 // Overlapping lanes can't be resolved. 01575 return CR_Impossible; 01576 else 01577 return CR_Merge; 01578 } 01579 01580 // No simultaneous def. Is Other live at the def? 01581 V.OtherVNI = OtherLRQ.valueIn(); 01582 if (!V.OtherVNI) 01583 // No overlap, no conflict. 01584 return CR_Keep; 01585 01586 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 01587 01588 // We have overlapping values, or possibly a kill of Other. 01589 // Recursively compute assignments up the dominator tree. 01590 Other.computeAssignment(V.OtherVNI->id, *this); 01591 Val &OtherV = Other.Vals[V.OtherVNI->id]; 01592 01593 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 01594 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 01595 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 01596 // technically. 01597 // 01598 // WHen it happens, treat that IMPLICIT_DEF as a normal value, and don't try 01599 // to erase the IMPLICIT_DEF instruction. 01600 if (OtherV.ErasableImplicitDef && DefMI && 01601 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 01602 DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 01603 << " extends into BB#" << DefMI->getParent()->getNumber() 01604 << ", keeping it.\n"); 01605 OtherV.ErasableImplicitDef = false; 01606 } 01607 01608 // Allow overlapping PHI values. Any real interference would show up in a 01609 // predecessor, the PHI itself can't introduce any conflicts. 01610 if (VNI->isPHIDef()) 01611 return CR_Replace; 01612 01613 // Check for simple erasable conflicts. 01614 if (DefMI->isImplicitDef()) 01615 return CR_Erase; 01616 01617 // Include the non-conflict where DefMI is a coalescable copy that kills 01618 // OtherVNI. We still want the copy erased and value numbers merged. 01619 if (CP.isCoalescable(DefMI)) { 01620 // Some of the lanes copied from OtherVNI may be undef, making them undef 01621 // here too. 01622 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 01623 return CR_Erase; 01624 } 01625 01626 // This may not be a real conflict if DefMI simply kills Other and defines 01627 // VNI. 01628 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 01629 return CR_Keep; 01630 01631 // Handle the case where VNI and OtherVNI can be proven to be identical: 01632 // 01633 // %other = COPY %ext 01634 // %this = COPY %ext <-- Erase this copy 01635 // 01636 if (DefMI->isFullCopy() && !CP.isPartial() && 01637 stripCopies(VNI) == stripCopies(V.OtherVNI)) 01638 return CR_Erase; 01639 01640 // If the lanes written by this instruction were all undef in OtherVNI, it is 01641 // still safe to join the live ranges. This can't be done with a simple value 01642 // mapping, though - OtherVNI will map to multiple values: 01643 // 01644 // 1 %dst:ssub0 = FOO <-- OtherVNI 01645 // 2 %src = BAR <-- VNI 01646 // 3 %dst:ssub1 = COPY %src<kill> <-- Eliminate this copy. 01647 // 4 BAZ %dst<kill> 01648 // 5 QUUX %src<kill> 01649 // 01650 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 01651 // handles this complex value mapping. 01652 if ((V.WriteLanes & OtherV.ValidLanes) == 0) 01653 return CR_Replace; 01654 01655 // If the other live range is killed by DefMI and the live ranges are still 01656 // overlapping, it must be because we're looking at an early clobber def: 01657 // 01658 // %dst<def,early-clobber> = ASM %src<kill> 01659 // 01660 // In this case, it is illegal to merge the two live ranges since the early 01661 // clobber def would clobber %src before it was read. 01662 if (OtherLRQ.isKill()) { 01663 // This case where the def doesn't overlap the kill is handled above. 01664 assert(VNI->def.isEarlyClobber() && 01665 "Only early clobber defs can overlap a kill"); 01666 return CR_Impossible; 01667 } 01668 01669 // VNI is clobbering live lanes in OtherVNI, but there is still the 01670 // possibility that no instructions actually read the clobbered lanes. 01671 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 01672 // Otherwise Other.LI wouldn't be live here. 01673 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0) 01674 return CR_Impossible; 01675 01676 // We need to verify that no instructions are reading the clobbered lanes. To 01677 // save compile time, we'll only check that locally. Don't allow the tainted 01678 // value to escape the basic block. 01679 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 01680 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 01681 return CR_Impossible; 01682 01683 // There are still some things that could go wrong besides clobbered lanes 01684 // being read, for example OtherVNI may be only partially redefined in MBB, 01685 // and some clobbered lanes could escape the block. Save this analysis for 01686 // resolveConflicts() when all values have been mapped. We need to know 01687 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 01688 // that now - the recursive analyzeValue() calls must go upwards in the 01689 // dominator tree. 01690 return CR_Unresolved; 01691 } 01692 01693 /// Compute the value assignment for ValNo in LI. 01694 /// This may be called recursively by analyzeValue(), but never for a ValNo on 01695 /// the stack. 01696 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 01697 Val &V = Vals[ValNo]; 01698 if (V.isAnalyzed()) { 01699 // Recursion should always move up the dominator tree, so ValNo is not 01700 // supposed to reappear before it has been assigned. 01701 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 01702 return; 01703 } 01704 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 01705 case CR_Erase: 01706 case CR_Merge: 01707 // Merge this ValNo into OtherVNI. 01708 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 01709 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 01710 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 01711 DEBUG(dbgs() << "\t\tmerge " << PrintReg(LI.reg) << ':' << ValNo << '@' 01712 << LI.getValNumInfo(ValNo)->def << " into " 01713 << PrintReg(Other.LI.reg) << ':' << V.OtherVNI->id << '@' 01714 << V.OtherVNI->def << " --> @" 01715 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 01716 break; 01717 case CR_Replace: 01718 case CR_Unresolved: 01719 // The other value is going to be pruned if this join is successful. 01720 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 01721 Other.Vals[V.OtherVNI->id].Pruned = true; 01722 // Fall through. 01723 default: 01724 // This value number needs to go in the final joined live range. 01725 Assignments[ValNo] = NewVNInfo.size(); 01726 NewVNInfo.push_back(LI.getValNumInfo(ValNo)); 01727 break; 01728 } 01729 } 01730 01731 bool JoinVals::mapValues(JoinVals &Other) { 01732 for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) { 01733 computeAssignment(i, Other); 01734 if (Vals[i].Resolution == CR_Impossible) { 01735 DEBUG(dbgs() << "\t\tinterference at " << PrintReg(LI.reg) << ':' << i 01736 << '@' << LI.getValNumInfo(i)->def << '\n'); 01737 return false; 01738 } 01739 } 01740 return true; 01741 } 01742 01743 /// Assuming ValNo is going to clobber some valid lanes in Other.LI, compute 01744 /// the extent of the tainted lanes in the block. 01745 /// 01746 /// Multiple values in Other.LI can be affected since partial redefinitions can 01747 /// preserve previously tainted lanes. 01748 /// 01749 /// 1 %dst = VLOAD <-- Define all lanes in %dst 01750 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 01751 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 01752 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 01753 /// 01754 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 01755 /// entry to TaintedVals. 01756 /// 01757 /// Returns false if the tainted lanes extend beyond the basic block. 01758 bool JoinVals:: 01759 taintExtent(unsigned ValNo, unsigned TaintedLanes, JoinVals &Other, 01760 SmallVectorImpl<std::pair<SlotIndex, unsigned> > &TaintExtent) { 01761 VNInfo *VNI = LI.getValNumInfo(ValNo); 01762 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 01763 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 01764 01765 // Scan Other.LI from VNI.def to MBBEnd. 01766 LiveInterval::iterator OtherI = Other.LI.find(VNI->def); 01767 assert(OtherI != Other.LI.end() && "No conflict?"); 01768 do { 01769 // OtherI is pointing to a tainted value. Abort the join if the tainted 01770 // lanes escape the block. 01771 SlotIndex End = OtherI->end; 01772 if (End >= MBBEnd) { 01773 DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.LI.reg) << ':' 01774 << OtherI->valno->id << '@' << OtherI->start << '\n'); 01775 return false; 01776 } 01777 DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.LI.reg) << ':' 01778 << OtherI->valno->id << '@' << OtherI->start 01779 << " to " << End << '\n'); 01780 // A dead def is not a problem. 01781 if (End.isDead()) 01782 break; 01783 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 01784 01785 // Check for another def in the MBB. 01786 if (++OtherI == Other.LI.end() || OtherI->start >= MBBEnd) 01787 break; 01788 01789 // Lanes written by the new def are no longer tainted. 01790 const Val &OV = Other.Vals[OtherI->valno->id]; 01791 TaintedLanes &= ~OV.WriteLanes; 01792 if (!OV.RedefVNI) 01793 break; 01794 } while (TaintedLanes); 01795 return true; 01796 } 01797 01798 /// Return true if MI uses any of the given Lanes from Reg. 01799 /// This does not include partial redefinitions of Reg. 01800 bool JoinVals::usesLanes(MachineInstr *MI, unsigned Reg, unsigned SubIdx, 01801 unsigned Lanes) { 01802 if (MI->isDebugValue()) 01803 return false; 01804 for (ConstMIOperands MO(MI); MO.isValid(); ++MO) { 01805 if (!MO->isReg() || MO->isDef() || MO->getReg() != Reg) 01806 continue; 01807 if (!MO->readsReg()) 01808 continue; 01809 if (Lanes & TRI->getSubRegIndexLaneMask( 01810 TRI->composeSubRegIndices(SubIdx, MO->getSubReg()))) 01811 return true; 01812 } 01813 return false; 01814 } 01815 01816 bool JoinVals::resolveConflicts(JoinVals &Other) { 01817 for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) { 01818 Val &V = Vals[i]; 01819 assert (V.Resolution != CR_Impossible && "Unresolvable conflict"); 01820 if (V.Resolution != CR_Unresolved) 01821 continue; 01822 DEBUG(dbgs() << "\t\tconflict at " << PrintReg(LI.reg) << ':' << i 01823 << '@' << LI.getValNumInfo(i)->def << '\n'); 01824 ++NumLaneConflicts; 01825 assert(V.OtherVNI && "Inconsistent conflict resolution."); 01826 VNInfo *VNI = LI.getValNumInfo(i); 01827 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 01828 01829 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 01830 // join, those lanes will be tainted with a wrong value. Get the extent of 01831 // the tainted lanes. 01832 unsigned TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 01833 SmallVector<std::pair<SlotIndex, unsigned>, 8> TaintExtent; 01834 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 01835 // Tainted lanes would extend beyond the basic block. 01836 return false; 01837 01838 assert(!TaintExtent.empty() && "There should be at least one conflict."); 01839 01840 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 01841 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 01842 MachineBasicBlock::iterator MI = MBB->begin(); 01843 if (!VNI->isPHIDef()) { 01844 MI = Indexes->getInstructionFromIndex(VNI->def); 01845 // No need to check the instruction defining VNI for reads. 01846 ++MI; 01847 } 01848 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 01849 "Interference ends on VNI->def. Should have been handled earlier"); 01850 MachineInstr *LastMI = 01851 Indexes->getInstructionFromIndex(TaintExtent.front().first); 01852 assert(LastMI && "Range must end at a proper instruction"); 01853 unsigned TaintNum = 0; 01854 for(;;) { 01855 assert(MI != MBB->end() && "Bad LastMI"); 01856 if (usesLanes(MI, Other.LI.reg, Other.SubIdx, TaintedLanes)) { 01857 DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 01858 return false; 01859 } 01860 // LastMI is the last instruction to use the current value. 01861 if (&*MI == LastMI) { 01862 if (++TaintNum == TaintExtent.size()) 01863 break; 01864 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 01865 assert(LastMI && "Range must end at a proper instruction"); 01866 TaintedLanes = TaintExtent[TaintNum].second; 01867 } 01868 ++MI; 01869 } 01870 01871 // The tainted lanes are unused. 01872 V.Resolution = CR_Replace; 01873 ++NumLaneResolves; 01874 } 01875 return true; 01876 } 01877 01878 // Determine if ValNo is a copy of a value number in LI or Other.LI that will 01879 // be pruned: 01880 // 01881 // %dst = COPY %src 01882 // %src = COPY %dst <-- This value to be pruned. 01883 // %dst = COPY %src <-- This value is a copy of a pruned value. 01884 // 01885 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 01886 Val &V = Vals[ValNo]; 01887 if (V.Pruned || V.PrunedComputed) 01888 return V.Pruned; 01889 01890 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 01891 return V.Pruned; 01892 01893 // Follow copies up the dominator tree and check if any intermediate value 01894 // has been pruned. 01895 V.PrunedComputed = true; 01896 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 01897 return V.Pruned; 01898 } 01899 01900 void JoinVals::pruneValues(JoinVals &Other, 01901 SmallVectorImpl<SlotIndex> &EndPoints) { 01902 for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) { 01903 SlotIndex Def = LI.getValNumInfo(i)->def; 01904 switch (Vals[i].Resolution) { 01905 case CR_Keep: 01906 break; 01907 case CR_Replace: { 01908 // This value takes precedence over the value in Other.LI. 01909 LIS->pruneValue(&Other.LI, Def, &EndPoints); 01910 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 01911 // instructions are only inserted to provide a live-out value for PHI 01912 // predecessors, so the instruction should simply go away once its value 01913 // has been replaced. 01914 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 01915 bool EraseImpDef = OtherV.ErasableImplicitDef && 01916 OtherV.Resolution == CR_Keep; 01917 if (!Def.isBlock()) { 01918 // Remove <def,read-undef> flags. This def is now a partial redef. 01919 // Also remove <def,dead> flags since the joined live range will 01920 // continue past this instruction. 01921 for (MIOperands MO(Indexes->getInstructionFromIndex(Def)); 01922 MO.isValid(); ++MO) 01923 if (MO->isReg() && MO->isDef() && MO->getReg() == LI.reg) { 01924 MO->setIsUndef(EraseImpDef); 01925 MO->setIsDead(false); 01926 } 01927 // This value will reach instructions below, but we need to make sure 01928 // the live range also reaches the instruction at Def. 01929 if (!EraseImpDef) 01930 EndPoints.push_back(Def); 01931 } 01932 DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.LI.reg) << " at " << Def 01933 << ": " << Other.LI << '\n'); 01934 break; 01935 } 01936 case CR_Erase: 01937 case CR_Merge: 01938 if (isPrunedValue(i, Other)) { 01939 // This value is ultimately a copy of a pruned value in LI or Other.LI. 01940 // We can no longer trust the value mapping computed by 01941 // computeAssignment(), the value that was originally copied could have 01942 // been replaced. 01943 LIS->pruneValue(&LI, Def, &EndPoints); 01944 DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(LI.reg) << " at " 01945 << Def << ": " << LI << '\n'); 01946 } 01947 break; 01948 case CR_Unresolved: 01949 case CR_Impossible: 01950 llvm_unreachable("Unresolved conflicts"); 01951 } 01952 } 01953 } 01954 01955 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 01956 SmallVectorImpl<unsigned> &ShrinkRegs) { 01957 for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) { 01958 // Get the def location before markUnused() below invalidates it. 01959 SlotIndex Def = LI.getValNumInfo(i)->def; 01960 switch (Vals[i].Resolution) { 01961 case CR_Keep: 01962 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 01963 // longer. The IMPLICIT_DEF instructions are only inserted by 01964 // PHIElimination to guarantee that all PHI predecessors have a value. 01965 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 01966 break; 01967 // Remove value number i from LI. Note that this VNInfo is still present 01968 // in NewVNInfo, so it will appear as an unused value number in the final 01969 // joined interval. 01970 LI.getValNumInfo(i)->markUnused(); 01971 LI.removeValNo(LI.getValNumInfo(i)); 01972 DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LI << '\n'); 01973 // FALL THROUGH. 01974 01975 case CR_Erase: { 01976 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 01977 assert(MI && "No instruction to erase"); 01978 if (MI->isCopy()) { 01979 unsigned Reg = MI->getOperand(1).getReg(); 01980 if (TargetRegisterInfo::isVirtualRegister(Reg) && 01981 Reg != CP.getSrcReg() && Reg != CP.getDstReg()) 01982 ShrinkRegs.push_back(Reg); 01983 } 01984 ErasedInstrs.insert(MI); 01985 DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 01986 LIS->RemoveMachineInstrFromMaps(MI); 01987 MI->eraseFromParent(); 01988 break; 01989 } 01990 default: 01991 break; 01992 } 01993 } 01994 } 01995 01996 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 01997 SmallVector<VNInfo*, 16> NewVNInfo; 01998 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 01999 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 02000 JoinVals RHSVals(RHS, CP.getSrcIdx(), NewVNInfo, CP, LIS, TRI); 02001 JoinVals LHSVals(LHS, CP.getDstIdx(), NewVNInfo, CP, LIS, TRI); 02002 02003 DEBUG(dbgs() << "\t\tRHS = " << RHS 02004 << "\n\t\tLHS = " << LHS 02005 << '\n'); 02006 02007 // First compute NewVNInfo and the simple value mappings. 02008 // Detect impossible conflicts early. 02009 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 02010 return false; 02011 02012 // Some conflicts can only be resolved after all values have been mapped. 02013 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 02014 return false; 02015 02016 // All clear, the live ranges can be merged. 02017 02018 // The merging algorithm in LiveInterval::join() can't handle conflicting 02019 // value mappings, so we need to remove any live ranges that overlap a 02020 // CR_Replace resolution. Collect a set of end points that can be used to 02021 // restore the live range after joining. 02022 SmallVector<SlotIndex, 8> EndPoints; 02023 LHSVals.pruneValues(RHSVals, EndPoints); 02024 RHSVals.pruneValues(LHSVals, EndPoints); 02025 02026 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 02027 // registers to require trimming. 02028 SmallVector<unsigned, 8> ShrinkRegs; 02029 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 02030 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 02031 while (!ShrinkRegs.empty()) 02032 LIS->shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 02033 02034 // Join RHS into LHS. 02035 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 02036 02037 // Kill flags are going to be wrong if the live ranges were overlapping. 02038 // Eventually, we should simply clear all kill flags when computing live 02039 // ranges. They are reinserted after register allocation. 02040 MRI->clearKillFlags(LHS.reg); 02041 MRI->clearKillFlags(RHS.reg); 02042 02043 if (EndPoints.empty()) 02044 return true; 02045 02046 // Recompute the parts of the live range we had to remove because of 02047 // CR_Replace conflicts. 02048 DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size() 02049 << " points: " << LHS << '\n'); 02050 LIS->extendToIndices(LHS, EndPoints); 02051 return true; 02052 } 02053 02054 /// joinIntervals - Attempt to join these two intervals. On failure, this 02055 /// returns false. 02056 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 02057 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 02058 } 02059 02060 namespace { 02061 // Information concerning MBB coalescing priority. 02062 struct MBBPriorityInfo { 02063 MachineBasicBlock *MBB; 02064 unsigned Depth; 02065 bool IsSplit; 02066 02067 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 02068 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 02069 }; 02070 } 02071 02072 // C-style comparator that sorts first based on the loop depth of the basic 02073 // block (the unsigned), and then on the MBB number. 02074 // 02075 // EnableGlobalCopies assumes that the primary sort key is loop depth. 02076 static int compareMBBPriority(const MBBPriorityInfo *LHS, 02077 const MBBPriorityInfo *RHS) { 02078 // Deeper loops first 02079 if (LHS->Depth != RHS->Depth) 02080 return LHS->Depth > RHS->Depth ? -1 : 1; 02081 02082 // Try to unsplit critical edges next. 02083 if (LHS->IsSplit != RHS->IsSplit) 02084 return LHS->IsSplit ? -1 : 1; 02085 02086 // Prefer blocks that are more connected in the CFG. This takes care of 02087 // the most difficult copies first while intervals are short. 02088 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 02089 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 02090 if (cl != cr) 02091 return cl > cr ? -1 : 1; 02092 02093 // As a last resort, sort by block number. 02094 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 02095 } 02096 02097 /// \returns true if the given copy uses or defines a local live range. 02098 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 02099 if (!Copy->isCopy()) 02100 return false; 02101 02102 if (Copy->getOperand(1).isUndef()) 02103 return false; 02104 02105 unsigned SrcReg = Copy->getOperand(1).getReg(); 02106 unsigned DstReg = Copy->getOperand(0).getReg(); 02107 if (TargetRegisterInfo::isPhysicalRegister(SrcReg) 02108 || TargetRegisterInfo::isPhysicalRegister(DstReg)) 02109 return false; 02110 02111 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 02112 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 02113 } 02114 02115 // Try joining WorkList copies starting from index From. 02116 // Null out any successful joins. 02117 bool RegisterCoalescer:: 02118 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 02119 bool Progress = false; 02120 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 02121 if (!CurrList[i]) 02122 continue; 02123 // Skip instruction pointers that have already been erased, for example by 02124 // dead code elimination. 02125 if (ErasedInstrs.erase(CurrList[i])) { 02126 CurrList[i] = nullptr; 02127 continue; 02128 } 02129 bool Again = false; 02130 bool Success = joinCopy(CurrList[i], Again); 02131 Progress |= Success; 02132 if (Success || !Again) 02133 CurrList[i] = nullptr; 02134 } 02135 return Progress; 02136 } 02137 02138 void 02139 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 02140 DEBUG(dbgs() << MBB->getName() << ":\n"); 02141 02142 // Collect all copy-like instructions in MBB. Don't start coalescing anything 02143 // yet, it might invalidate the iterator. 02144 const unsigned PrevSize = WorkList.size(); 02145 if (JoinGlobalCopies) { 02146 // Coalesce copies bottom-up to coalesce local defs before local uses. They 02147 // are not inherently easier to resolve, but slightly preferable until we 02148 // have local live range splitting. In particular this is required by 02149 // cmp+jmp macro fusion. 02150 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 02151 MII != E; ++MII) { 02152 if (!MII->isCopyLike()) 02153 continue; 02154 if (isLocalCopy(&(*MII), LIS)) 02155 LocalWorkList.push_back(&(*MII)); 02156 else 02157 WorkList.push_back(&(*MII)); 02158 } 02159 } 02160 else { 02161 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 02162 MII != E; ++MII) 02163 if (MII->isCopyLike()) 02164 WorkList.push_back(MII); 02165 } 02166 // Try coalescing the collected copies immediately, and remove the nulls. 02167 // This prevents the WorkList from getting too large since most copies are 02168 // joinable on the first attempt. 02169 MutableArrayRef<MachineInstr*> 02170 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 02171 if (copyCoalesceWorkList(CurrList)) 02172 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 02173 (MachineInstr*)nullptr), WorkList.end()); 02174 } 02175 02176 void RegisterCoalescer::coalesceLocals() { 02177 copyCoalesceWorkList(LocalWorkList); 02178 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 02179 if (LocalWorkList[j]) 02180 WorkList.push_back(LocalWorkList[j]); 02181 } 02182 LocalWorkList.clear(); 02183 } 02184 02185 void RegisterCoalescer::joinAllIntervals() { 02186 DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 02187 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 02188 02189 std::vector<MBBPriorityInfo> MBBs; 02190 MBBs.reserve(MF->size()); 02191 for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){ 02192 MachineBasicBlock *MBB = I; 02193 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 02194 JoinSplitEdges && isSplitEdge(MBB))); 02195 } 02196 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 02197 02198 // Coalesce intervals in MBB priority order. 02199 unsigned CurrDepth = UINT_MAX; 02200 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 02201 // Try coalescing the collected local copies for deeper loops. 02202 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 02203 coalesceLocals(); 02204 CurrDepth = MBBs[i].Depth; 02205 } 02206 copyCoalesceInMBB(MBBs[i].MBB); 02207 } 02208 coalesceLocals(); 02209 02210 // Joining intervals can allow other intervals to be joined. Iteratively join 02211 // until we make no progress. 02212 while (copyCoalesceWorkList(WorkList)) 02213 /* empty */ ; 02214 } 02215 02216 void RegisterCoalescer::releaseMemory() { 02217 ErasedInstrs.clear(); 02218 WorkList.clear(); 02219 DeadDefs.clear(); 02220 InflateRegs.clear(); 02221 } 02222 02223 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 02224 MF = &fn; 02225 MRI = &fn.getRegInfo(); 02226 TM = &fn.getTarget(); 02227 TRI = TM->getSubtargetImpl()->getRegisterInfo(); 02228 TII = TM->getSubtargetImpl()->getInstrInfo(); 02229 LIS = &getAnalysis<LiveIntervals>(); 02230 AA = &getAnalysis<AliasAnalysis>(); 02231 Loops = &getAnalysis<MachineLoopInfo>(); 02232 02233 const TargetSubtargetInfo &ST = TM->getSubtarget<TargetSubtargetInfo>(); 02234 if (EnableGlobalCopies == cl::BOU_UNSET) 02235 JoinGlobalCopies = ST.useMachineScheduler(); 02236 else 02237 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 02238 02239 // The MachineScheduler does not currently require JoinSplitEdges. This will 02240 // either be enabled unconditionally or replaced by a more general live range 02241 // splitting optimization. 02242 JoinSplitEdges = EnableJoinSplits; 02243 02244 DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 02245 << "********** Function: " << MF->getName() << '\n'); 02246 02247 if (VerifyCoalescing) 02248 MF->verify(this, "Before register coalescing"); 02249 02250 RegClassInfo.runOnMachineFunction(fn); 02251 02252 // Join (coalesce) intervals if requested. 02253 if (EnableJoining) 02254 joinAllIntervals(); 02255 02256 // After deleting a lot of copies, register classes may be less constrained. 02257 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 02258 // DPR inflation. 02259 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 02260 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 02261 InflateRegs.end()); 02262 DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n"); 02263 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 02264 unsigned Reg = InflateRegs[i]; 02265 if (MRI->reg_nodbg_empty(Reg)) 02266 continue; 02267 if (MRI->recomputeRegClass(Reg, *TM)) { 02268 DEBUG(dbgs() << PrintReg(Reg) << " inflated to " 02269 << MRI->getRegClass(Reg)->getName() << '\n'); 02270 ++NumInflated; 02271 } 02272 } 02273 02274 DEBUG(dump()); 02275 if (VerifyCoalescing) 02276 MF->verify(this, "After register coalescing"); 02277 return true; 02278 } 02279 02280 /// print - Implement the dump method. 02281 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 02282 LIS->print(O, m); 02283 }