LLVM API Documentation
00001 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements the TwoAddress instruction pass which is used 00011 // by most register allocators. Two-Address instructions are rewritten 00012 // from: 00013 // 00014 // A = B op C 00015 // 00016 // to: 00017 // 00018 // A = B 00019 // A op= C 00020 // 00021 // Note that if a register allocator chooses to use this pass, that it 00022 // has to be capable of handling the non-SSA nature of these rewritten 00023 // virtual registers. 00024 // 00025 // It is also worth noting that the duplicate operand of the two 00026 // address instruction is removed. 00027 // 00028 //===----------------------------------------------------------------------===// 00029 00030 #include "llvm/CodeGen/Passes.h" 00031 #include "llvm/ADT/BitVector.h" 00032 #include "llvm/ADT/DenseMap.h" 00033 #include "llvm/ADT/STLExtras.h" 00034 #include "llvm/ADT/SmallSet.h" 00035 #include "llvm/ADT/Statistic.h" 00036 #include "llvm/Analysis/AliasAnalysis.h" 00037 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 00038 #include "llvm/CodeGen/LiveVariables.h" 00039 #include "llvm/CodeGen/MachineFunctionPass.h" 00040 #include "llvm/CodeGen/MachineInstr.h" 00041 #include "llvm/CodeGen/MachineInstrBuilder.h" 00042 #include "llvm/CodeGen/MachineRegisterInfo.h" 00043 #include "llvm/IR/Function.h" 00044 #include "llvm/MC/MCInstrItineraries.h" 00045 #include "llvm/Support/CommandLine.h" 00046 #include "llvm/Support/Debug.h" 00047 #include "llvm/Support/ErrorHandling.h" 00048 #include "llvm/Target/TargetInstrInfo.h" 00049 #include "llvm/Target/TargetMachine.h" 00050 #include "llvm/Target/TargetRegisterInfo.h" 00051 #include "llvm/Target/TargetSubtargetInfo.h" 00052 using namespace llvm; 00053 00054 #define DEBUG_TYPE "twoaddrinstr" 00055 00056 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 00057 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 00058 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 00059 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 00060 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk"); 00061 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 00062 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 00063 00064 // Temporary flag to disable rescheduling. 00065 static cl::opt<bool> 00066 EnableRescheduling("twoaddr-reschedule", 00067 cl::desc("Coalesce copies by rescheduling (default=true)"), 00068 cl::init(true), cl::Hidden); 00069 00070 namespace { 00071 class TwoAddressInstructionPass : public MachineFunctionPass { 00072 MachineFunction *MF; 00073 const TargetInstrInfo *TII; 00074 const TargetRegisterInfo *TRI; 00075 const InstrItineraryData *InstrItins; 00076 MachineRegisterInfo *MRI; 00077 LiveVariables *LV; 00078 LiveIntervals *LIS; 00079 AliasAnalysis *AA; 00080 CodeGenOpt::Level OptLevel; 00081 00082 // The current basic block being processed. 00083 MachineBasicBlock *MBB; 00084 00085 // DistanceMap - Keep track the distance of a MI from the start of the 00086 // current basic block. 00087 DenseMap<MachineInstr*, unsigned> DistanceMap; 00088 00089 // Set of already processed instructions in the current block. 00090 SmallPtrSet<MachineInstr*, 8> Processed; 00091 00092 // SrcRegMap - A map from virtual registers to physical registers which are 00093 // likely targets to be coalesced to due to copies from physical registers to 00094 // virtual registers. e.g. v1024 = move r0. 00095 DenseMap<unsigned, unsigned> SrcRegMap; 00096 00097 // DstRegMap - A map from virtual registers to physical registers which are 00098 // likely targets to be coalesced to due to copies to physical registers from 00099 // virtual registers. e.g. r1 = move v1024. 00100 DenseMap<unsigned, unsigned> DstRegMap; 00101 00102 bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg, 00103 MachineBasicBlock::iterator OldPos); 00104 00105 bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef); 00106 00107 bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 00108 MachineInstr *MI, unsigned Dist); 00109 00110 bool commuteInstruction(MachineBasicBlock::iterator &mi, 00111 unsigned RegB, unsigned RegC, unsigned Dist); 00112 00113 bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB); 00114 00115 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 00116 MachineBasicBlock::iterator &nmi, 00117 unsigned RegA, unsigned RegB, unsigned Dist); 00118 00119 bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI); 00120 00121 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 00122 MachineBasicBlock::iterator &nmi, 00123 unsigned Reg); 00124 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 00125 MachineBasicBlock::iterator &nmi, 00126 unsigned Reg); 00127 00128 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 00129 MachineBasicBlock::iterator &nmi, 00130 unsigned SrcIdx, unsigned DstIdx, 00131 unsigned Dist, bool shouldOnlyCommute); 00132 00133 void scanUses(unsigned DstReg); 00134 00135 void processCopy(MachineInstr *MI); 00136 00137 typedef SmallVector<std::pair<unsigned, unsigned>, 4> TiedPairList; 00138 typedef SmallDenseMap<unsigned, TiedPairList> TiedOperandMap; 00139 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 00140 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 00141 void eliminateRegSequence(MachineBasicBlock::iterator&); 00142 00143 public: 00144 static char ID; // Pass identification, replacement for typeid 00145 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 00146 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 00147 } 00148 00149 void getAnalysisUsage(AnalysisUsage &AU) const override { 00150 AU.setPreservesCFG(); 00151 AU.addRequired<AliasAnalysis>(); 00152 AU.addPreserved<LiveVariables>(); 00153 AU.addPreserved<SlotIndexes>(); 00154 AU.addPreserved<LiveIntervals>(); 00155 AU.addPreservedID(MachineLoopInfoID); 00156 AU.addPreservedID(MachineDominatorsID); 00157 MachineFunctionPass::getAnalysisUsage(AU); 00158 } 00159 00160 /// runOnMachineFunction - Pass entry point. 00161 bool runOnMachineFunction(MachineFunction&) override; 00162 }; 00163 } // end anonymous namespace 00164 00165 char TwoAddressInstructionPass::ID = 0; 00166 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction", 00167 "Two-Address instruction pass", false, false) 00168 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 00169 INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction", 00170 "Two-Address instruction pass", false, false) 00171 00172 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 00173 00174 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS); 00175 00176 /// sink3AddrInstruction - A two-address instruction has been converted to a 00177 /// three-address instruction to avoid clobbering a register. Try to sink it 00178 /// past the instruction that would kill the above mentioned register to reduce 00179 /// register pressure. 00180 bool TwoAddressInstructionPass:: 00181 sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg, 00182 MachineBasicBlock::iterator OldPos) { 00183 // FIXME: Shouldn't we be trying to do this before we three-addressify the 00184 // instruction? After this transformation is done, we no longer need 00185 // the instruction to be in three-address form. 00186 00187 // Check if it's safe to move this instruction. 00188 bool SeenStore = true; // Be conservative. 00189 if (!MI->isSafeToMove(TII, AA, SeenStore)) 00190 return false; 00191 00192 unsigned DefReg = 0; 00193 SmallSet<unsigned, 4> UseRegs; 00194 00195 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 00196 const MachineOperand &MO = MI->getOperand(i); 00197 if (!MO.isReg()) 00198 continue; 00199 unsigned MOReg = MO.getReg(); 00200 if (!MOReg) 00201 continue; 00202 if (MO.isUse() && MOReg != SavedReg) 00203 UseRegs.insert(MO.getReg()); 00204 if (!MO.isDef()) 00205 continue; 00206 if (MO.isImplicit()) 00207 // Don't try to move it if it implicitly defines a register. 00208 return false; 00209 if (DefReg) 00210 // For now, don't move any instructions that define multiple registers. 00211 return false; 00212 DefReg = MO.getReg(); 00213 } 00214 00215 // Find the instruction that kills SavedReg. 00216 MachineInstr *KillMI = nullptr; 00217 if (LIS) { 00218 LiveInterval &LI = LIS->getInterval(SavedReg); 00219 assert(LI.end() != LI.begin() && 00220 "Reg should not have empty live interval."); 00221 00222 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 00223 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 00224 if (I != LI.end() && I->start < MBBEndIdx) 00225 return false; 00226 00227 --I; 00228 KillMI = LIS->getInstructionFromIndex(I->end); 00229 } 00230 if (!KillMI) { 00231 for (MachineRegisterInfo::use_nodbg_iterator 00232 UI = MRI->use_nodbg_begin(SavedReg), 00233 UE = MRI->use_nodbg_end(); UI != UE; ++UI) { 00234 MachineOperand &UseMO = *UI; 00235 if (!UseMO.isKill()) 00236 continue; 00237 KillMI = UseMO.getParent(); 00238 break; 00239 } 00240 } 00241 00242 // If we find the instruction that kills SavedReg, and it is in an 00243 // appropriate location, we can try to sink the current instruction 00244 // past it. 00245 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI || 00246 KillMI == OldPos || KillMI->isTerminator()) 00247 return false; 00248 00249 // If any of the definitions are used by another instruction between the 00250 // position and the kill use, then it's not safe to sink it. 00251 // 00252 // FIXME: This can be sped up if there is an easy way to query whether an 00253 // instruction is before or after another instruction. Then we can use 00254 // MachineRegisterInfo def / use instead. 00255 MachineOperand *KillMO = nullptr; 00256 MachineBasicBlock::iterator KillPos = KillMI; 00257 ++KillPos; 00258 00259 unsigned NumVisited = 0; 00260 for (MachineBasicBlock::iterator I = std::next(OldPos); I != KillPos; ++I) { 00261 MachineInstr *OtherMI = I; 00262 // DBG_VALUE cannot be counted against the limit. 00263 if (OtherMI->isDebugValue()) 00264 continue; 00265 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost. 00266 return false; 00267 ++NumVisited; 00268 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { 00269 MachineOperand &MO = OtherMI->getOperand(i); 00270 if (!MO.isReg()) 00271 continue; 00272 unsigned MOReg = MO.getReg(); 00273 if (!MOReg) 00274 continue; 00275 if (DefReg == MOReg) 00276 return false; 00277 00278 if (MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))) { 00279 if (OtherMI == KillMI && MOReg == SavedReg) 00280 // Save the operand that kills the register. We want to unset the kill 00281 // marker if we can sink MI past it. 00282 KillMO = &MO; 00283 else if (UseRegs.count(MOReg)) 00284 // One of the uses is killed before the destination. 00285 return false; 00286 } 00287 } 00288 } 00289 assert(KillMO && "Didn't find kill"); 00290 00291 if (!LIS) { 00292 // Update kill and LV information. 00293 KillMO->setIsKill(false); 00294 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI); 00295 KillMO->setIsKill(true); 00296 00297 if (LV) 00298 LV->replaceKillInstruction(SavedReg, KillMI, MI); 00299 } 00300 00301 // Move instruction to its destination. 00302 MBB->remove(MI); 00303 MBB->insert(KillPos, MI); 00304 00305 if (LIS) 00306 LIS->handleMove(MI); 00307 00308 ++Num3AddrSunk; 00309 return true; 00310 } 00311 00312 /// noUseAfterLastDef - Return true if there are no intervening uses between the 00313 /// last instruction in the MBB that defines the specified register and the 00314 /// two-address instruction which is being processed. It also returns the last 00315 /// def location by reference 00316 bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist, 00317 unsigned &LastDef) { 00318 LastDef = 0; 00319 unsigned LastUse = Dist; 00320 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 00321 MachineInstr *MI = MO.getParent(); 00322 if (MI->getParent() != MBB || MI->isDebugValue()) 00323 continue; 00324 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 00325 if (DI == DistanceMap.end()) 00326 continue; 00327 if (MO.isUse() && DI->second < LastUse) 00328 LastUse = DI->second; 00329 if (MO.isDef() && DI->second > LastDef) 00330 LastDef = DI->second; 00331 } 00332 00333 return !(LastUse > LastDef && LastUse < Dist); 00334 } 00335 00336 /// isCopyToReg - Return true if the specified MI is a copy instruction or 00337 /// a extract_subreg instruction. It also returns the source and destination 00338 /// registers and whether they are physical registers by reference. 00339 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 00340 unsigned &SrcReg, unsigned &DstReg, 00341 bool &IsSrcPhys, bool &IsDstPhys) { 00342 SrcReg = 0; 00343 DstReg = 0; 00344 if (MI.isCopy()) { 00345 DstReg = MI.getOperand(0).getReg(); 00346 SrcReg = MI.getOperand(1).getReg(); 00347 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 00348 DstReg = MI.getOperand(0).getReg(); 00349 SrcReg = MI.getOperand(2).getReg(); 00350 } else 00351 return false; 00352 00353 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); 00354 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 00355 return true; 00356 } 00357 00358 /// isPLainlyKilled - Test if the given register value, which is used by the 00359 // given instruction, is killed by the given instruction. 00360 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, 00361 LiveIntervals *LIS) { 00362 if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) && 00363 !LIS->isNotInMIMap(MI)) { 00364 // FIXME: Sometimes tryInstructionTransform() will add instructions and 00365 // test whether they can be folded before keeping them. In this case it 00366 // sets a kill before recursively calling tryInstructionTransform() again. 00367 // If there is no interval available, we assume that this instruction is 00368 // one of those. A kill flag is manually inserted on the operand so the 00369 // check below will handle it. 00370 LiveInterval &LI = LIS->getInterval(Reg); 00371 // This is to match the kill flag version where undefs don't have kill 00372 // flags. 00373 if (!LI.hasAtLeastOneValue()) 00374 return false; 00375 00376 SlotIndex useIdx = LIS->getInstructionIndex(MI); 00377 LiveInterval::const_iterator I = LI.find(useIdx); 00378 assert(I != LI.end() && "Reg must be live-in to use."); 00379 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 00380 } 00381 00382 return MI->killsRegister(Reg); 00383 } 00384 00385 /// isKilled - Test if the given register value, which is used by the given 00386 /// instruction, is killed by the given instruction. This looks through 00387 /// coalescable copies to see if the original value is potentially not killed. 00388 /// 00389 /// For example, in this code: 00390 /// 00391 /// %reg1034 = copy %reg1024 00392 /// %reg1035 = copy %reg1025<kill> 00393 /// %reg1036 = add %reg1034<kill>, %reg1035<kill> 00394 /// 00395 /// %reg1034 is not considered to be killed, since it is copied from a 00396 /// register which is not killed. Treating it as not killed lets the 00397 /// normal heuristics commute the (two-address) add, which lets 00398 /// coalescing eliminate the extra copy. 00399 /// 00400 /// If allowFalsePositives is true then likely kills are treated as kills even 00401 /// if it can't be proven that they are kills. 00402 static bool isKilled(MachineInstr &MI, unsigned Reg, 00403 const MachineRegisterInfo *MRI, 00404 const TargetInstrInfo *TII, 00405 LiveIntervals *LIS, 00406 bool allowFalsePositives) { 00407 MachineInstr *DefMI = &MI; 00408 for (;;) { 00409 // All uses of physical registers are likely to be kills. 00410 if (TargetRegisterInfo::isPhysicalRegister(Reg) && 00411 (allowFalsePositives || MRI->hasOneUse(Reg))) 00412 return true; 00413 if (!isPlainlyKilled(DefMI, Reg, LIS)) 00414 return false; 00415 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 00416 return true; 00417 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 00418 // If there are multiple defs, we can't do a simple analysis, so just 00419 // go with what the kill flag says. 00420 if (std::next(Begin) != MRI->def_end()) 00421 return true; 00422 DefMI = Begin->getParent(); 00423 bool IsSrcPhys, IsDstPhys; 00424 unsigned SrcReg, DstReg; 00425 // If the def is something other than a copy, then it isn't going to 00426 // be coalesced, so follow the kill flag. 00427 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 00428 return true; 00429 Reg = SrcReg; 00430 } 00431 } 00432 00433 /// isTwoAddrUse - Return true if the specified MI uses the specified register 00434 /// as a two-address use. If so, return the destination register by reference. 00435 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) { 00436 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 00437 const MachineOperand &MO = MI.getOperand(i); 00438 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 00439 continue; 00440 unsigned ti; 00441 if (MI.isRegTiedToDefOperand(i, &ti)) { 00442 DstReg = MI.getOperand(ti).getReg(); 00443 return true; 00444 } 00445 } 00446 return false; 00447 } 00448 00449 /// findOnlyInterestingUse - Given a register, if has a single in-basic block 00450 /// use, return the use instruction if it's a copy or a two-address use. 00451 static 00452 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB, 00453 MachineRegisterInfo *MRI, 00454 const TargetInstrInfo *TII, 00455 bool &IsCopy, 00456 unsigned &DstReg, bool &IsDstPhys) { 00457 if (!MRI->hasOneNonDBGUse(Reg)) 00458 // None or more than one use. 00459 return nullptr; 00460 MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg); 00461 if (UseMI.getParent() != MBB) 00462 return nullptr; 00463 unsigned SrcReg; 00464 bool IsSrcPhys; 00465 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 00466 IsCopy = true; 00467 return &UseMI; 00468 } 00469 IsDstPhys = false; 00470 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 00471 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 00472 return &UseMI; 00473 } 00474 return nullptr; 00475 } 00476 00477 /// getMappedReg - Return the physical register the specified virtual register 00478 /// might be mapped to. 00479 static unsigned 00480 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) { 00481 while (TargetRegisterInfo::isVirtualRegister(Reg)) { 00482 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg); 00483 if (SI == RegMap.end()) 00484 return 0; 00485 Reg = SI->second; 00486 } 00487 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 00488 return Reg; 00489 return 0; 00490 } 00491 00492 /// regsAreCompatible - Return true if the two registers are equal or aliased. 00493 /// 00494 static bool 00495 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) { 00496 if (RegA == RegB) 00497 return true; 00498 if (!RegA || !RegB) 00499 return false; 00500 return TRI->regsOverlap(RegA, RegB); 00501 } 00502 00503 00504 /// isProfitableToCommute - Return true if it's potentially profitable to commute 00505 /// the two-address instruction that's being processed. 00506 bool 00507 TwoAddressInstructionPass:: 00508 isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 00509 MachineInstr *MI, unsigned Dist) { 00510 if (OptLevel == CodeGenOpt::None) 00511 return false; 00512 00513 // Determine if it's profitable to commute this two address instruction. In 00514 // general, we want no uses between this instruction and the definition of 00515 // the two-address register. 00516 // e.g. 00517 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 00518 // %reg1029<def> = MOV8rr %reg1028 00519 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 00520 // insert => %reg1030<def> = MOV8rr %reg1028 00521 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 00522 // In this case, it might not be possible to coalesce the second MOV8rr 00523 // instruction if the first one is coalesced. So it would be profitable to 00524 // commute it: 00525 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 00526 // %reg1029<def> = MOV8rr %reg1028 00527 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 00528 // insert => %reg1030<def> = MOV8rr %reg1029 00529 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead> 00530 00531 if (!isPlainlyKilled(MI, regC, LIS)) 00532 return false; 00533 00534 // Ok, we have something like: 00535 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 00536 // let's see if it's worth commuting it. 00537 00538 // Look for situations like this: 00539 // %reg1024<def> = MOV r1 00540 // %reg1025<def> = MOV r0 00541 // %reg1026<def> = ADD %reg1024, %reg1025 00542 // r0 = MOV %reg1026 00543 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 00544 unsigned ToRegA = getMappedReg(regA, DstRegMap); 00545 if (ToRegA) { 00546 unsigned FromRegB = getMappedReg(regB, SrcRegMap); 00547 unsigned FromRegC = getMappedReg(regC, SrcRegMap); 00548 bool BComp = !FromRegB || regsAreCompatible(FromRegB, ToRegA, TRI); 00549 bool CComp = !FromRegC || regsAreCompatible(FromRegC, ToRegA, TRI); 00550 if (BComp != CComp) 00551 return !BComp && CComp; 00552 } 00553 00554 // If there is a use of regC between its last def (could be livein) and this 00555 // instruction, then bail. 00556 unsigned LastDefC = 0; 00557 if (!noUseAfterLastDef(regC, Dist, LastDefC)) 00558 return false; 00559 00560 // If there is a use of regB between its last def (could be livein) and this 00561 // instruction, then go ahead and make this transformation. 00562 unsigned LastDefB = 0; 00563 if (!noUseAfterLastDef(regB, Dist, LastDefB)) 00564 return true; 00565 00566 // Since there are no intervening uses for both registers, then commute 00567 // if the def of regC is closer. Its live interval is shorter. 00568 return LastDefB && LastDefC && LastDefC > LastDefB; 00569 } 00570 00571 /// commuteInstruction - Commute a two-address instruction and update the basic 00572 /// block, distance map, and live variables if needed. Return true if it is 00573 /// successful. 00574 bool TwoAddressInstructionPass:: 00575 commuteInstruction(MachineBasicBlock::iterator &mi, 00576 unsigned RegB, unsigned RegC, unsigned Dist) { 00577 MachineInstr *MI = mi; 00578 DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 00579 MachineInstr *NewMI = TII->commuteInstruction(MI); 00580 00581 if (NewMI == nullptr) { 00582 DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 00583 return false; 00584 } 00585 00586 DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 00587 assert(NewMI == MI && 00588 "TargetInstrInfo::commuteInstruction() should not return a new " 00589 "instruction unless it was requested."); 00590 00591 // Update source register map. 00592 unsigned FromRegC = getMappedReg(RegC, SrcRegMap); 00593 if (FromRegC) { 00594 unsigned RegA = MI->getOperand(0).getReg(); 00595 SrcRegMap[RegA] = FromRegC; 00596 } 00597 00598 return true; 00599 } 00600 00601 /// isProfitableToConv3Addr - Return true if it is profitable to convert the 00602 /// given 2-address instruction to a 3-address one. 00603 bool 00604 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){ 00605 // Look for situations like this: 00606 // %reg1024<def> = MOV r1 00607 // %reg1025<def> = MOV r0 00608 // %reg1026<def> = ADD %reg1024, %reg1025 00609 // r2 = MOV %reg1026 00610 // Turn ADD into a 3-address instruction to avoid a copy. 00611 unsigned FromRegB = getMappedReg(RegB, SrcRegMap); 00612 if (!FromRegB) 00613 return false; 00614 unsigned ToRegA = getMappedReg(RegA, DstRegMap); 00615 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 00616 } 00617 00618 /// convertInstTo3Addr - Convert the specified two-address instruction into a 00619 /// three address one. Return true if this transformation was successful. 00620 bool 00621 TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi, 00622 MachineBasicBlock::iterator &nmi, 00623 unsigned RegA, unsigned RegB, 00624 unsigned Dist) { 00625 // FIXME: Why does convertToThreeAddress() need an iterator reference? 00626 MachineFunction::iterator MFI = MBB; 00627 MachineInstr *NewMI = TII->convertToThreeAddress(MFI, mi, LV); 00628 assert(MBB == MFI && "convertToThreeAddress changed iterator reference"); 00629 if (!NewMI) 00630 return false; 00631 00632 DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 00633 DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 00634 bool Sunk = false; 00635 00636 if (LIS) 00637 LIS->ReplaceMachineInstrInMaps(mi, NewMI); 00638 00639 if (NewMI->findRegisterUseOperand(RegB, false, TRI)) 00640 // FIXME: Temporary workaround. If the new instruction doesn't 00641 // uses RegB, convertToThreeAddress must have created more 00642 // then one instruction. 00643 Sunk = sink3AddrInstruction(NewMI, RegB, mi); 00644 00645 MBB->erase(mi); // Nuke the old inst. 00646 00647 if (!Sunk) { 00648 DistanceMap.insert(std::make_pair(NewMI, Dist)); 00649 mi = NewMI; 00650 nmi = std::next(mi); 00651 } 00652 00653 // Update source and destination register maps. 00654 SrcRegMap.erase(RegA); 00655 DstRegMap.erase(RegB); 00656 return true; 00657 } 00658 00659 /// scanUses - Scan forward recursively for only uses, update maps if the use 00660 /// is a copy or a two-address instruction. 00661 void 00662 TwoAddressInstructionPass::scanUses(unsigned DstReg) { 00663 SmallVector<unsigned, 4> VirtRegPairs; 00664 bool IsDstPhys; 00665 bool IsCopy = false; 00666 unsigned NewReg = 0; 00667 unsigned Reg = DstReg; 00668 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 00669 NewReg, IsDstPhys)) { 00670 if (IsCopy && !Processed.insert(UseMI)) 00671 break; 00672 00673 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 00674 if (DI != DistanceMap.end()) 00675 // Earlier in the same MBB.Reached via a back edge. 00676 break; 00677 00678 if (IsDstPhys) { 00679 VirtRegPairs.push_back(NewReg); 00680 break; 00681 } 00682 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second; 00683 if (!isNew) 00684 assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!"); 00685 VirtRegPairs.push_back(NewReg); 00686 Reg = NewReg; 00687 } 00688 00689 if (!VirtRegPairs.empty()) { 00690 unsigned ToReg = VirtRegPairs.back(); 00691 VirtRegPairs.pop_back(); 00692 while (!VirtRegPairs.empty()) { 00693 unsigned FromReg = VirtRegPairs.back(); 00694 VirtRegPairs.pop_back(); 00695 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 00696 if (!isNew) 00697 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 00698 ToReg = FromReg; 00699 } 00700 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 00701 if (!isNew) 00702 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 00703 } 00704 } 00705 00706 /// processCopy - If the specified instruction is not yet processed, process it 00707 /// if it's a copy. For a copy instruction, we find the physical registers the 00708 /// source and destination registers might be mapped to. These are kept in 00709 /// point-to maps used to determine future optimizations. e.g. 00710 /// v1024 = mov r0 00711 /// v1025 = mov r1 00712 /// v1026 = add v1024, v1025 00713 /// r1 = mov r1026 00714 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 00715 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 00716 /// potentially joined with r1 on the output side. It's worthwhile to commute 00717 /// 'add' to eliminate a copy. 00718 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 00719 if (Processed.count(MI)) 00720 return; 00721 00722 bool IsSrcPhys, IsDstPhys; 00723 unsigned SrcReg, DstReg; 00724 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 00725 return; 00726 00727 if (IsDstPhys && !IsSrcPhys) 00728 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 00729 else if (!IsDstPhys && IsSrcPhys) { 00730 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 00731 if (!isNew) 00732 assert(SrcRegMap[DstReg] == SrcReg && 00733 "Can't map to two src physical registers!"); 00734 00735 scanUses(DstReg); 00736 } 00737 00738 Processed.insert(MI); 00739 return; 00740 } 00741 00742 /// rescheduleMIBelowKill - If there is one more local instruction that reads 00743 /// 'Reg' and it kills 'Reg, consider moving the instruction below the kill 00744 /// instruction in order to eliminate the need for the copy. 00745 bool TwoAddressInstructionPass:: 00746 rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 00747 MachineBasicBlock::iterator &nmi, 00748 unsigned Reg) { 00749 // Bail immediately if we don't have LV or LIS available. We use them to find 00750 // kills efficiently. 00751 if (!LV && !LIS) 00752 return false; 00753 00754 MachineInstr *MI = &*mi; 00755 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 00756 if (DI == DistanceMap.end()) 00757 // Must be created from unfolded load. Don't waste time trying this. 00758 return false; 00759 00760 MachineInstr *KillMI = nullptr; 00761 if (LIS) { 00762 LiveInterval &LI = LIS->getInterval(Reg); 00763 assert(LI.end() != LI.begin() && 00764 "Reg should not have empty live interval."); 00765 00766 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 00767 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 00768 if (I != LI.end() && I->start < MBBEndIdx) 00769 return false; 00770 00771 --I; 00772 KillMI = LIS->getInstructionFromIndex(I->end); 00773 } else { 00774 KillMI = LV->getVarInfo(Reg).findKill(MBB); 00775 } 00776 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 00777 // Don't mess with copies, they may be coalesced later. 00778 return false; 00779 00780 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 00781 KillMI->isBranch() || KillMI->isTerminator()) 00782 // Don't move pass calls, etc. 00783 return false; 00784 00785 unsigned DstReg; 00786 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 00787 return false; 00788 00789 bool SeenStore = true; 00790 if (!MI->isSafeToMove(TII, AA, SeenStore)) 00791 return false; 00792 00793 if (TII->getInstrLatency(InstrItins, MI) > 1) 00794 // FIXME: Needs more sophisticated heuristics. 00795 return false; 00796 00797 SmallSet<unsigned, 2> Uses; 00798 SmallSet<unsigned, 2> Kills; 00799 SmallSet<unsigned, 2> Defs; 00800 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 00801 const MachineOperand &MO = MI->getOperand(i); 00802 if (!MO.isReg()) 00803 continue; 00804 unsigned MOReg = MO.getReg(); 00805 if (!MOReg) 00806 continue; 00807 if (MO.isDef()) 00808 Defs.insert(MOReg); 00809 else { 00810 Uses.insert(MOReg); 00811 if (MOReg != Reg && (MO.isKill() || 00812 (LIS && isPlainlyKilled(MI, MOReg, LIS)))) 00813 Kills.insert(MOReg); 00814 } 00815 } 00816 00817 // Move the copies connected to MI down as well. 00818 MachineBasicBlock::iterator Begin = MI; 00819 MachineBasicBlock::iterator AfterMI = std::next(Begin); 00820 00821 MachineBasicBlock::iterator End = AfterMI; 00822 while (End->isCopy() && Defs.count(End->getOperand(1).getReg())) { 00823 Defs.insert(End->getOperand(0).getReg()); 00824 ++End; 00825 } 00826 00827 // Check if the reschedule will not break depedencies. 00828 unsigned NumVisited = 0; 00829 MachineBasicBlock::iterator KillPos = KillMI; 00830 ++KillPos; 00831 for (MachineBasicBlock::iterator I = End; I != KillPos; ++I) { 00832 MachineInstr *OtherMI = I; 00833 // DBG_VALUE cannot be counted against the limit. 00834 if (OtherMI->isDebugValue()) 00835 continue; 00836 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 00837 return false; 00838 ++NumVisited; 00839 if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() || 00840 OtherMI->isBranch() || OtherMI->isTerminator()) 00841 // Don't move pass calls, etc. 00842 return false; 00843 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { 00844 const MachineOperand &MO = OtherMI->getOperand(i); 00845 if (!MO.isReg()) 00846 continue; 00847 unsigned MOReg = MO.getReg(); 00848 if (!MOReg) 00849 continue; 00850 if (MO.isDef()) { 00851 if (Uses.count(MOReg)) 00852 // Physical register use would be clobbered. 00853 return false; 00854 if (!MO.isDead() && Defs.count(MOReg)) 00855 // May clobber a physical register def. 00856 // FIXME: This may be too conservative. It's ok if the instruction 00857 // is sunken completely below the use. 00858 return false; 00859 } else { 00860 if (Defs.count(MOReg)) 00861 return false; 00862 bool isKill = MO.isKill() || 00863 (LIS && isPlainlyKilled(OtherMI, MOReg, LIS)); 00864 if (MOReg != Reg && 00865 ((isKill && Uses.count(MOReg)) || Kills.count(MOReg))) 00866 // Don't want to extend other live ranges and update kills. 00867 return false; 00868 if (MOReg == Reg && !isKill) 00869 // We can't schedule across a use of the register in question. 00870 return false; 00871 // Ensure that if this is register in question, its the kill we expect. 00872 assert((MOReg != Reg || OtherMI == KillMI) && 00873 "Found multiple kills of a register in a basic block"); 00874 } 00875 } 00876 } 00877 00878 // Move debug info as well. 00879 while (Begin != MBB->begin() && std::prev(Begin)->isDebugValue()) 00880 --Begin; 00881 00882 nmi = End; 00883 MachineBasicBlock::iterator InsertPos = KillPos; 00884 if (LIS) { 00885 // We have to move the copies first so that the MBB is still well-formed 00886 // when calling handleMove(). 00887 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 00888 MachineInstr *CopyMI = MBBI; 00889 ++MBBI; 00890 MBB->splice(InsertPos, MBB, CopyMI); 00891 LIS->handleMove(CopyMI); 00892 InsertPos = CopyMI; 00893 } 00894 End = std::next(MachineBasicBlock::iterator(MI)); 00895 } 00896 00897 // Copies following MI may have been moved as well. 00898 MBB->splice(InsertPos, MBB, Begin, End); 00899 DistanceMap.erase(DI); 00900 00901 // Update live variables 00902 if (LIS) { 00903 LIS->handleMove(MI); 00904 } else { 00905 LV->removeVirtualRegisterKilled(Reg, KillMI); 00906 LV->addVirtualRegisterKilled(Reg, MI); 00907 } 00908 00909 DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 00910 return true; 00911 } 00912 00913 /// isDefTooClose - Return true if the re-scheduling will put the given 00914 /// instruction too close to the defs of its register dependencies. 00915 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist, 00916 MachineInstr *MI) { 00917 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 00918 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 00919 continue; 00920 if (&DefMI == MI) 00921 return true; // MI is defining something KillMI uses 00922 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 00923 if (DDI == DistanceMap.end()) 00924 return true; // Below MI 00925 unsigned DefDist = DDI->second; 00926 assert(Dist > DefDist && "Visited def already?"); 00927 if (TII->getInstrLatency(InstrItins, &DefMI) > (Dist - DefDist)) 00928 return true; 00929 } 00930 return false; 00931 } 00932 00933 /// rescheduleKillAboveMI - If there is one more local instruction that reads 00934 /// 'Reg' and it kills 'Reg, consider moving the kill instruction above the 00935 /// current two-address instruction in order to eliminate the need for the 00936 /// copy. 00937 bool TwoAddressInstructionPass:: 00938 rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 00939 MachineBasicBlock::iterator &nmi, 00940 unsigned Reg) { 00941 // Bail immediately if we don't have LV or LIS available. We use them to find 00942 // kills efficiently. 00943 if (!LV && !LIS) 00944 return false; 00945 00946 MachineInstr *MI = &*mi; 00947 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 00948 if (DI == DistanceMap.end()) 00949 // Must be created from unfolded load. Don't waste time trying this. 00950 return false; 00951 00952 MachineInstr *KillMI = nullptr; 00953 if (LIS) { 00954 LiveInterval &LI = LIS->getInterval(Reg); 00955 assert(LI.end() != LI.begin() && 00956 "Reg should not have empty live interval."); 00957 00958 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 00959 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 00960 if (I != LI.end() && I->start < MBBEndIdx) 00961 return false; 00962 00963 --I; 00964 KillMI = LIS->getInstructionFromIndex(I->end); 00965 } else { 00966 KillMI = LV->getVarInfo(Reg).findKill(MBB); 00967 } 00968 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 00969 // Don't mess with copies, they may be coalesced later. 00970 return false; 00971 00972 unsigned DstReg; 00973 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 00974 return false; 00975 00976 bool SeenStore = true; 00977 if (!KillMI->isSafeToMove(TII, AA, SeenStore)) 00978 return false; 00979 00980 SmallSet<unsigned, 2> Uses; 00981 SmallSet<unsigned, 2> Kills; 00982 SmallSet<unsigned, 2> Defs; 00983 SmallSet<unsigned, 2> LiveDefs; 00984 for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) { 00985 const MachineOperand &MO = KillMI->getOperand(i); 00986 if (!MO.isReg()) 00987 continue; 00988 unsigned MOReg = MO.getReg(); 00989 if (MO.isUse()) { 00990 if (!MOReg) 00991 continue; 00992 if (isDefTooClose(MOReg, DI->second, MI)) 00993 return false; 00994 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); 00995 if (MOReg == Reg && !isKill) 00996 return false; 00997 Uses.insert(MOReg); 00998 if (isKill && MOReg != Reg) 00999 Kills.insert(MOReg); 01000 } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) { 01001 Defs.insert(MOReg); 01002 if (!MO.isDead()) 01003 LiveDefs.insert(MOReg); 01004 } 01005 } 01006 01007 // Check if the reschedule will not break depedencies. 01008 unsigned NumVisited = 0; 01009 MachineBasicBlock::iterator KillPos = KillMI; 01010 for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) { 01011 MachineInstr *OtherMI = I; 01012 // DBG_VALUE cannot be counted against the limit. 01013 if (OtherMI->isDebugValue()) 01014 continue; 01015 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 01016 return false; 01017 ++NumVisited; 01018 if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() || 01019 OtherMI->isBranch() || OtherMI->isTerminator()) 01020 // Don't move pass calls, etc. 01021 return false; 01022 SmallVector<unsigned, 2> OtherDefs; 01023 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { 01024 const MachineOperand &MO = OtherMI->getOperand(i); 01025 if (!MO.isReg()) 01026 continue; 01027 unsigned MOReg = MO.getReg(); 01028 if (!MOReg) 01029 continue; 01030 if (MO.isUse()) { 01031 if (Defs.count(MOReg)) 01032 // Moving KillMI can clobber the physical register if the def has 01033 // not been seen. 01034 return false; 01035 if (Kills.count(MOReg)) 01036 // Don't want to extend other live ranges and update kills. 01037 return false; 01038 if (OtherMI != MI && MOReg == Reg && 01039 !(MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS)))) 01040 // We can't schedule across a use of the register in question. 01041 return false; 01042 } else { 01043 OtherDefs.push_back(MOReg); 01044 } 01045 } 01046 01047 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 01048 unsigned MOReg = OtherDefs[i]; 01049 if (Uses.count(MOReg)) 01050 return false; 01051 if (TargetRegisterInfo::isPhysicalRegister(MOReg) && 01052 LiveDefs.count(MOReg)) 01053 return false; 01054 // Physical register def is seen. 01055 Defs.erase(MOReg); 01056 } 01057 } 01058 01059 // Move the old kill above MI, don't forget to move debug info as well. 01060 MachineBasicBlock::iterator InsertPos = mi; 01061 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugValue()) 01062 --InsertPos; 01063 MachineBasicBlock::iterator From = KillMI; 01064 MachineBasicBlock::iterator To = std::next(From); 01065 while (std::prev(From)->isDebugValue()) 01066 --From; 01067 MBB->splice(InsertPos, MBB, From, To); 01068 01069 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 01070 DistanceMap.erase(DI); 01071 01072 // Update live variables 01073 if (LIS) { 01074 LIS->handleMove(KillMI); 01075 } else { 01076 LV->removeVirtualRegisterKilled(Reg, KillMI); 01077 LV->addVirtualRegisterKilled(Reg, MI); 01078 } 01079 01080 DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 01081 return true; 01082 } 01083 01084 /// tryInstructionTransform - For the case where an instruction has a single 01085 /// pair of tied register operands, attempt some transformations that may 01086 /// either eliminate the tied operands or improve the opportunities for 01087 /// coalescing away the register copy. Returns true if no copy needs to be 01088 /// inserted to untie mi's operands (either because they were untied, or 01089 /// because mi was rescheduled, and will be visited again later). If the 01090 /// shouldOnlyCommute flag is true, only instruction commutation is attempted. 01091 bool TwoAddressInstructionPass:: 01092 tryInstructionTransform(MachineBasicBlock::iterator &mi, 01093 MachineBasicBlock::iterator &nmi, 01094 unsigned SrcIdx, unsigned DstIdx, 01095 unsigned Dist, bool shouldOnlyCommute) { 01096 if (OptLevel == CodeGenOpt::None) 01097 return false; 01098 01099 MachineInstr &MI = *mi; 01100 unsigned regA = MI.getOperand(DstIdx).getReg(); 01101 unsigned regB = MI.getOperand(SrcIdx).getReg(); 01102 01103 assert(TargetRegisterInfo::isVirtualRegister(regB) && 01104 "cannot make instruction into two-address form"); 01105 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 01106 01107 if (TargetRegisterInfo::isVirtualRegister(regA)) 01108 scanUses(regA); 01109 01110 // Check if it is profitable to commute the operands. 01111 unsigned SrcOp1, SrcOp2; 01112 unsigned regC = 0; 01113 unsigned regCIdx = ~0U; 01114 bool TryCommute = false; 01115 bool AggressiveCommute = false; 01116 if (MI.isCommutable() && MI.getNumOperands() >= 3 && 01117 TII->findCommutedOpIndices(&MI, SrcOp1, SrcOp2)) { 01118 if (SrcIdx == SrcOp1) 01119 regCIdx = SrcOp2; 01120 else if (SrcIdx == SrcOp2) 01121 regCIdx = SrcOp1; 01122 01123 if (regCIdx != ~0U) { 01124 regC = MI.getOperand(regCIdx).getReg(); 01125 if (!regBKilled && isKilled(MI, regC, MRI, TII, LIS, false)) 01126 // If C dies but B does not, swap the B and C operands. 01127 // This makes the live ranges of A and C joinable. 01128 TryCommute = true; 01129 else if (isProfitableToCommute(regA, regB, regC, &MI, Dist)) { 01130 TryCommute = true; 01131 AggressiveCommute = true; 01132 } 01133 } 01134 } 01135 01136 // If it's profitable to commute, try to do so. 01137 if (TryCommute && commuteInstruction(mi, regB, regC, Dist)) { 01138 ++NumCommuted; 01139 if (AggressiveCommute) 01140 ++NumAggrCommuted; 01141 return false; 01142 } 01143 01144 if (shouldOnlyCommute) 01145 return false; 01146 01147 // If there is one more use of regB later in the same MBB, consider 01148 // re-schedule this MI below it. 01149 if (EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 01150 ++NumReSchedDowns; 01151 return true; 01152 } 01153 01154 if (MI.isConvertibleTo3Addr()) { 01155 // This instruction is potentially convertible to a true 01156 // three-address instruction. Check if it is profitable. 01157 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 01158 // Try to convert it. 01159 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 01160 ++NumConvertedTo3Addr; 01161 return true; // Done with this instruction. 01162 } 01163 } 01164 } 01165 01166 // If there is one more use of regB later in the same MBB, consider 01167 // re-schedule it before this MI if it's legal. 01168 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 01169 ++NumReSchedUps; 01170 return true; 01171 } 01172 01173 // If this is an instruction with a load folded into it, try unfolding 01174 // the load, e.g. avoid this: 01175 // movq %rdx, %rcx 01176 // addq (%rax), %rcx 01177 // in favor of this: 01178 // movq (%rax), %rcx 01179 // addq %rdx, %rcx 01180 // because it's preferable to schedule a load than a register copy. 01181 if (MI.mayLoad() && !regBKilled) { 01182 // Determine if a load can be unfolded. 01183 unsigned LoadRegIndex; 01184 unsigned NewOpc = 01185 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 01186 /*UnfoldLoad=*/true, 01187 /*UnfoldStore=*/false, 01188 &LoadRegIndex); 01189 if (NewOpc != 0) { 01190 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 01191 if (UnfoldMCID.getNumDefs() == 1) { 01192 // Unfold the load. 01193 DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 01194 const TargetRegisterClass *RC = 01195 TRI->getAllocatableClass( 01196 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 01197 unsigned Reg = MRI->createVirtualRegister(RC); 01198 SmallVector<MachineInstr *, 2> NewMIs; 01199 if (!TII->unfoldMemoryOperand(*MF, &MI, Reg, 01200 /*UnfoldLoad=*/true,/*UnfoldStore=*/false, 01201 NewMIs)) { 01202 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 01203 return false; 01204 } 01205 assert(NewMIs.size() == 2 && 01206 "Unfolded a load into multiple instructions!"); 01207 // The load was previously folded, so this is the only use. 01208 NewMIs[1]->addRegisterKilled(Reg, TRI); 01209 01210 // Tentatively insert the instructions into the block so that they 01211 // look "normal" to the transformation logic. 01212 MBB->insert(mi, NewMIs[0]); 01213 MBB->insert(mi, NewMIs[1]); 01214 01215 DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 01216 << "2addr: NEW INST: " << *NewMIs[1]); 01217 01218 // Transform the instruction, now that it no longer has a load. 01219 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 01220 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 01221 MachineBasicBlock::iterator NewMI = NewMIs[1]; 01222 bool TransformResult = 01223 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 01224 (void)TransformResult; 01225 assert(!TransformResult && 01226 "tryInstructionTransform() should return false."); 01227 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 01228 // Success, or at least we made an improvement. Keep the unfolded 01229 // instructions and discard the original. 01230 if (LV) { 01231 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 01232 MachineOperand &MO = MI.getOperand(i); 01233 if (MO.isReg() && 01234 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 01235 if (MO.isUse()) { 01236 if (MO.isKill()) { 01237 if (NewMIs[0]->killsRegister(MO.getReg())) 01238 LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]); 01239 else { 01240 assert(NewMIs[1]->killsRegister(MO.getReg()) && 01241 "Kill missing after load unfold!"); 01242 LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]); 01243 } 01244 } 01245 } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) { 01246 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 01247 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]); 01248 else { 01249 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 01250 "Dead flag missing after load unfold!"); 01251 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]); 01252 } 01253 } 01254 } 01255 } 01256 LV->addVirtualRegisterKilled(Reg, NewMIs[1]); 01257 } 01258 01259 SmallVector<unsigned, 4> OrigRegs; 01260 if (LIS) { 01261 for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(), 01262 MOE = MI.operands_end(); MOI != MOE; ++MOI) { 01263 if (MOI->isReg()) 01264 OrigRegs.push_back(MOI->getReg()); 01265 } 01266 } 01267 01268 MI.eraseFromParent(); 01269 01270 // Update LiveIntervals. 01271 if (LIS) { 01272 MachineBasicBlock::iterator Begin(NewMIs[0]); 01273 MachineBasicBlock::iterator End(NewMIs[1]); 01274 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 01275 } 01276 01277 mi = NewMIs[1]; 01278 } else { 01279 // Transforming didn't eliminate the tie and didn't lead to an 01280 // improvement. Clean up the unfolded instructions and keep the 01281 // original. 01282 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 01283 NewMIs[0]->eraseFromParent(); 01284 NewMIs[1]->eraseFromParent(); 01285 } 01286 } 01287 } 01288 } 01289 01290 return false; 01291 } 01292 01293 // Collect tied operands of MI that need to be handled. 01294 // Rewrite trivial cases immediately. 01295 // Return true if any tied operands where found, including the trivial ones. 01296 bool TwoAddressInstructionPass:: 01297 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 01298 const MCInstrDesc &MCID = MI->getDesc(); 01299 bool AnyOps = false; 01300 unsigned NumOps = MI->getNumOperands(); 01301 01302 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 01303 unsigned DstIdx = 0; 01304 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 01305 continue; 01306 AnyOps = true; 01307 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 01308 MachineOperand &DstMO = MI->getOperand(DstIdx); 01309 unsigned SrcReg = SrcMO.getReg(); 01310 unsigned DstReg = DstMO.getReg(); 01311 // Tied constraint already satisfied? 01312 if (SrcReg == DstReg) 01313 continue; 01314 01315 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 01316 01317 // Deal with <undef> uses immediately - simply rewrite the src operand. 01318 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 01319 // Constrain the DstReg register class if required. 01320 if (TargetRegisterInfo::isVirtualRegister(DstReg)) 01321 if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx, 01322 TRI, *MF)) 01323 MRI->constrainRegClass(DstReg, RC); 01324 SrcMO.setReg(DstReg); 01325 SrcMO.setSubReg(0); 01326 DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 01327 continue; 01328 } 01329 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 01330 } 01331 return AnyOps; 01332 } 01333 01334 // Process a list of tied MI operands that all use the same source register. 01335 // The tied pairs are of the form (SrcIdx, DstIdx). 01336 void 01337 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 01338 TiedPairList &TiedPairs, 01339 unsigned &Dist) { 01340 bool IsEarlyClobber = false; 01341 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 01342 const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second); 01343 IsEarlyClobber |= DstMO.isEarlyClobber(); 01344 } 01345 01346 bool RemovedKillFlag = false; 01347 bool AllUsesCopied = true; 01348 unsigned LastCopiedReg = 0; 01349 SlotIndex LastCopyIdx; 01350 unsigned RegB = 0; 01351 unsigned SubRegB = 0; 01352 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 01353 unsigned SrcIdx = TiedPairs[tpi].first; 01354 unsigned DstIdx = TiedPairs[tpi].second; 01355 01356 const MachineOperand &DstMO = MI->getOperand(DstIdx); 01357 unsigned RegA = DstMO.getReg(); 01358 01359 // Grab RegB from the instruction because it may have changed if the 01360 // instruction was commuted. 01361 RegB = MI->getOperand(SrcIdx).getReg(); 01362 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 01363 01364 if (RegA == RegB) { 01365 // The register is tied to multiple destinations (or else we would 01366 // not have continued this far), but this use of the register 01367 // already matches the tied destination. Leave it. 01368 AllUsesCopied = false; 01369 continue; 01370 } 01371 LastCopiedReg = RegA; 01372 01373 assert(TargetRegisterInfo::isVirtualRegister(RegB) && 01374 "cannot make instruction into two-address form"); 01375 01376 #ifndef NDEBUG 01377 // First, verify that we don't have a use of "a" in the instruction 01378 // (a = b + a for example) because our transformation will not 01379 // work. This should never occur because we are in SSA form. 01380 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 01381 assert(i == DstIdx || 01382 !MI->getOperand(i).isReg() || 01383 MI->getOperand(i).getReg() != RegA); 01384 #endif 01385 01386 // Emit a copy. 01387 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 01388 TII->get(TargetOpcode::COPY), RegA); 01389 // If this operand is folding a truncation, the truncation now moves to the 01390 // copy so that the register classes remain valid for the operands. 01391 MIB.addReg(RegB, 0, SubRegB); 01392 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 01393 if (SubRegB) { 01394 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 01395 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 01396 SubRegB) && 01397 "tied subregister must be a truncation"); 01398 // The superreg class will not be used to constrain the subreg class. 01399 RC = nullptr; 01400 } 01401 else { 01402 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 01403 && "tied subregister must be a truncation"); 01404 } 01405 } 01406 01407 // Update DistanceMap. 01408 MachineBasicBlock::iterator PrevMI = MI; 01409 --PrevMI; 01410 DistanceMap.insert(std::make_pair(PrevMI, Dist)); 01411 DistanceMap[MI] = ++Dist; 01412 01413 if (LIS) { 01414 LastCopyIdx = LIS->InsertMachineInstrInMaps(PrevMI).getRegSlot(); 01415 01416 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 01417 LiveInterval &LI = LIS->getInterval(RegA); 01418 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 01419 SlotIndex endIdx = 01420 LIS->getInstructionIndex(MI).getRegSlot(IsEarlyClobber); 01421 LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI)); 01422 } 01423 } 01424 01425 DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 01426 01427 MachineOperand &MO = MI->getOperand(SrcIdx); 01428 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 01429 "inconsistent operand info for 2-reg pass"); 01430 if (MO.isKill()) { 01431 MO.setIsKill(false); 01432 RemovedKillFlag = true; 01433 } 01434 01435 // Make sure regA is a legal regclass for the SrcIdx operand. 01436 if (TargetRegisterInfo::isVirtualRegister(RegA) && 01437 TargetRegisterInfo::isVirtualRegister(RegB)) 01438 MRI->constrainRegClass(RegA, RC); 01439 MO.setReg(RegA); 01440 // The getMatchingSuper asserts guarantee that the register class projected 01441 // by SubRegB is compatible with RegA with no subregister. So regardless of 01442 // whether the dest oper writes a subreg, the source oper should not. 01443 MO.setSubReg(0); 01444 01445 // Propagate SrcRegMap. 01446 SrcRegMap[RegA] = RegB; 01447 } 01448 01449 01450 if (AllUsesCopied) { 01451 if (!IsEarlyClobber) { 01452 // Replace other (un-tied) uses of regB with LastCopiedReg. 01453 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 01454 MachineOperand &MO = MI->getOperand(i); 01455 if (MO.isReg() && MO.getReg() == RegB && MO.getSubReg() == SubRegB && 01456 MO.isUse()) { 01457 if (MO.isKill()) { 01458 MO.setIsKill(false); 01459 RemovedKillFlag = true; 01460 } 01461 MO.setReg(LastCopiedReg); 01462 MO.setSubReg(0); 01463 } 01464 } 01465 } 01466 01467 // Update live variables for regB. 01468 if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(MI)) { 01469 MachineBasicBlock::iterator PrevMI = MI; 01470 --PrevMI; 01471 LV->addVirtualRegisterKilled(RegB, PrevMI); 01472 } 01473 01474 // Update LiveIntervals. 01475 if (LIS) { 01476 LiveInterval &LI = LIS->getInterval(RegB); 01477 SlotIndex MIIdx = LIS->getInstructionIndex(MI); 01478 LiveInterval::const_iterator I = LI.find(MIIdx); 01479 assert(I != LI.end() && "RegB must be live-in to use."); 01480 01481 SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber); 01482 if (I->end == UseIdx) 01483 LI.removeSegment(LastCopyIdx, UseIdx); 01484 } 01485 01486 } else if (RemovedKillFlag) { 01487 // Some tied uses of regB matched their destination registers, so 01488 // regB is still used in this instruction, but a kill flag was 01489 // removed from a different tied use of regB, so now we need to add 01490 // a kill flag to one of the remaining uses of regB. 01491 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 01492 MachineOperand &MO = MI->getOperand(i); 01493 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 01494 MO.setIsKill(true); 01495 break; 01496 } 01497 } 01498 } 01499 } 01500 01501 /// runOnMachineFunction - Reduce two-address instructions to two operands. 01502 /// 01503 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 01504 MF = &Func; 01505 const TargetMachine &TM = MF->getTarget(); 01506 MRI = &MF->getRegInfo(); 01507 TII = TM.getSubtargetImpl()->getInstrInfo(); 01508 TRI = TM.getSubtargetImpl()->getRegisterInfo(); 01509 InstrItins = TM.getSubtargetImpl()->getInstrItineraryData(); 01510 LV = getAnalysisIfAvailable<LiveVariables>(); 01511 LIS = getAnalysisIfAvailable<LiveIntervals>(); 01512 AA = &getAnalysis<AliasAnalysis>(); 01513 OptLevel = TM.getOptLevel(); 01514 01515 bool MadeChange = false; 01516 01517 DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 01518 DEBUG(dbgs() << "********** Function: " 01519 << MF->getName() << '\n'); 01520 01521 // This pass takes the function out of SSA form. 01522 MRI->leaveSSA(); 01523 01524 TiedOperandMap TiedOperands; 01525 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); 01526 MBBI != MBBE; ++MBBI) { 01527 MBB = MBBI; 01528 unsigned Dist = 0; 01529 DistanceMap.clear(); 01530 SrcRegMap.clear(); 01531 DstRegMap.clear(); 01532 Processed.clear(); 01533 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 01534 mi != me; ) { 01535 MachineBasicBlock::iterator nmi = std::next(mi); 01536 if (mi->isDebugValue()) { 01537 mi = nmi; 01538 continue; 01539 } 01540 01541 // Expand REG_SEQUENCE instructions. This will position mi at the first 01542 // expanded instruction. 01543 if (mi->isRegSequence()) 01544 eliminateRegSequence(mi); 01545 01546 DistanceMap.insert(std::make_pair(mi, ++Dist)); 01547 01548 processCopy(&*mi); 01549 01550 // First scan through all the tied register uses in this instruction 01551 // and record a list of pairs of tied operands for each register. 01552 if (!collectTiedOperands(mi, TiedOperands)) { 01553 mi = nmi; 01554 continue; 01555 } 01556 01557 ++NumTwoAddressInstrs; 01558 MadeChange = true; 01559 DEBUG(dbgs() << '\t' << *mi); 01560 01561 // If the instruction has a single pair of tied operands, try some 01562 // transformations that may either eliminate the tied operands or 01563 // improve the opportunities for coalescing away the register copy. 01564 if (TiedOperands.size() == 1) { 01565 SmallVectorImpl<std::pair<unsigned, unsigned> > &TiedPairs 01566 = TiedOperands.begin()->second; 01567 if (TiedPairs.size() == 1) { 01568 unsigned SrcIdx = TiedPairs[0].first; 01569 unsigned DstIdx = TiedPairs[0].second; 01570 unsigned SrcReg = mi->getOperand(SrcIdx).getReg(); 01571 unsigned DstReg = mi->getOperand(DstIdx).getReg(); 01572 if (SrcReg != DstReg && 01573 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 01574 // The tied operands have been eliminated or shifted further down the 01575 // block to ease elimination. Continue processing with 'nmi'. 01576 TiedOperands.clear(); 01577 mi = nmi; 01578 continue; 01579 } 01580 } 01581 } 01582 01583 // Now iterate over the information collected above. 01584 for (TiedOperandMap::iterator OI = TiedOperands.begin(), 01585 OE = TiedOperands.end(); OI != OE; ++OI) { 01586 processTiedPairs(mi, OI->second, Dist); 01587 DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 01588 } 01589 01590 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 01591 if (mi->isInsertSubreg()) { 01592 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 01593 // To %reg:subidx = COPY %subreg 01594 unsigned SubIdx = mi->getOperand(3).getImm(); 01595 mi->RemoveOperand(3); 01596 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 01597 mi->getOperand(0).setSubReg(SubIdx); 01598 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 01599 mi->RemoveOperand(1); 01600 mi->setDesc(TII->get(TargetOpcode::COPY)); 01601 DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 01602 } 01603 01604 // Clear TiedOperands here instead of at the top of the loop 01605 // since most instructions do not have tied operands. 01606 TiedOperands.clear(); 01607 mi = nmi; 01608 } 01609 } 01610 01611 if (LIS) 01612 MF->verify(this, "After two-address instruction pass"); 01613 01614 return MadeChange; 01615 } 01616 01617 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 01618 /// 01619 /// The instruction is turned into a sequence of sub-register copies: 01620 /// 01621 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 01622 /// 01623 /// Becomes: 01624 /// 01625 /// %dst:ssub0<def,undef> = COPY %v1 01626 /// %dst:ssub1<def> = COPY %v2 01627 /// 01628 void TwoAddressInstructionPass:: 01629 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 01630 MachineInstr *MI = MBBI; 01631 unsigned DstReg = MI->getOperand(0).getReg(); 01632 if (MI->getOperand(0).getSubReg() || 01633 TargetRegisterInfo::isPhysicalRegister(DstReg) || 01634 !(MI->getNumOperands() & 1)) { 01635 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI); 01636 llvm_unreachable(nullptr); 01637 } 01638 01639 SmallVector<unsigned, 4> OrigRegs; 01640 if (LIS) { 01641 OrigRegs.push_back(MI->getOperand(0).getReg()); 01642 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) 01643 OrigRegs.push_back(MI->getOperand(i).getReg()); 01644 } 01645 01646 bool DefEmitted = false; 01647 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) { 01648 MachineOperand &UseMO = MI->getOperand(i); 01649 unsigned SrcReg = UseMO.getReg(); 01650 unsigned SubIdx = MI->getOperand(i+1).getImm(); 01651 // Nothing needs to be inserted for <undef> operands. 01652 if (UseMO.isUndef()) 01653 continue; 01654 01655 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 01656 // might insert a COPY that uses SrcReg after is was killed. 01657 bool isKill = UseMO.isKill(); 01658 if (isKill) 01659 for (unsigned j = i + 2; j < e; j += 2) 01660 if (MI->getOperand(j).getReg() == SrcReg) { 01661 MI->getOperand(j).setIsKill(); 01662 UseMO.setIsKill(false); 01663 isKill = false; 01664 break; 01665 } 01666 01667 // Insert the sub-register copy. 01668 MachineInstr *CopyMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 01669 TII->get(TargetOpcode::COPY)) 01670 .addReg(DstReg, RegState::Define, SubIdx) 01671 .addOperand(UseMO); 01672 01673 // The first def needs an <undef> flag because there is no live register 01674 // before it. 01675 if (!DefEmitted) { 01676 CopyMI->getOperand(0).setIsUndef(true); 01677 // Return an iterator pointing to the first inserted instr. 01678 MBBI = CopyMI; 01679 } 01680 DefEmitted = true; 01681 01682 // Update LiveVariables' kill info. 01683 if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg)) 01684 LV->replaceKillInstruction(SrcReg, MI, CopyMI); 01685 01686 DEBUG(dbgs() << "Inserted: " << *CopyMI); 01687 } 01688 01689 MachineBasicBlock::iterator EndMBBI = 01690 std::next(MachineBasicBlock::iterator(MI)); 01691 01692 if (!DefEmitted) { 01693 DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF"); 01694 MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 01695 for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j) 01696 MI->RemoveOperand(j); 01697 } else { 01698 DEBUG(dbgs() << "Eliminated: " << *MI); 01699 MI->eraseFromParent(); 01700 } 01701 01702 // Udpate LiveIntervals. 01703 if (LIS) 01704 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 01705 }