ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addpiord Unicode version

Theorem addpiord 6506
Description: Positive integer addition in terms of ordinal addition. (Contributed by NM, 27-Aug-1995.)
Assertion
Ref Expression
addpiord  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( A  +o  B ) )

Proof of Theorem addpiord
StepHypRef Expression
1 opelxpi 4394 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  -> 
<. A ,  B >.  e.  ( N.  X.  N. ) )
2 fvres 5219 . . 3  |-  ( <. A ,  B >.  e.  ( N.  X.  N. )  ->  ( (  +o  |`  ( N.  X.  N. ) ) `  <. A ,  B >. )  =  (  +o  `  <. A ,  B >. )
)
3 df-ov 5535 . . . 4  |-  ( A  +N  B )  =  (  +N  `  <. A ,  B >. )
4 df-pli 6495 . . . . 5  |-  +N  =  (  +o  |`  ( N.  X.  N. ) )
54fveq1i 5199 . . . 4  |-  (  +N 
`  <. A ,  B >. )  =  ( (  +o  |`  ( N.  X.  N. ) ) `  <. A ,  B >. )
63, 5eqtri 2101 . . 3  |-  ( A  +N  B )  =  ( (  +o  |`  ( N.  X.  N. ) ) `
 <. A ,  B >. )
7 df-ov 5535 . . 3  |-  ( A  +o  B )  =  (  +o  `  <. A ,  B >. )
82, 6, 73eqtr4g 2138 . 2  |-  ( <. A ,  B >.  e.  ( N.  X.  N. )  ->  ( A  +N  B )  =  ( A  +o  B ) )
91, 8syl 14 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( A  +o  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   <.cop 3401    X. cxp 4361    |` cres 4365   ` cfv 4922  (class class class)co 5532    +o coa 6021   N.cnpi 6462    +N cpli 6463
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-xp 4369  df-res 4375  df-iota 4887  df-fv 4930  df-ov 5535  df-pli 6495
This theorem is referenced by:  addclpi  6517  addcompig  6519  addasspig  6520  distrpig  6523  addcanpig  6524  addnidpig  6526  ltexpi  6527  ltapig  6528  1lt2pi  6530  indpi  6532  archnqq  6607  prarloclemarch2  6609  nqnq0a  6644
  Copyright terms: Public domain W3C validator