| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axi2m1 | Unicode version | ||
| Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 7081. (Contributed by NM, 5-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axi2m1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0r 6927 |
. . . . . 6
| |
| 2 | 1sr 6928 |
. . . . . 6
| |
| 3 | mulcnsr 7003 |
. . . . . 6
| |
| 4 | 1, 2, 1, 2, 3 | mp4an 417 |
. . . . 5
|
| 5 | 00sr 6946 |
. . . . . . . . 9
| |
| 6 | 1, 5 | ax-mp 7 |
. . . . . . . 8
|
| 7 | 1idsr 6945 |
. . . . . . . . . . 11
| |
| 8 | 2, 7 | ax-mp 7 |
. . . . . . . . . 10
|
| 9 | 8 | oveq2i 5543 |
. . . . . . . . 9
|
| 10 | m1r 6929 |
. . . . . . . . . 10
| |
| 11 | 1idsr 6945 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | ax-mp 7 |
. . . . . . . . 9
|
| 13 | 9, 12 | eqtri 2101 |
. . . . . . . 8
|
| 14 | 6, 13 | oveq12i 5544 |
. . . . . . 7
|
| 15 | addcomsrg 6932 |
. . . . . . . 8
| |
| 16 | 1, 10, 15 | mp2an 416 |
. . . . . . 7
|
| 17 | 0idsr 6944 |
. . . . . . . 8
| |
| 18 | 10, 17 | ax-mp 7 |
. . . . . . 7
|
| 19 | 14, 16, 18 | 3eqtri 2105 |
. . . . . 6
|
| 20 | 00sr 6946 |
. . . . . . . . 9
| |
| 21 | 2, 20 | ax-mp 7 |
. . . . . . . 8
|
| 22 | 1idsr 6945 |
. . . . . . . . 9
| |
| 23 | 1, 22 | ax-mp 7 |
. . . . . . . 8
|
| 24 | 21, 23 | oveq12i 5544 |
. . . . . . 7
|
| 25 | 0idsr 6944 |
. . . . . . . 8
| |
| 26 | 1, 25 | ax-mp 7 |
. . . . . . 7
|
| 27 | 24, 26 | eqtri 2101 |
. . . . . 6
|
| 28 | 19, 27 | opeq12i 3575 |
. . . . 5
|
| 29 | 4, 28 | eqtri 2101 |
. . . 4
|
| 30 | 29 | oveq1i 5542 |
. . 3
|
| 31 | addresr 7005 |
. . . 4
| |
| 32 | 10, 2, 31 | mp2an 416 |
. . 3
|
| 33 | m1p1sr 6937 |
. . . 4
| |
| 34 | 33 | opeq1i 3573 |
. . 3
|
| 35 | 30, 32, 34 | 3eqtri 2105 |
. 2
|
| 36 | df-i 6990 |
. . . 4
| |
| 37 | 36, 36 | oveq12i 5544 |
. . 3
|
| 38 | df-1 6989 |
. . 3
| |
| 39 | 37, 38 | oveq12i 5544 |
. 2
|
| 40 | df-0 6988 |
. 2
| |
| 41 | 35, 39, 40 | 3eqtr4i 2111 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-eprel 4044 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-1o 6024 df-2o 6025 df-oadd 6028 df-omul 6029 df-er 6129 df-ec 6131 df-qs 6135 df-ni 6494 df-pli 6495 df-mi 6496 df-lti 6497 df-plpq 6534 df-mpq 6535 df-enq 6537 df-nqqs 6538 df-plqqs 6539 df-mqqs 6540 df-1nqqs 6541 df-rq 6542 df-ltnqqs 6543 df-enq0 6614 df-nq0 6615 df-0nq0 6616 df-plq0 6617 df-mq0 6618 df-inp 6656 df-i1p 6657 df-iplp 6658 df-imp 6659 df-enr 6903 df-nr 6904 df-plr 6905 df-mr 6906 df-0r 6908 df-1r 6909 df-m1r 6910 df-c 6987 df-0 6988 df-1 6989 df-i 6990 df-add 6992 df-mul 6993 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |