| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1idsr | Unicode version | ||
| Description: 1 is an identity element for multiplication. (Contributed by Jim Kingdon, 5-Jan-2020.) |
| Ref | Expression |
|---|---|
| 1idsr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr 6904 |
. 2
| |
| 2 | oveq1 5539 |
. . 3
| |
| 3 | id 19 |
. . 3
| |
| 4 | 2, 3 | eqeq12d 2095 |
. 2
|
| 5 | df-1r 6909 |
. . . 4
| |
| 6 | 5 | oveq2i 5543 |
. . 3
|
| 7 | 1pr 6744 |
. . . . . 6
| |
| 8 | addclpr 6727 |
. . . . . 6
| |
| 9 | 7, 7, 8 | mp2an 416 |
. . . . 5
|
| 10 | mulsrpr 6923 |
. . . . 5
| |
| 11 | 9, 7, 10 | mpanr12 429 |
. . . 4
|
| 12 | distrprg 6778 |
. . . . . . . . 9
| |
| 13 | 7, 7, 12 | mp3an23 1260 |
. . . . . . . 8
|
| 14 | 1idpr 6782 |
. . . . . . . . 9
| |
| 15 | 14 | oveq1d 5547 |
. . . . . . . 8
|
| 16 | 13, 15 | eqtr2d 2114 |
. . . . . . 7
|
| 17 | distrprg 6778 |
. . . . . . . . 9
| |
| 18 | 7, 7, 17 | mp3an23 1260 |
. . . . . . . 8
|
| 19 | 1idpr 6782 |
. . . . . . . . 9
| |
| 20 | 19 | oveq1d 5547 |
. . . . . . . 8
|
| 21 | 18, 20 | eqtrd 2113 |
. . . . . . 7
|
| 22 | 16, 21 | oveqan12d 5551 |
. . . . . 6
|
| 23 | simpl 107 |
. . . . . . 7
| |
| 24 | mulclpr 6762 |
. . . . . . . 8
| |
| 25 | 23, 7, 24 | sylancl 404 |
. . . . . . 7
|
| 26 | mulclpr 6762 |
. . . . . . . . 9
| |
| 27 | 9, 26 | mpan2 415 |
. . . . . . . 8
|
| 28 | 27 | adantl 271 |
. . . . . . 7
|
| 29 | addassprg 6769 |
. . . . . . 7
| |
| 30 | 23, 25, 28, 29 | syl3anc 1169 |
. . . . . 6
|
| 31 | mulclpr 6762 |
. . . . . . . 8
| |
| 32 | 23, 9, 31 | sylancl 404 |
. . . . . . 7
|
| 33 | simpr 108 |
. . . . . . 7
| |
| 34 | mulclpr 6762 |
. . . . . . . 8
| |
| 35 | 33, 7, 34 | sylancl 404 |
. . . . . . 7
|
| 36 | addcomprg 6768 |
. . . . . . . 8
| |
| 37 | 36 | adantl 271 |
. . . . . . 7
|
| 38 | addassprg 6769 |
. . . . . . . 8
| |
| 39 | 38 | adantl 271 |
. . . . . . 7
|
| 40 | 32, 33, 35, 37, 39 | caov12d 5702 |
. . . . . 6
|
| 41 | 22, 30, 40 | 3eqtr3d 2121 |
. . . . 5
|
| 42 | 9, 31 | mpan2 415 |
. . . . . . . . 9
|
| 43 | 7, 34 | mpan2 415 |
. . . . . . . . 9
|
| 44 | addclpr 6727 |
. . . . . . . . 9
| |
| 45 | 42, 43, 44 | syl2an 283 |
. . . . . . . 8
|
| 46 | 7, 24 | mpan2 415 |
. . . . . . . . 9
|
| 47 | addclpr 6727 |
. . . . . . . . 9
| |
| 48 | 46, 27, 47 | syl2an 283 |
. . . . . . . 8
|
| 49 | 45, 48 | anim12i 331 |
. . . . . . 7
|
| 50 | enreceq 6913 |
. . . . . . 7
| |
| 51 | 49, 50 | syldan 276 |
. . . . . 6
|
| 52 | 51 | anidms 389 |
. . . . 5
|
| 53 | 41, 52 | mpbird 165 |
. . . 4
|
| 54 | 11, 53 | eqtr4d 2116 |
. . 3
|
| 55 | 6, 54 | syl5eq 2125 |
. 2
|
| 56 | 1, 4, 55 | ecoptocl 6216 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-eprel 4044 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-1o 6024 df-2o 6025 df-oadd 6028 df-omul 6029 df-er 6129 df-ec 6131 df-qs 6135 df-ni 6494 df-pli 6495 df-mi 6496 df-lti 6497 df-plpq 6534 df-mpq 6535 df-enq 6537 df-nqqs 6538 df-plqqs 6539 df-mqqs 6540 df-1nqqs 6541 df-rq 6542 df-ltnqqs 6543 df-enq0 6614 df-nq0 6615 df-0nq0 6616 df-plq0 6617 df-mq0 6618 df-inp 6656 df-i1p 6657 df-iplp 6658 df-imp 6659 df-enr 6903 df-nr 6904 df-mr 6906 df-1r 6909 |
| This theorem is referenced by: pn0sr 6948 axi2m1 7041 ax1rid 7043 axcnre 7047 |
| Copyright terms: Public domain | W3C validator |