ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clim2iser Unicode version

Theorem clim2iser 10175
Description: The limit of an infinite series with an initial segment removed. (Contributed by Jim Kingdon, 20-Aug-2021.)
Hypotheses
Ref Expression
clim2ser.1  |-  Z  =  ( ZZ>= `  M )
clim2ser.2  |-  ( ph  ->  N  e.  Z )
clim2ser.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
clim2ser.5  |-  ( ph  ->  seq M (  +  ,  F ,  CC ) 
~~>  A )
Assertion
Ref Expression
clim2iser  |-  ( ph  ->  seq ( N  + 
1 ) (  +  ,  F ,  CC ) 
~~>  ( A  -  (  seq M (  +  ,  F ,  CC ) `  N ) ) )
Distinct variable groups:    A, k    k, F    k, M    k, N    ph, k    k, Z

Proof of Theorem clim2iser
Dummy variables  j  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2081 . 2  |-  ( ZZ>= `  ( N  +  1
) )  =  (
ZZ>= `  ( N  + 
1 ) )
2 clim2ser.2 . . . . 5  |-  ( ph  ->  N  e.  Z )
3 clim2ser.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
42, 3syl6eleq 2171 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
5 peano2uz 8671 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
64, 5syl 14 . . 3  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  M ) )
7 eluzelz 8628 . . 3  |-  ( ( N  +  1 )  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ZZ )
86, 7syl 14 . 2  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
9 clim2ser.5 . 2  |-  ( ph  ->  seq M (  +  ,  F ,  CC ) 
~~>  A )
10 eluzel2 8624 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
114, 10syl 14 . . . 4  |-  ( ph  ->  M  e.  ZZ )
12 clim2ser.4 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
133, 11, 12iserf 9453 . . 3  |-  ( ph  ->  seq M (  +  ,  F ,  CC ) : Z --> CC )
1413, 2ffvelrnd 5324 . 2  |-  ( ph  ->  (  seq M (  +  ,  F ,  CC ) `  N )  e.  CC )
15 iseqex 9433 . . 3  |-  seq ( N  +  1 ) (  +  ,  F ,  CC )  e.  _V
1615a1i 9 . 2  |-  ( ph  ->  seq ( N  + 
1 ) (  +  ,  F ,  CC )  e.  _V )
1713adantr 270 . . 3  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  seq M (  +  ,  F ,  CC ) : Z --> CC )
186, 3syl6eleqr 2172 . . . 4  |-  ( ph  ->  ( N  +  1 )  e.  Z )
193uztrn2 8636 . . . 4  |-  ( ( ( N  +  1 )  e.  Z  /\  j  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
j  e.  Z )
2018, 19sylan 277 . . 3  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  j  e.  Z )
2117, 20ffvelrnd 5324 . 2  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  +  ,  F ,  CC ) `  j )  e.  CC )
22 addcl 7098 . . . . . 6  |-  ( ( k  e.  CC  /\  x  e.  CC )  ->  ( k  +  x
)  e.  CC )
2322adantl 271 . . . . 5  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  ( k  e.  CC  /\  x  e.  CC ) )  -> 
( k  +  x
)  e.  CC )
24 addass 7103 . . . . . 6  |-  ( ( k  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
( k  +  x
)  +  y )  =  ( k  +  ( x  +  y ) ) )
2524adantl 271 . . . . 5  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  ( k  e.  CC  /\  x  e.  CC  /\  y  e.  CC ) )  -> 
( ( k  +  x )  +  y )  =  ( k  +  ( x  +  y ) ) )
26 simpr 108 . . . . 5  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  j  e.  ( ZZ>= `  ( N  +  1 ) ) )
27 cnex 7097 . . . . . 6  |-  CC  e.  _V
2827a1i 9 . . . . 5  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  CC  e.  _V )
294adantr 270 . . . . 5  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  ( ZZ>= `  M )
)
303eleq2i 2145 . . . . . . 7  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
3130, 12sylan2br 282 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
3231adantlr 460 . . . . 5  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
3323, 25, 26, 28, 29, 32iseqsplit 9458 . . . 4  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  +  ,  F ,  CC ) `  j )  =  ( (  seq M (  +  ,  F ,  CC ) `  N )  +  (  seq ( N  +  1 ) (  +  ,  F ,  CC ) `  j
) ) )
3433oveq1d 5547 . . 3  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (  seq M (  +  ,  F ,  CC ) `  j )  -  (  seq M (  +  ,  F ,  CC ) `  N ) )  =  ( ( (  seq M (  +  ,  F ,  CC ) `  N )  +  (  seq ( N  + 
1 ) (  +  ,  F ,  CC ) `  j )
)  -  (  seq M (  +  ,  F ,  CC ) `  N ) ) )
3514adantr 270 . . . 4  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  +  ,  F ,  CC ) `  N )  e.  CC )
363uztrn2 8636 . . . . . . . 8  |-  ( ( ( N  +  1 )  e.  Z  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
k  e.  Z )
3718, 36sylan 277 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  Z )
3837, 12syldan 276 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  k )  e.  CC )
391, 8, 38iserf 9453 . . . . 5  |-  ( ph  ->  seq ( N  + 
1 ) (  +  ,  F ,  CC ) : ( ZZ>= `  ( N  +  1 ) ) --> CC )
4039ffvelrnda 5323 . . . 4  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  +  ,  F ,  CC ) `  j )  e.  CC )
4135, 40pncan2d 7421 . . 3  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
(  seq M (  +  ,  F ,  CC ) `  N )  +  (  seq ( N  +  1 ) (  +  ,  F ,  CC ) `  j
) )  -  (  seq M (  +  ,  F ,  CC ) `  N ) )  =  (  seq ( N  +  1 ) (  +  ,  F ,  CC ) `  j ) )
4234, 41eqtr2d 2114 . 2  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  +  ,  F ,  CC ) `  j )  =  ( (  seq M (  +  ,  F ,  CC ) `  j )  -  (  seq M
(  +  ,  F ,  CC ) `  N
) ) )
431, 8, 9, 14, 16, 21, 42climsubc1 10170 1  |-  ( ph  ->  seq ( N  + 
1 ) (  +  ,  F ,  CC ) 
~~>  ( A  -  (  seq M (  +  ,  F ,  CC ) `  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919    = wceq 1284    e. wcel 1433   _Vcvv 2601   class class class wbr 3785   -->wf 4918   ` cfv 4922  (class class class)co 5532   CCcc 6979   1c1 6982    + caddc 6984    - cmin 7279   ZZcz 8351   ZZ>=cuz 8619    seqcseq 9431    ~~> cli 10117
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-rp 8735  df-fz 9030  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-clim 10118
This theorem is referenced by:  iiserex  10177
  Copyright terms: Public domain W3C validator