ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucialgcvga Unicode version

Theorem eucialgcvga 10440
Description: Once Euclid's Algorithm halts after  N steps, the second element of the state remains 0 . (Contributed by Jim Kingdon, 11-Jan-2022.)
Hypotheses
Ref Expression
eucalgval.1  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
eucialg.2  |-  R  =  seq 0 ( ( E  o.  1st ) ,  ( NN0  X.  { A } ) ,  ( NN0  X.  NN0 ) )
eucialgcvga.3  |-  N  =  ( 2nd `  A
)
Assertion
Ref Expression
eucialgcvga  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( K  e.  ( ZZ>= `  N
)  ->  ( 2nd `  ( R `  K
) )  =  0 ) )
Distinct variable groups:    x, y, N   
x, A, y    x, R
Allowed substitution hints:    R( y)    E( x, y)    K( x, y)

Proof of Theorem eucialgcvga
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eucialgcvga.3 . . . . . . 7  |-  N  =  ( 2nd `  A
)
2 xp2nd 5813 . . . . . . 7  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( 2nd `  A )  e.  NN0 )
31, 2syl5eqel 2165 . . . . . 6  |-  ( A  e.  ( NN0  X.  NN0 )  ->  N  e. 
NN0 )
4 eluznn0 8686 . . . . . 6  |-  ( ( N  e.  NN0  /\  K  e.  ( ZZ>= `  N ) )  ->  K  e.  NN0 )
53, 4sylan 277 . . . . 5  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  K  e.  NN0 )
6 nn0uz 8653 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
7 eucialg.2 . . . . . . 7  |-  R  =  seq 0 ( ( E  o.  1st ) ,  ( NN0  X.  { A } ) ,  ( NN0  X.  NN0 ) )
8 0zd 8363 . . . . . . 7  |-  ( A  e.  ( NN0  X.  NN0 )  ->  0  e.  ZZ )
9 id 19 . . . . . . 7  |-  ( A  e.  ( NN0  X.  NN0 )  ->  A  e.  ( NN0  X.  NN0 ) )
10 eucalgval.1 . . . . . . . . 9  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
1110eucalgf 10437 . . . . . . . 8  |-  E :
( NN0  X.  NN0 ) --> ( NN0  X.  NN0 )
1211a1i 9 . . . . . . 7  |-  ( A  e.  ( NN0  X.  NN0 )  ->  E :
( NN0  X.  NN0 ) --> ( NN0  X.  NN0 )
)
13 nn0ex 8294 . . . . . . . . 9  |-  NN0  e.  _V
1413, 13xpex 4471 . . . . . . . 8  |-  ( NN0 
X.  NN0 )  e.  _V
1514a1i 9 . . . . . . 7  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( NN0 
X.  NN0 )  e.  _V )
166, 7, 8, 9, 12, 15ialgrf 10427 . . . . . 6  |-  ( A  e.  ( NN0  X.  NN0 )  ->  R : NN0
--> ( NN0  X.  NN0 ) )
1716ffvelrnda 5323 . . . . 5  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  NN0 )  ->  ( R `  K )  e.  ( NN0  X.  NN0 ) )
185, 17syldan 276 . . . 4  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  ( R `  K )  e.  ( NN0  X.  NN0 )
)
19 fvres 5219 . . . 4  |-  ( ( R `  K )  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  ( R `  K ) )  =  ( 2nd `  ( R `  K
) ) )
2018, 19syl 14 . . 3  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `  ( R `  K )
)  =  ( 2nd `  ( R `  K
) ) )
21 simpl 107 . . . 4  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  A  e.  ( NN0  X.  NN0 )
)
22 fvres 5219 . . . . . . . 8  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  A )  =  ( 2nd `  A ) )
2322, 1syl6eqr 2131 . . . . . . 7  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  A )  =  N )
2423fveq2d 5202 . . . . . 6  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( ZZ>= `  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 A ) )  =  ( ZZ>= `  N
) )
2524eleq2d 2148 . . . . 5  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( K  e.  ( ZZ>= `  (
( 2nd  |`  ( NN0 
X.  NN0 ) ) `  A ) )  <->  K  e.  ( ZZ>= `  N )
) )
2625biimpar 291 . . . 4  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  K  e.  ( ZZ>= `  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `  A
) ) )
27 f2ndres 5807 . . . . 5  |-  ( 2nd  |`  ( NN0  X.  NN0 ) ) : ( NN0  X.  NN0 ) --> NN0
2810eucalglt 10439 . . . . . 6  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd `  ( E `
 z ) )  =/=  0  ->  ( 2nd `  ( E `  z ) )  < 
( 2nd `  z
) ) )
2911ffvelrni 5322 . . . . . . . 8  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( E `
 z )  e.  ( NN0  X.  NN0 ) )
30 fvres 5219 . . . . . . . 8  |-  ( ( E `  z )  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  ( E `  z ) )  =  ( 2nd `  ( E `  z
) ) )
3129, 30syl 14 . . . . . . 7  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  ( E `  z ) )  =  ( 2nd `  ( E `  z
) ) )
3231neeq1d 2263 . . . . . 6  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 ( E `  z ) )  =/=  0  <->  ( 2nd `  ( E `  z )
)  =/=  0 ) )
33 fvres 5219 . . . . . . 7  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  z )  =  ( 2nd `  z ) )
3431, 33breq12d 3798 . . . . . 6  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 ( E `  z ) )  < 
( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 z )  <->  ( 2nd `  ( E `  z
) )  <  ( 2nd `  z ) ) )
3528, 32, 343imtr4d 201 . . . . 5  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 ( E `  z ) )  =/=  0  ->  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `  ( E `  z )
)  <  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `  z
) ) )
36 eqid 2081 . . . . 5  |-  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  A )  =  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 A )
3711, 7, 27, 35, 36, 14ialgcvga 10433 . . . 4  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( K  e.  ( ZZ>= `  (
( 2nd  |`  ( NN0 
X.  NN0 ) ) `  A ) )  -> 
( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 ( R `  K ) )  =  0 ) )
3821, 26, 37sylc 61 . . 3  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `  ( R `  K )
)  =  0 )
3920, 38eqtr3d 2115 . 2  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  ( 2nd `  ( R `  K
) )  =  0 )
4039ex 113 1  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( K  e.  ( ZZ>= `  N
)  ->  ( 2nd `  ( R `  K
) )  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433    =/= wne 2245   _Vcvv 2601   ifcif 3351   {csn 3398   <.cop 3401   class class class wbr 3785    X. cxp 4361    |` cres 4365    o. ccom 4367   -->wf 4918   ` cfv 4922  (class class class)co 5532    |-> cmpt2 5534   1stc1st 5785   2ndc2nd 5786   0cc0 6981    < clt 7153   NN0cn0 8288   ZZ>=cuz 8619    mod cmo 9324    seqcseq 9431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fl 9274  df-mod 9325  df-iseq 9432
This theorem is referenced by:  eucialg  10441
  Copyright terms: Public domain W3C validator