| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > facavg | Unicode version | ||
| Description: The product of two factorials is greater than or equal to the factorial of (the floor of) their average. (Contributed by NM, 9-Dec-2005.) |
| Ref | Expression |
|---|---|
| facavg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0addcl 8323 |
. . . . . . 7
| |
| 2 | 1 | nn0zd 8467 |
. . . . . 6
|
| 3 | 2nn 8193 |
. . . . . 6
| |
| 4 | znq 8709 |
. . . . . 6
| |
| 5 | 2, 3, 4 | sylancl 404 |
. . . . 5
|
| 6 | flqle 9280 |
. . . . 5
| |
| 7 | 5, 6 | syl 14 |
. . . 4
|
| 8 | 5 | flqcld 9279 |
. . . . . 6
|
| 9 | 8 | zred 8469 |
. . . . 5
|
| 10 | nn0readdcl 8347 |
. . . . . 6
| |
| 11 | 10 | rehalfcld 8277 |
. . . . 5
|
| 12 | nn0re 8297 |
. . . . . 6
| |
| 13 | 12 | adantr 270 |
. . . . 5
|
| 14 | letr 7194 |
. . . . 5
| |
| 15 | 9, 11, 13, 14 | syl3anc 1169 |
. . . 4
|
| 16 | 7, 15 | mpand 419 |
. . 3
|
| 17 | 1 | nn0ge0d 8344 |
. . . . . 6
|
| 18 | halfnneg2 8263 |
. . . . . . 7
| |
| 19 | 10, 18 | syl 14 |
. . . . . 6
|
| 20 | 17, 19 | mpbid 145 |
. . . . 5
|
| 21 | flqge0nn0 9295 |
. . . . 5
| |
| 22 | 5, 20, 21 | syl2anc 403 |
. . . 4
|
| 23 | simpl 107 |
. . . 4
| |
| 24 | facwordi 9667 |
. . . . 5
| |
| 25 | 24 | 3exp 1137 |
. . . 4
|
| 26 | 22, 23, 25 | sylc 61 |
. . 3
|
| 27 | faccl 9662 |
. . . . . . . 8
| |
| 28 | 27 | nncnd 8053 |
. . . . . . 7
|
| 29 | 28 | mulid1d 7136 |
. . . . . 6
|
| 30 | 29 | adantr 270 |
. . . . 5
|
| 31 | faccl 9662 |
. . . . . . . 8
| |
| 32 | 31 | nnred 8052 |
. . . . . . 7
|
| 33 | 32 | adantl 271 |
. . . . . 6
|
| 34 | 27 | nnred 8052 |
. . . . . . . 8
|
| 35 | 27 | nnnn0d 8341 |
. . . . . . . . 9
|
| 36 | 35 | nn0ge0d 8344 |
. . . . . . . 8
|
| 37 | 34, 36 | jca 300 |
. . . . . . 7
|
| 38 | 37 | adantr 270 |
. . . . . 6
|
| 39 | 31 | nnge1d 8081 |
. . . . . . 7
|
| 40 | 39 | adantl 271 |
. . . . . 6
|
| 41 | 1re 7118 |
. . . . . . 7
| |
| 42 | lemul2a 7937 |
. . . . . . 7
| |
| 43 | 41, 42 | mp3anl1 1262 |
. . . . . 6
|
| 44 | 33, 38, 40, 43 | syl21anc 1168 |
. . . . 5
|
| 45 | 30, 44 | eqbrtrrd 3807 |
. . . 4
|
| 46 | faccl 9662 |
. . . . . . 7
| |
| 47 | 22, 46 | syl 14 |
. . . . . 6
|
| 48 | 47 | nnred 8052 |
. . . . 5
|
| 49 | 34 | adantr 270 |
. . . . 5
|
| 50 | remulcl 7101 |
. . . . . 6
| |
| 51 | 34, 32, 50 | syl2an 283 |
. . . . 5
|
| 52 | letr 7194 |
. . . . 5
| |
| 53 | 48, 49, 51, 52 | syl3anc 1169 |
. . . 4
|
| 54 | 45, 53 | mpan2d 418 |
. . 3
|
| 55 | 16, 26, 54 | 3syld 56 |
. 2
|
| 56 | nn0re 8297 |
. . . . . 6
| |
| 57 | 56 | adantl 271 |
. . . . 5
|
| 58 | letr 7194 |
. . . . 5
| |
| 59 | 9, 11, 57, 58 | syl3anc 1169 |
. . . 4
|
| 60 | 7, 59 | mpand 419 |
. . 3
|
| 61 | simpr 108 |
. . . 4
| |
| 62 | facwordi 9667 |
. . . . 5
| |
| 63 | 62 | 3exp 1137 |
. . . 4
|
| 64 | 22, 61, 63 | sylc 61 |
. . 3
|
| 65 | 31 | nncnd 8053 |
. . . . . . 7
|
| 66 | 65 | mulid2d 7137 |
. . . . . 6
|
| 67 | 66 | adantl 271 |
. . . . 5
|
| 68 | 31 | nnnn0d 8341 |
. . . . . . . . 9
|
| 69 | 68 | nn0ge0d 8344 |
. . . . . . . 8
|
| 70 | 32, 69 | jca 300 |
. . . . . . 7
|
| 71 | 70 | adantl 271 |
. . . . . 6
|
| 72 | 27 | nnge1d 8081 |
. . . . . . 7
|
| 73 | 72 | adantr 270 |
. . . . . 6
|
| 74 | lemul1a 7936 |
. . . . . . 7
| |
| 75 | 41, 74 | mp3anl1 1262 |
. . . . . 6
|
| 76 | 49, 71, 73, 75 | syl21anc 1168 |
. . . . 5
|
| 77 | 67, 76 | eqbrtrrd 3807 |
. . . 4
|
| 78 | letr 7194 |
. . . . 5
| |
| 79 | 48, 33, 51, 78 | syl3anc 1169 |
. . . 4
|
| 80 | 77, 79 | mpan2d 418 |
. . 3
|
| 81 | 60, 64, 80 | 3syld 56 |
. 2
|
| 82 | 23 | nn0zd 8467 |
. . . 4
|
| 83 | zq 8711 |
. . . 4
| |
| 84 | 82, 83 | syl 14 |
. . 3
|
| 85 | 61 | nn0zd 8467 |
. . . 4
|
| 86 | zq 8711 |
. . . 4
| |
| 87 | 85, 86 | syl 14 |
. . 3
|
| 88 | qavgle 9267 |
. . 3
| |
| 89 | 84, 87, 88 | syl2anc 403 |
. 2
|
| 90 | 55, 81, 89 | mpjaod 670 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 ax-arch 7095 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-2 8098 df-n0 8289 df-z 8352 df-uz 8620 df-q 8705 df-rp 8735 df-fl 9274 df-iseq 9432 df-fac 9653 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |