ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgrrn Unicode version

Theorem frecuzrdgrrn 9410
Description: The function  R (used in the definition of the recursive definition generator on upper integers) yields ordered pairs of integers and elements of 
S. (Contributed by Jim Kingdon, 27-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
uzrdg.s  |-  ( ph  ->  S  e.  V )
uzrdg.a  |-  ( ph  ->  A  e.  S )
uzrdg.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
uzrdg.2  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
Assertion
Ref Expression
frecuzrdgrrn  |-  ( (
ph  /\  D  e.  om )  ->  ( R `  D )  e.  ( ( ZZ>= `  C )  X.  S ) )
Distinct variable groups:    y, A    x, C, y    y, G    x, F, y    x, S, y    ph, x, y
Allowed substitution hints:    A( x)    D( x, y)    R( x, y)    G( x)    V( x, y)

Proof of Theorem frecuzrdgrrn
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 uzrdg.2 . . 3  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
21fveq1i 5199 . 2  |-  ( R `
 D )  =  (frec ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. ) `  D
)
3 zex 8360 . . . . . . . 8  |-  ZZ  e.  _V
4 uzssz 8638 . . . . . . . 8  |-  ( ZZ>= `  C )  C_  ZZ
53, 4ssexi 3916 . . . . . . 7  |-  ( ZZ>= `  C )  e.  _V
65a1i 9 . . . . . 6  |-  ( (
ph  /\  D  e.  om )  ->  ( ZZ>= `  C )  e.  _V )
7 uzrdg.s . . . . . . 7  |-  ( ph  ->  S  e.  V )
87adantr 270 . . . . . 6  |-  ( (
ph  /\  D  e.  om )  ->  S  e.  V )
9 mpt2exga 5855 . . . . . 6  |-  ( ( ( ZZ>= `  C )  e.  _V  /\  S  e.  V )  ->  (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. )  e.  _V )
106, 8, 9syl2anc 403 . . . . 5  |-  ( (
ph  /\  D  e.  om )  ->  ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
)  e.  _V )
11 vex 2604 . . . . . 6  |-  z  e. 
_V
1211a1i 9 . . . . 5  |-  ( (
ph  /\  D  e.  om )  ->  z  e.  _V )
13 fvexg 5214 . . . . 5  |-  ( ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
)  e.  _V  /\  z  e.  _V )  ->  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) `  z )  e.  _V )
1410, 12, 13syl2anc 403 . . . 4  |-  ( (
ph  /\  D  e.  om )  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  e.  _V )
1514alrimiv 1795 . . 3  |-  ( (
ph  /\  D  e.  om )  ->  A. z
( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) `  z )  e.  _V )
16 frec2uz.1 . . . . . 6  |-  ( ph  ->  C  e.  ZZ )
17 uzid 8633 . . . . . 6  |-  ( C  e.  ZZ  ->  C  e.  ( ZZ>= `  C )
)
1816, 17syl 14 . . . . 5  |-  ( ph  ->  C  e.  ( ZZ>= `  C ) )
19 uzrdg.a . . . . 5  |-  ( ph  ->  A  e.  S )
20 opelxp 4392 . . . . 5  |-  ( <. C ,  A >.  e.  ( ( ZZ>= `  C
)  X.  S )  <-> 
( C  e.  (
ZZ>= `  C )  /\  A  e.  S )
)
2118, 19, 20sylanbrc 408 . . . 4  |-  ( ph  -> 
<. C ,  A >.  e.  ( ( ZZ>= `  C
)  X.  S ) )
2221adantr 270 . . 3  |-  ( (
ph  /\  D  e.  om )  ->  <. C ,  A >.  e.  ( (
ZZ>= `  C )  X.  S ) )
23 1st2nd2 5821 . . . . . . 7  |-  ( z  e.  ( ( ZZ>= `  C )  X.  S
)  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
24 fveq2 5198 . . . . . . . 8  |-  ( z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  ->  (
( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  z )  =  ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. ) )
25 df-ov 5535 . . . . . . . 8  |-  ( ( 1st `  z ) ( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  z
) )  =  ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  <. ( 1st `  z ) ,  ( 2nd `  z )
>. )
2624, 25syl6eqr 2131 . . . . . . 7  |-  ( z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  ->  (
( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  z )  =  ( ( 1st `  z ) ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ( 2nd `  z
) ) )
2723, 26syl 14 . . . . . 6  |-  ( z  e.  ( ( ZZ>= `  C )  X.  S
)  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  =  ( ( 1st `  z
) ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  z
) ) )
2827adantl 271 . . . . 5  |-  ( ( ( ph  /\  D  e.  om )  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  =  ( ( 1st `  z
) ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  z
) ) )
29 xp1st 5812 . . . . . . 7  |-  ( z  e.  ( ( ZZ>= `  C )  X.  S
)  ->  ( 1st `  z )  e.  (
ZZ>= `  C ) )
3029adantl 271 . . . . . 6  |-  ( ( ( ph  /\  D  e.  om )  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( 1st `  z )  e.  (
ZZ>= `  C ) )
31 xp2nd 5813 . . . . . . 7  |-  ( z  e.  ( ( ZZ>= `  C )  X.  S
)  ->  ( 2nd `  z )  e.  S
)
3231adantl 271 . . . . . 6  |-  ( ( ( ph  /\  D  e.  om )  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( 2nd `  z )  e.  S
)
33 peano2uz 8671 . . . . . . . 8  |-  ( ( 1st `  z )  e.  ( ZZ>= `  C
)  ->  ( ( 1st `  z )  +  1 )  e.  (
ZZ>= `  C ) )
3430, 33syl 14 . . . . . . 7  |-  ( ( ( ph  /\  D  e.  om )  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( ( 1st `  z )  +  1 )  e.  (
ZZ>= `  C ) )
35 uzrdg.f . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
3635ralrimivva 2443 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  (
ZZ>= `  C ) A. y  e.  S  (
x F y )  e.  S )
3736ad2antrr 471 . . . . . . . 8  |-  ( ( ( ph  /\  D  e.  om )  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  A. x  e.  ( ZZ>= `  C ) A. y  e.  S  ( x F y )  e.  S )
38 oveq1 5539 . . . . . . . . . . 11  |-  ( x  =  ( 1st `  z
)  ->  ( x F y )  =  ( ( 1st `  z
) F y ) )
3938eleq1d 2147 . . . . . . . . . 10  |-  ( x  =  ( 1st `  z
)  ->  ( (
x F y )  e.  S  <->  ( ( 1st `  z ) F y )  e.  S
) )
40 oveq2 5540 . . . . . . . . . . 11  |-  ( y  =  ( 2nd `  z
)  ->  ( ( 1st `  z ) F y )  =  ( ( 1st `  z
) F ( 2nd `  z ) ) )
4140eleq1d 2147 . . . . . . . . . 10  |-  ( y  =  ( 2nd `  z
)  ->  ( (
( 1st `  z
) F y )  e.  S  <->  ( ( 1st `  z ) F ( 2nd `  z
) )  e.  S
) )
4239, 41rspc2v 2713 . . . . . . . . 9  |-  ( ( ( 1st `  z
)  e.  ( ZZ>= `  C )  /\  ( 2nd `  z )  e.  S )  ->  ( A. x  e.  ( ZZ>=
`  C ) A. y  e.  S  (
x F y )  e.  S  ->  (
( 1st `  z
) F ( 2nd `  z ) )  e.  S ) )
4330, 32, 42syl2anc 403 . . . . . . . 8  |-  ( ( ( ph  /\  D  e.  om )  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( A. x  e.  ( ZZ>= `  C ) A. y  e.  S  ( x F y )  e.  S  ->  ( ( 1st `  z ) F ( 2nd `  z
) )  e.  S
) )
4437, 43mpd 13 . . . . . . 7  |-  ( ( ( ph  /\  D  e.  om )  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( ( 1st `  z ) F ( 2nd `  z
) )  e.  S
)
45 opelxp 4392 . . . . . . 7  |-  ( <.
( ( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z ) ) >.  e.  (
( ZZ>= `  C )  X.  S )  <->  ( (
( 1st `  z
)  +  1 )  e.  ( ZZ>= `  C
)  /\  ( ( 1st `  z ) F ( 2nd `  z
) )  e.  S
) )
4634, 44, 45sylanbrc 408 . . . . . 6  |-  ( ( ( ph  /\  D  e.  om )  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  <. ( ( 1st `  z )  +  1 ) ,  ( ( 1st `  z
) F ( 2nd `  z ) ) >.  e.  ( ( ZZ>= `  C
)  X.  S ) )
47 oveq1 5539 . . . . . . . 8  |-  ( x  =  ( 1st `  z
)  ->  ( x  +  1 )  =  ( ( 1st `  z
)  +  1 ) )
4847, 38opeq12d 3578 . . . . . . 7  |-  ( x  =  ( 1st `  z
)  ->  <. ( x  +  1 ) ,  ( x F y ) >.  =  <. ( ( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F y ) >. )
4940opeq2d 3577 . . . . . . 7  |-  ( y  =  ( 2nd `  z
)  ->  <. ( ( 1st `  z )  +  1 ) ,  ( ( 1st `  z
) F y )
>.  =  <. ( ( 1st `  z )  +  1 ) ,  ( ( 1st `  z
) F ( 2nd `  z ) ) >.
)
50 eqid 2081 . . . . . . 7  |-  ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. )  =  (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. )
5148, 49, 50ovmpt2g 5655 . . . . . 6  |-  ( ( ( 1st `  z
)  e.  ( ZZ>= `  C )  /\  ( 2nd `  z )  e.  S  /\  <. (
( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z ) ) >.  e.  (
( ZZ>= `  C )  X.  S ) )  -> 
( ( 1st `  z
) ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  z
) )  =  <. ( ( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z ) ) >. )
5230, 32, 46, 51syl3anc 1169 . . . . 5  |-  ( ( ( ph  /\  D  e.  om )  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( ( 1st `  z ) ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. )
( 2nd `  z
) )  =  <. ( ( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z ) ) >. )
5328, 52eqtrd 2113 . . . 4  |-  ( ( ( ph  /\  D  e.  om )  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  =  <. ( ( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z ) ) >. )
5453, 46eqeltrd 2155 . . 3  |-  ( ( ( ph  /\  D  e.  om )  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  e.  ( ( ZZ>= `  C )  X.  S ) )
55 simpr 108 . . 3  |-  ( (
ph  /\  D  e.  om )  ->  D  e.  om )
5615, 22, 54, 55freccl 6016 . 2  |-  ( (
ph  /\  D  e.  om )  ->  (frec (
( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  D
)  e.  ( (
ZZ>= `  C )  X.  S ) )
572, 56syl5eqel 2165 1  |-  ( (
ph  /\  D  e.  om )  ->  ( R `  D )  e.  ( ( ZZ>= `  C )  X.  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   A.wral 2348   _Vcvv 2601   <.cop 3401    |-> cmpt 3839   omcom 4331    X. cxp 4361   ` cfv 4922  (class class class)co 5532    |-> cmpt2 5534   1stc1st 5785   2ndc2nd 5786  freccfrec 6000   1c1 6982    + caddc 6984   ZZcz 8351   ZZ>=cuz 8619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620
This theorem is referenced by:  frec2uzrdg  9411  frecuzrdgfn  9414  frecuzrdgcl  9415  frecuzrdgsuc  9417
  Copyright terms: Public domain W3C validator