ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  freccl GIF version

Theorem freccl 6016
Description: Closure for finite recursion. (Contributed by Jim Kingdon, 25-May-2020.)
Hypotheses
Ref Expression
freccl.ex (𝜑 → ∀𝑧(𝐹𝑧) ∈ V)
freccl.a (𝜑𝐴𝑆)
freccl.cl ((𝜑𝑧𝑆) → (𝐹𝑧) ∈ 𝑆)
freccl.b (𝜑𝐵 ∈ ω)
Assertion
Ref Expression
freccl (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆)
Distinct variable groups:   𝑧,𝐴   𝑧,𝐹   𝑧,𝑆   𝜑,𝑧
Allowed substitution hint:   𝐵(𝑧)

Proof of Theorem freccl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 freccl.b . 2 (𝜑𝐵 ∈ ω)
2 fveq2 5198 . . . . 5 (𝑥 = 𝐵 → (frec(𝐹, 𝐴)‘𝑥) = (frec(𝐹, 𝐴)‘𝐵))
32eleq1d 2147 . . . 4 (𝑥 = 𝐵 → ((frec(𝐹, 𝐴)‘𝑥) ∈ 𝑆 ↔ (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆))
43imbi2d 228 . . 3 (𝑥 = 𝐵 → ((𝜑 → (frec(𝐹, 𝐴)‘𝑥) ∈ 𝑆) ↔ (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆)))
5 fveq2 5198 . . . . 5 (𝑥 = ∅ → (frec(𝐹, 𝐴)‘𝑥) = (frec(𝐹, 𝐴)‘∅))
65eleq1d 2147 . . . 4 (𝑥 = ∅ → ((frec(𝐹, 𝐴)‘𝑥) ∈ 𝑆 ↔ (frec(𝐹, 𝐴)‘∅) ∈ 𝑆))
7 fveq2 5198 . . . . 5 (𝑥 = 𝑦 → (frec(𝐹, 𝐴)‘𝑥) = (frec(𝐹, 𝐴)‘𝑦))
87eleq1d 2147 . . . 4 (𝑥 = 𝑦 → ((frec(𝐹, 𝐴)‘𝑥) ∈ 𝑆 ↔ (frec(𝐹, 𝐴)‘𝑦) ∈ 𝑆))
9 fveq2 5198 . . . . 5 (𝑥 = suc 𝑦 → (frec(𝐹, 𝐴)‘𝑥) = (frec(𝐹, 𝐴)‘suc 𝑦))
109eleq1d 2147 . . . 4 (𝑥 = suc 𝑦 → ((frec(𝐹, 𝐴)‘𝑥) ∈ 𝑆 ↔ (frec(𝐹, 𝐴)‘suc 𝑦) ∈ 𝑆))
11 freccl.a . . . . . 6 (𝜑𝐴𝑆)
12 frec0g 6006 . . . . . 6 (𝐴𝑆 → (frec(𝐹, 𝐴)‘∅) = 𝐴)
1311, 12syl 14 . . . . 5 (𝜑 → (frec(𝐹, 𝐴)‘∅) = 𝐴)
1413, 11eqeltrd 2155 . . . 4 (𝜑 → (frec(𝐹, 𝐴)‘∅) ∈ 𝑆)
15 freccl.ex . . . . . . . . . 10 (𝜑 → ∀𝑧(𝐹𝑧) ∈ V)
16 frecfnom 6009 . . . . . . . . . 10 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑆) → frec(𝐹, 𝐴) Fn ω)
1715, 11, 16syl2anc 403 . . . . . . . . 9 (𝜑 → frec(𝐹, 𝐴) Fn ω)
18 funfvex 5212 . . . . . . . . . 10 ((Fun frec(𝐹, 𝐴) ∧ 𝑦 ∈ dom frec(𝐹, 𝐴)) → (frec(𝐹, 𝐴)‘𝑦) ∈ V)
1918funfni 5019 . . . . . . . . 9 ((frec(𝐹, 𝐴) Fn ω ∧ 𝑦 ∈ ω) → (frec(𝐹, 𝐴)‘𝑦) ∈ V)
2017, 19sylan 277 . . . . . . . 8 ((𝜑𝑦 ∈ ω) → (frec(𝐹, 𝐴)‘𝑦) ∈ V)
21 isset 2605 . . . . . . . 8 ((frec(𝐹, 𝐴)‘𝑦) ∈ V ↔ ∃𝑧 𝑧 = (frec(𝐹, 𝐴)‘𝑦))
2220, 21sylib 120 . . . . . . 7 ((𝜑𝑦 ∈ ω) → ∃𝑧 𝑧 = (frec(𝐹, 𝐴)‘𝑦))
23 freccl.cl . . . . . . . . . . . . 13 ((𝜑𝑧𝑆) → (𝐹𝑧) ∈ 𝑆)
2423ex 113 . . . . . . . . . . . 12 (𝜑 → (𝑧𝑆 → (𝐹𝑧) ∈ 𝑆))
2524adantr 270 . . . . . . . . . . 11 ((𝜑𝑧 = (frec(𝐹, 𝐴)‘𝑦)) → (𝑧𝑆 → (𝐹𝑧) ∈ 𝑆))
26 eleq1 2141 . . . . . . . . . . . 12 (𝑧 = (frec(𝐹, 𝐴)‘𝑦) → (𝑧𝑆 ↔ (frec(𝐹, 𝐴)‘𝑦) ∈ 𝑆))
2726adantl 271 . . . . . . . . . . 11 ((𝜑𝑧 = (frec(𝐹, 𝐴)‘𝑦)) → (𝑧𝑆 ↔ (frec(𝐹, 𝐴)‘𝑦) ∈ 𝑆))
28 fveq2 5198 . . . . . . . . . . . . 13 (𝑧 = (frec(𝐹, 𝐴)‘𝑦) → (𝐹𝑧) = (𝐹‘(frec(𝐹, 𝐴)‘𝑦)))
2928eleq1d 2147 . . . . . . . . . . . 12 (𝑧 = (frec(𝐹, 𝐴)‘𝑦) → ((𝐹𝑧) ∈ 𝑆 ↔ (𝐹‘(frec(𝐹, 𝐴)‘𝑦)) ∈ 𝑆))
3029adantl 271 . . . . . . . . . . 11 ((𝜑𝑧 = (frec(𝐹, 𝐴)‘𝑦)) → ((𝐹𝑧) ∈ 𝑆 ↔ (𝐹‘(frec(𝐹, 𝐴)‘𝑦)) ∈ 𝑆))
3125, 27, 303imtr3d 200 . . . . . . . . . 10 ((𝜑𝑧 = (frec(𝐹, 𝐴)‘𝑦)) → ((frec(𝐹, 𝐴)‘𝑦) ∈ 𝑆 → (𝐹‘(frec(𝐹, 𝐴)‘𝑦)) ∈ 𝑆))
3231ex 113 . . . . . . . . 9 (𝜑 → (𝑧 = (frec(𝐹, 𝐴)‘𝑦) → ((frec(𝐹, 𝐴)‘𝑦) ∈ 𝑆 → (𝐹‘(frec(𝐹, 𝐴)‘𝑦)) ∈ 𝑆)))
3332exlimdv 1740 . . . . . . . 8 (𝜑 → (∃𝑧 𝑧 = (frec(𝐹, 𝐴)‘𝑦) → ((frec(𝐹, 𝐴)‘𝑦) ∈ 𝑆 → (𝐹‘(frec(𝐹, 𝐴)‘𝑦)) ∈ 𝑆)))
3433adantr 270 . . . . . . 7 ((𝜑𝑦 ∈ ω) → (∃𝑧 𝑧 = (frec(𝐹, 𝐴)‘𝑦) → ((frec(𝐹, 𝐴)‘𝑦) ∈ 𝑆 → (𝐹‘(frec(𝐹, 𝐴)‘𝑦)) ∈ 𝑆)))
3522, 34mpd 13 . . . . . 6 ((𝜑𝑦 ∈ ω) → ((frec(𝐹, 𝐴)‘𝑦) ∈ 𝑆 → (𝐹‘(frec(𝐹, 𝐴)‘𝑦)) ∈ 𝑆))
3615adantr 270 . . . . . . . 8 ((𝜑𝑦 ∈ ω) → ∀𝑧(𝐹𝑧) ∈ V)
3711adantr 270 . . . . . . . 8 ((𝜑𝑦 ∈ ω) → 𝐴𝑆)
38 simpr 108 . . . . . . . 8 ((𝜑𝑦 ∈ ω) → 𝑦 ∈ ω)
39 frecsuc 6014 . . . . . . . 8 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑆𝑦 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(frec(𝐹, 𝐴)‘𝑦)))
4036, 37, 38, 39syl3anc 1169 . . . . . . 7 ((𝜑𝑦 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(frec(𝐹, 𝐴)‘𝑦)))
4140eleq1d 2147 . . . . . 6 ((𝜑𝑦 ∈ ω) → ((frec(𝐹, 𝐴)‘suc 𝑦) ∈ 𝑆 ↔ (𝐹‘(frec(𝐹, 𝐴)‘𝑦)) ∈ 𝑆))
4235, 41sylibrd 167 . . . . 5 ((𝜑𝑦 ∈ ω) → ((frec(𝐹, 𝐴)‘𝑦) ∈ 𝑆 → (frec(𝐹, 𝐴)‘suc 𝑦) ∈ 𝑆))
4342expcom 114 . . . 4 (𝑦 ∈ ω → (𝜑 → ((frec(𝐹, 𝐴)‘𝑦) ∈ 𝑆 → (frec(𝐹, 𝐴)‘suc 𝑦) ∈ 𝑆)))
446, 8, 10, 14, 43finds2 4342 . . 3 (𝑥 ∈ ω → (𝜑 → (frec(𝐹, 𝐴)‘𝑥) ∈ 𝑆))
454, 44vtoclga 2664 . 2 (𝐵 ∈ ω → (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆))
461, 45mpcom 36 1 (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wal 1282   = wceq 1284  wex 1421  wcel 1433  Vcvv 2601  c0 3251  suc csuc 4120  ωcom 4331   Fn wfn 4917  cfv 4922  freccfrec 6000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-recs 5943  df-frec 6001
This theorem is referenced by:  frecuzrdgrrn  9410
  Copyright terms: Public domain W3C validator