| Step | Hyp | Ref
| Expression |
| 1 | | freccl.b |
. 2
⊢ (𝜑 → 𝐵 ∈ ω) |
| 2 | | fveq2 5198 |
. . . . 5
⊢ (𝑥 = 𝐵 → (frec(𝐹, 𝐴)‘𝑥) = (frec(𝐹, 𝐴)‘𝐵)) |
| 3 | 2 | eleq1d 2147 |
. . . 4
⊢ (𝑥 = 𝐵 → ((frec(𝐹, 𝐴)‘𝑥) ∈ 𝑆 ↔ (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆)) |
| 4 | 3 | imbi2d 228 |
. . 3
⊢ (𝑥 = 𝐵 → ((𝜑 → (frec(𝐹, 𝐴)‘𝑥) ∈ 𝑆) ↔ (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆))) |
| 5 | | fveq2 5198 |
. . . . 5
⊢ (𝑥 = ∅ → (frec(𝐹, 𝐴)‘𝑥) = (frec(𝐹, 𝐴)‘∅)) |
| 6 | 5 | eleq1d 2147 |
. . . 4
⊢ (𝑥 = ∅ → ((frec(𝐹, 𝐴)‘𝑥) ∈ 𝑆 ↔ (frec(𝐹, 𝐴)‘∅) ∈ 𝑆)) |
| 7 | | fveq2 5198 |
. . . . 5
⊢ (𝑥 = 𝑦 → (frec(𝐹, 𝐴)‘𝑥) = (frec(𝐹, 𝐴)‘𝑦)) |
| 8 | 7 | eleq1d 2147 |
. . . 4
⊢ (𝑥 = 𝑦 → ((frec(𝐹, 𝐴)‘𝑥) ∈ 𝑆 ↔ (frec(𝐹, 𝐴)‘𝑦) ∈ 𝑆)) |
| 9 | | fveq2 5198 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → (frec(𝐹, 𝐴)‘𝑥) = (frec(𝐹, 𝐴)‘suc 𝑦)) |
| 10 | 9 | eleq1d 2147 |
. . . 4
⊢ (𝑥 = suc 𝑦 → ((frec(𝐹, 𝐴)‘𝑥) ∈ 𝑆 ↔ (frec(𝐹, 𝐴)‘suc 𝑦) ∈ 𝑆)) |
| 11 | | freccl.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| 12 | | frec0g 6006 |
. . . . . 6
⊢ (𝐴 ∈ 𝑆 → (frec(𝐹, 𝐴)‘∅) = 𝐴) |
| 13 | 11, 12 | syl 14 |
. . . . 5
⊢ (𝜑 → (frec(𝐹, 𝐴)‘∅) = 𝐴) |
| 14 | 13, 11 | eqeltrd 2155 |
. . . 4
⊢ (𝜑 → (frec(𝐹, 𝐴)‘∅) ∈ 𝑆) |
| 15 | | freccl.ex |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑧(𝐹‘𝑧) ∈ V) |
| 16 | | frecfnom 6009 |
. . . . . . . . . 10
⊢
((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑆) → frec(𝐹, 𝐴) Fn ω) |
| 17 | 15, 11, 16 | syl2anc 403 |
. . . . . . . . 9
⊢ (𝜑 → frec(𝐹, 𝐴) Fn ω) |
| 18 | | funfvex 5212 |
. . . . . . . . . 10
⊢ ((Fun
frec(𝐹, 𝐴) ∧ 𝑦 ∈ dom frec(𝐹, 𝐴)) → (frec(𝐹, 𝐴)‘𝑦) ∈ V) |
| 19 | 18 | funfni 5019 |
. . . . . . . . 9
⊢
((frec(𝐹, 𝐴) Fn ω ∧ 𝑦 ∈ ω) →
(frec(𝐹, 𝐴)‘𝑦) ∈ V) |
| 20 | 17, 19 | sylan 277 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → (frec(𝐹, 𝐴)‘𝑦) ∈ V) |
| 21 | | isset 2605 |
. . . . . . . 8
⊢
((frec(𝐹, 𝐴)‘𝑦) ∈ V ↔ ∃𝑧 𝑧 = (frec(𝐹, 𝐴)‘𝑦)) |
| 22 | 20, 21 | sylib 120 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → ∃𝑧 𝑧 = (frec(𝐹, 𝐴)‘𝑦)) |
| 23 | | freccl.cl |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐹‘𝑧) ∈ 𝑆) |
| 24 | 23 | ex 113 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑧 ∈ 𝑆 → (𝐹‘𝑧) ∈ 𝑆)) |
| 25 | 24 | adantr 270 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 = (frec(𝐹, 𝐴)‘𝑦)) → (𝑧 ∈ 𝑆 → (𝐹‘𝑧) ∈ 𝑆)) |
| 26 | | eleq1 2141 |
. . . . . . . . . . . 12
⊢ (𝑧 = (frec(𝐹, 𝐴)‘𝑦) → (𝑧 ∈ 𝑆 ↔ (frec(𝐹, 𝐴)‘𝑦) ∈ 𝑆)) |
| 27 | 26 | adantl 271 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 = (frec(𝐹, 𝐴)‘𝑦)) → (𝑧 ∈ 𝑆 ↔ (frec(𝐹, 𝐴)‘𝑦) ∈ 𝑆)) |
| 28 | | fveq2 5198 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (frec(𝐹, 𝐴)‘𝑦) → (𝐹‘𝑧) = (𝐹‘(frec(𝐹, 𝐴)‘𝑦))) |
| 29 | 28 | eleq1d 2147 |
. . . . . . . . . . . 12
⊢ (𝑧 = (frec(𝐹, 𝐴)‘𝑦) → ((𝐹‘𝑧) ∈ 𝑆 ↔ (𝐹‘(frec(𝐹, 𝐴)‘𝑦)) ∈ 𝑆)) |
| 30 | 29 | adantl 271 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 = (frec(𝐹, 𝐴)‘𝑦)) → ((𝐹‘𝑧) ∈ 𝑆 ↔ (𝐹‘(frec(𝐹, 𝐴)‘𝑦)) ∈ 𝑆)) |
| 31 | 25, 27, 30 | 3imtr3d 200 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 = (frec(𝐹, 𝐴)‘𝑦)) → ((frec(𝐹, 𝐴)‘𝑦) ∈ 𝑆 → (𝐹‘(frec(𝐹, 𝐴)‘𝑦)) ∈ 𝑆)) |
| 32 | 31 | ex 113 |
. . . . . . . . 9
⊢ (𝜑 → (𝑧 = (frec(𝐹, 𝐴)‘𝑦) → ((frec(𝐹, 𝐴)‘𝑦) ∈ 𝑆 → (𝐹‘(frec(𝐹, 𝐴)‘𝑦)) ∈ 𝑆))) |
| 33 | 32 | exlimdv 1740 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑧 𝑧 = (frec(𝐹, 𝐴)‘𝑦) → ((frec(𝐹, 𝐴)‘𝑦) ∈ 𝑆 → (𝐹‘(frec(𝐹, 𝐴)‘𝑦)) ∈ 𝑆))) |
| 34 | 33 | adantr 270 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → (∃𝑧 𝑧 = (frec(𝐹, 𝐴)‘𝑦) → ((frec(𝐹, 𝐴)‘𝑦) ∈ 𝑆 → (𝐹‘(frec(𝐹, 𝐴)‘𝑦)) ∈ 𝑆))) |
| 35 | 22, 34 | mpd 13 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → ((frec(𝐹, 𝐴)‘𝑦) ∈ 𝑆 → (𝐹‘(frec(𝐹, 𝐴)‘𝑦)) ∈ 𝑆)) |
| 36 | 15 | adantr 270 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → ∀𝑧(𝐹‘𝑧) ∈ V) |
| 37 | 11 | adantr 270 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → 𝐴 ∈ 𝑆) |
| 38 | | simpr 108 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → 𝑦 ∈ ω) |
| 39 | | frecsuc 6014 |
. . . . . . . 8
⊢
((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑆 ∧ 𝑦 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(frec(𝐹, 𝐴)‘𝑦))) |
| 40 | 36, 37, 38, 39 | syl3anc 1169 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(frec(𝐹, 𝐴)‘𝑦))) |
| 41 | 40 | eleq1d 2147 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → ((frec(𝐹, 𝐴)‘suc 𝑦) ∈ 𝑆 ↔ (𝐹‘(frec(𝐹, 𝐴)‘𝑦)) ∈ 𝑆)) |
| 42 | 35, 41 | sylibrd 167 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → ((frec(𝐹, 𝐴)‘𝑦) ∈ 𝑆 → (frec(𝐹, 𝐴)‘suc 𝑦) ∈ 𝑆)) |
| 43 | 42 | expcom 114 |
. . . 4
⊢ (𝑦 ∈ ω → (𝜑 → ((frec(𝐹, 𝐴)‘𝑦) ∈ 𝑆 → (frec(𝐹, 𝐴)‘suc 𝑦) ∈ 𝑆))) |
| 44 | 6, 8, 10, 14, 43 | finds2 4342 |
. . 3
⊢ (𝑥 ∈ ω → (𝜑 → (frec(𝐹, 𝐴)‘𝑥) ∈ 𝑆)) |
| 45 | 4, 44 | vtoclga 2664 |
. 2
⊢ (𝐵 ∈ ω → (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆)) |
| 46 | 1, 45 | mpcom 36 |
1
⊢ (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆) |