| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsn | Unicode version | ||
| Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 10-Dec-2003.) |
| Ref | Expression |
|---|---|
| fsn.1 |
|
| fsn.2 |
|
| Ref | Expression |
|---|---|
| fsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelf 5082 |
. . . . . . . 8
| |
| 2 | velsn 3415 |
. . . . . . . . 9
| |
| 3 | velsn 3415 |
. . . . . . . . 9
| |
| 4 | 2, 3 | anbi12i 447 |
. . . . . . . 8
|
| 5 | 1, 4 | sylib 120 |
. . . . . . 7
|
| 6 | 5 | ex 113 |
. . . . . 6
|
| 7 | fsn.1 |
. . . . . . . . . 10
| |
| 8 | 7 | snid 3425 |
. . . . . . . . 9
|
| 9 | feu 5092 |
. . . . . . . . 9
| |
| 10 | 8, 9 | mpan2 415 |
. . . . . . . 8
|
| 11 | 3 | anbi1i 445 |
. . . . . . . . . . 11
|
| 12 | opeq2 3571 |
. . . . . . . . . . . . . 14
| |
| 13 | 12 | eleq1d 2147 |
. . . . . . . . . . . . 13
|
| 14 | 13 | pm5.32i 441 |
. . . . . . . . . . . 12
|
| 15 | ancom 262 |
. . . . . . . . . . . 12
| |
| 16 | 14, 15 | bitr4i 185 |
. . . . . . . . . . 11
|
| 17 | 11, 16 | bitr2i 183 |
. . . . . . . . . 10
|
| 18 | 17 | eubii 1950 |
. . . . . . . . 9
|
| 19 | fsn.2 |
. . . . . . . . . . . 12
| |
| 20 | 19 | eueq1 2764 |
. . . . . . . . . . 11
|
| 21 | 20 | biantru 296 |
. . . . . . . . . 10
|
| 22 | euanv 1998 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | bitr4i 185 |
. . . . . . . . 9
|
| 24 | df-reu 2355 |
. . . . . . . . 9
| |
| 25 | 18, 23, 24 | 3bitr4i 210 |
. . . . . . . 8
|
| 26 | 10, 25 | sylibr 132 |
. . . . . . 7
|
| 27 | opeq12 3572 |
. . . . . . . 8
| |
| 28 | 27 | eleq1d 2147 |
. . . . . . 7
|
| 29 | 26, 28 | syl5ibrcom 155 |
. . . . . 6
|
| 30 | 6, 29 | impbid 127 |
. . . . 5
|
| 31 | vex 2604 |
. . . . . . . 8
| |
| 32 | vex 2604 |
. . . . . . . 8
| |
| 33 | 31, 32 | opex 3984 |
. . . . . . 7
|
| 34 | 33 | elsn 3414 |
. . . . . 6
|
| 35 | 7, 19 | opth2 3995 |
. . . . . 6
|
| 36 | 34, 35 | bitr2i 183 |
. . . . 5
|
| 37 | 30, 36 | syl6bb 194 |
. . . 4
|
| 38 | 37 | alrimivv 1796 |
. . 3
|
| 39 | frel 5069 |
. . . 4
| |
| 40 | 7, 19 | relsnop 4462 |
. . . 4
|
| 41 | eqrel 4447 |
. . . 4
| |
| 42 | 39, 40, 41 | sylancl 404 |
. . 3
|
| 43 | 38, 42 | mpbird 165 |
. 2
|
| 44 | 7, 19 | f1osn 5186 |
. . . 4
|
| 45 | f1oeq1 5137 |
. . . 4
| |
| 46 | 44, 45 | mpbiri 166 |
. . 3
|
| 47 | f1of 5146 |
. . 3
| |
| 48 | 46, 47 | syl 14 |
. 2
|
| 49 | 43, 48 | impbii 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-reu 2355 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 |
| This theorem is referenced by: fsng 5357 |
| Copyright terms: Public domain | W3C validator |