ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcalc1 Unicode version

Theorem resqrexlemcalc1 9900
Description: Lemma for resqrex 9912. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) ,  RR+ )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemcalc1  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
Distinct variable groups:    y, A, z    ph, y, z
Allowed substitution hints:    F( y, z)    N( y, z)

Proof of Theorem resqrexlemcalc1
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . 8  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) ,  RR+ )
2 resqrexlemex.a . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . . . . . . 8  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemfp1 9895 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 ( N  + 
1 ) )  =  ( ( ( F `
 N )  +  ( A  /  ( F `  N )
) )  /  2
) )
54oveq1d 5547 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  ( N  +  1 ) ) ^ 2 )  =  ( ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  / 
2 ) ^ 2 ) )
61, 2, 3resqrexlemf 9893 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> RR+ )
76ffvelrnda 5323 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR+ )
87rpred 8773 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR )
92adantr 270 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  RR )
109, 7rerpdivcld 8805 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( A  /  ( F `  N ) )  e.  RR )
118, 10readdcld 7148 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  e.  RR )
1211recnd 7147 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  e.  CC )
13 2cnd 8112 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  2  e.  CC )
14 2ap0 8132 . . . . . . . 8  |-  2 #  0
1514a1i 9 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  2 #  0 )
1612, 13, 15sqdivapd 9618 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) )  /  2 ) ^ 2 )  =  ( ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) ) ^
2 )  /  (
2 ^ 2 ) ) )
175, 16eqtrd 2113 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  ( N  +  1 ) ) ^ 2 )  =  ( ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) ) ^
2 )  /  (
2 ^ 2 ) ) )
18 sq2 9571 . . . . . 6  |-  ( 2 ^ 2 )  =  4
1918oveq2i 5543 . . . . 5  |-  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) ) ^ 2 )  /  ( 2 ^ 2 ) )  =  ( ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) ) ^
2 )  /  4
)
2017, 19syl6eq 2129 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  ( N  +  1 ) ) ^ 2 )  =  ( ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) ) ^
2 )  /  4
) )
219recnd 7147 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  CC )
22 4cn 8117 . . . . . . 7  |-  4  e.  CC
2322a1i 9 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  4  e.  CC )
24 4re 8116 . . . . . . . 8  |-  4  e.  RR
2524a1i 9 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  4  e.  RR )
26 4pos 8136 . . . . . . . 8  |-  0  <  4
2726a1i 9 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  0  <  4 )
2825, 27gt0ap0d 7728 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  4 #  0 )
2921, 23, 28divcanap3d 7882 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( 4  x.  A )  /  4 )  =  A )
3029eqcomd 2086 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  A  =  ( ( 4  x.  A )  /  4
) )
3120, 30oveq12d 5550 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  =  ( ( ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  / 
4 )  -  (
( 4  x.  A
)  /  4 ) ) )
3212sqcld 9603 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  e.  CC )
3323, 21mulcld 7139 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( 4  x.  A )  e.  CC )
3432, 33, 23, 28divsubdirapd 7916 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N )  +  ( A  /  ( F `  N )
) ) ^ 2 )  -  ( 4  x.  A ) )  /  4 )  =  ( ( ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  / 
4 )  -  (
( 4  x.  A
)  /  4 ) ) )
3531, 34eqtr4d 2116 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  =  ( ( ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  -  ( 4  x.  A
) )  /  4
) )
368recnd 7147 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  CC )
3736sqcld 9603 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  e.  CC )
3813, 21mulcld 7139 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( 2  x.  A )  e.  CC )
3937, 38, 33addsubassd 7439 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  A ) )  -  ( 4  x.  A ) )  =  ( ( ( F `
 N ) ^
2 )  +  ( ( 2  x.  A
)  -  ( 4  x.  A ) ) ) )
40 2cn 8110 . . . . . . . . . . . 12  |-  2  e.  CC
4122, 40negsubdi2i 7394 . . . . . . . . . . 11  |-  -u (
4  -  2 )  =  ( 2  -  4 )
42 2p2e4 8159 . . . . . . . . . . . . . 14  |-  ( 2  +  2 )  =  4
4342oveq1i 5542 . . . . . . . . . . . . 13  |-  ( ( 2  +  2 )  -  2 )  =  ( 4  -  2 )
4440, 40pncan3oi 7324 . . . . . . . . . . . . 13  |-  ( ( 2  +  2 )  -  2 )  =  2
4543, 44eqtr3i 2103 . . . . . . . . . . . 12  |-  ( 4  -  2 )  =  2
4645negeqi 7302 . . . . . . . . . . 11  |-  -u (
4  -  2 )  =  -u 2
4741, 46eqtr3i 2103 . . . . . . . . . 10  |-  ( 2  -  4 )  = 
-u 2
4847oveq1i 5542 . . . . . . . . 9  |-  ( ( 2  -  4 )  x.  A )  =  ( -u 2  x.  A )
4913, 23, 21subdird 7519 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( 2  -  4 )  x.  A )  =  ( ( 2  x.  A )  -  (
4  x.  A ) ) )
5013, 21mulneg1d 7515 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( -u
2  x.  A )  =  -u ( 2  x.  A ) )
5148, 49, 503eqtr3a 2137 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( 2  x.  A )  -  ( 4  x.  A ) )  = 
-u ( 2  x.  A ) )
5251oveq2d 5548 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  +  ( ( 2  x.  A )  -  ( 4  x.  A
) ) )  =  ( ( ( F `
 N ) ^
2 )  +  -u ( 2  x.  A
) ) )
5337, 38negsubd 7425 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  +  -u ( 2  x.  A ) )  =  ( ( ( F `
 N ) ^
2 )  -  (
2  x.  A ) ) )
5439, 52, 533eqtrd 2117 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  A ) )  -  ( 4  x.  A ) )  =  ( ( ( F `
 N ) ^
2 )  -  (
2  x.  A ) ) )
5554oveq1d 5547 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  +  ( 2  x.  A ) )  -  ( 4  x.  A ) )  +  ( ( A  /  ( F `  N ) ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
5610recnd 7147 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( A  /  ( F `  N ) )  e.  CC )
57 binom2 9585 . . . . . . . . 9  |-  ( ( ( F `  N
)  e.  CC  /\  ( A  /  ( F `  N )
)  e.  CC )  ->  ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) ) ^
2 )  =  ( ( ( ( F `
 N ) ^
2 )  +  ( 2  x.  ( ( F `  N )  x.  ( A  / 
( F `  N
) ) ) ) )  +  ( ( A  /  ( F `
 N ) ) ^ 2 ) ) )
5836, 56, 57syl2anc 403 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  =  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  (
( F `  N
)  x.  ( A  /  ( F `  N ) ) ) ) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
597rpap0d 8779 . . . . . . . . . . . 12  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N ) #  0 )
6021, 36, 59divcanap2d 7879 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N )  x.  ( A  / 
( F `  N
) ) )  =  A )
6160oveq2d 5548 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  NN )  ->  ( 2  x.  ( ( F `
 N )  x.  ( A  /  ( F `  N )
) ) )  =  ( 2  x.  A
) )
6261oveq2d 5548 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  +  ( 2  x.  ( ( F `  N )  x.  ( A  /  ( F `  N ) ) ) ) )  =  ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  A ) ) )
6362oveq1d 5547 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  ( ( F `
 N )  x.  ( A  /  ( F `  N )
) ) ) )  +  ( ( A  /  ( F `  N ) ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
6458, 63eqtrd 2113 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  =  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
6564oveq1d 5547 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) ) ^ 2 )  -  ( 4  x.  A ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  +  ( 2  x.  A ) )  +  ( ( A  / 
( F `  N
) ) ^ 2 ) )  -  (
4  x.  A ) ) )
6637, 38addcld 7138 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  +  ( 2  x.  A ) )  e.  CC )
6756sqcld 9603 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( A  /  ( F `
 N ) ) ^ 2 )  e.  CC )
6866, 67, 33addsubd 7440 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  +  ( 2  x.  A ) )  +  ( ( A  /  ( F `
 N ) ) ^ 2 ) )  -  ( 4  x.  A ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  +  ( 2  x.  A ) )  -  ( 4  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
6965, 68eqtrd 2113 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) ) ^ 2 )  -  ( 4  x.  A ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  +  ( 2  x.  A ) )  -  ( 4  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
7037, 38subcld 7419 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  ( 2  x.  A ) )  e.  CC )
7170, 67addcld 7138 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A ) )  +  ( ( A  /  ( F `  N ) ) ^
2 ) )  e.  CC )
72 2z 8379 . . . . . . . . 9  |-  2  e.  ZZ
7372a1i 9 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  2  e.  ZZ )
747, 73rpexpcld 9629 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  e.  RR+ )
7574rpap0d 8779 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 ) #  0 )
7671, 37, 75divcanap4d 7883 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) )  x.  ( ( F `  N ) ^ 2 ) )  /  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
7755, 69, 763eqtr4d 2123 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) ) ^ 2 )  -  ( 4  x.  A ) )  =  ( ( ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A ) )  +  ( ( A  /  ( F `  N ) ) ^
2 ) )  x.  ( ( F `  N ) ^ 2 ) )  /  (
( F `  N
) ^ 2 ) ) )
7837, 38, 37subdird 7519 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A ) )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  x.  ( ( F `  N ) ^ 2 ) )  -  (
( 2  x.  A
)  x.  ( ( F `  N ) ^ 2 ) ) ) )
7937sqvald 9602 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 ) ^ 2 )  =  ( ( ( F `
 N ) ^
2 )  x.  (
( F `  N
) ^ 2 ) ) )
8013, 21, 37mul32d 7261 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( 2  x.  A )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( 2  x.  ( ( F `  N ) ^ 2 ) )  x.  A
) )
8113, 37, 21mulassd 7142 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( 2  x.  ( ( F `  N ) ^ 2 ) )  x.  A )  =  ( 2  x.  (
( ( F `  N ) ^ 2 )  x.  A ) ) )
8280, 81eqtr2d 2114 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( 2  x.  ( ( ( F `  N ) ^ 2 )  x.  A ) )  =  ( ( 2  x.  A )  x.  (
( F `  N
) ^ 2 ) ) )
8379, 82oveq12d 5550 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 ) ^ 2 )  -  ( 2  x.  ( ( ( F `
 N ) ^
2 )  x.  A
) ) )  =  ( ( ( ( F `  N ) ^ 2 )  x.  ( ( F `  N ) ^ 2 ) )  -  (
( 2  x.  A
)  x.  ( ( F `  N ) ^ 2 ) ) ) )
8478, 83eqtr4d 2116 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A ) )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 ) ^
2 )  -  (
2  x.  ( ( ( F `  N
) ^ 2 )  x.  A ) ) ) )
8521, 36, 59sqdivapd 9618 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( A  /  ( F `
 N ) ) ^ 2 )  =  ( ( A ^
2 )  /  (
( F `  N
) ^ 2 ) ) )
8685oveq1d 5547 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( A  /  ( F `  N )
) ^ 2 )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( A ^ 2 )  / 
( ( F `  N ) ^ 2 ) )  x.  (
( F `  N
) ^ 2 ) ) )
8721sqcld 9603 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( A ^ 2 )  e.  CC )
8887, 37, 75divcanap1d 7878 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( A ^ 2 )  /  ( ( F `  N ) ^ 2 ) )  x.  ( ( F `
 N ) ^
2 ) )  =  ( A ^ 2 ) )
8986, 88eqtrd 2113 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( A  /  ( F `  N )
) ^ 2 )  x.  ( ( F `
 N ) ^
2 ) )  =  ( A ^ 2 ) )
9084, 89oveq12d 5550 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  (
2  x.  A ) )  x.  ( ( F `  N ) ^ 2 ) )  +  ( ( ( A  /  ( F `
 N ) ) ^ 2 )  x.  ( ( F `  N ) ^ 2 ) ) )  =  ( ( ( ( ( F `  N
) ^ 2 ) ^ 2 )  -  ( 2  x.  (
( ( F `  N ) ^ 2 )  x.  A ) ) )  +  ( A ^ 2 ) ) )
9170, 67, 37adddird 7144 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  (
2  x.  A ) )  +  ( ( A  /  ( F `
 N ) ) ^ 2 ) )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  ( 2  x.  A ) )  x.  ( ( F `  N ) ^ 2 ) )  +  ( ( ( A  / 
( F `  N
) ) ^ 2 )  x.  ( ( F `  N ) ^ 2 ) ) ) )
92 binom2sub 9587 . . . . . . 7  |-  ( ( ( ( F `  N ) ^ 2 )  e.  CC  /\  A  e.  CC )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  =  ( ( ( ( ( F `
 N ) ^
2 ) ^ 2 )  -  ( 2  x.  ( ( ( F `  N ) ^ 2 )  x.  A ) ) )  +  ( A ^
2 ) ) )
9337, 21, 92syl2anc 403 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  =  ( ( ( ( ( F `  N
) ^ 2 ) ^ 2 )  -  ( 2  x.  (
( ( F `  N ) ^ 2 )  x.  A ) ) )  +  ( A ^ 2 ) ) )
9490, 91, 933eqtr4d 2123 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  (
2  x.  A ) )  +  ( ( A  /  ( F `
 N ) ) ^ 2 ) )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 ) )
9594oveq1d 5547 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) )  x.  ( ( F `  N ) ^ 2 ) )  /  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
( F `  N
) ^ 2 ) ) )
9677, 95eqtrd 2113 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) ) ^ 2 )  -  ( 4  x.  A ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
( F `  N
) ^ 2 ) ) )
9796oveq1d 5547 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N )  +  ( A  /  ( F `  N )
) ) ^ 2 )  -  ( 4  x.  A ) )  /  4 )  =  ( ( ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  / 
( ( F `  N ) ^ 2 ) )  /  4
) )
9837, 21subcld 7419 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  e.  CC )
9998sqcld 9603 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  e.  CC )
10099, 37, 23, 75, 28divdivap1d 7908 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  /  ( ( F `  N ) ^ 2 ) )  /  4 )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
( ( F `  N ) ^ 2 )  x.  4 ) ) )
10137, 23mulcomd 7140 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  x.  4 )  =  ( 4  x.  (
( F `  N
) ^ 2 ) ) )
102101oveq2d 5548 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
) ^ 2 )  /  ( ( ( F `  N ) ^ 2 )  x.  4 ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
103100, 102eqtrd 2113 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  /  ( ( F `  N ) ^ 2 ) )  /  4 )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
10435, 97, 1033eqtrd 2117 1  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   {csn 3398   class class class wbr 3785    X. cxp 4361   ` cfv 4922  (class class class)co 5532    |-> cmpt2 5534   CCcc 6979   RRcr 6980   0cc0 6981   1c1 6982    + caddc 6984    x. cmul 6986    < clt 7153    <_ cle 7154    - cmin 7279   -ucneg 7280   # cap 7681    / cdiv 7760   NNcn 8039   2c2 8089   4c4 8091   ZZcz 8351   RR+crp 8734    seqcseq 9431   ^cexp 9475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-rp 8735  df-iseq 9432  df-iexp 9476
This theorem is referenced by:  resqrexlemcalc2  9901
  Copyright terms: Public domain W3C validator