ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnbnd Unicode version

Theorem expnbnd 9596
Description: Exponentiation with a mantissa greater than 1 has no upper bound. (Contributed by NM, 20-Oct-2007.)
Assertion
Ref Expression
expnbnd  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  E. k  e.  NN  A  <  ( B ^ k ) )
Distinct variable groups:    A, k    B, k

Proof of Theorem expnbnd
StepHypRef Expression
1 simp1 938 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  A  e.  RR )
21adantr 270 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  1  <  A )  ->  A  e.  RR )
3 simp2 939 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  B  e.  RR )
43adantr 270 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  1  <  A )  ->  B  e.  RR )
5 simpr 108 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  1  <  A )  -> 
1  <  A )
6 simp3 940 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  1  <  B )
76adantr 270 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  1  <  A )  -> 
1  <  B )
8 1red 7134 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  1  e.  RR )
91, 8resubcld 7485 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  ( A  -  1 )  e.  RR )
103, 8resubcld 7485 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  ( B  -  1 )  e.  RR )
118, 3posdifd 7632 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
1  <  B  <->  0  <  ( B  -  1 ) ) )
126, 11mpbid 145 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  0  <  ( B  -  1 ) )
1310, 12gt0ap0d 7728 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  ( B  -  1 ) #  0 )
149, 10, 13redivclapd 7920 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
( A  -  1 )  /  ( B  -  1 ) )  e.  RR )
15 arch 8285 . . . . . . 7  |-  ( ( ( A  -  1 )  /  ( B  -  1 ) )  e.  RR  ->  E. k  e.  NN  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)
1614, 15syl 14 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  E. k  e.  NN  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)
17163expa 1138 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  1  <  B
)  ->  E. k  e.  NN  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)
1817adantrl 461 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 1  < 
A  /\  1  <  B ) )  ->  E. k  e.  NN  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)
19 simplll 499 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  A  e.  RR )
2019adantr 270 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  A  e.  RR )
21 simpllr 500 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  B  e.  RR )
22 1red 7134 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  1  e.  RR )
2321, 22resubcld 7485 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  ( B  - 
1 )  e.  RR )
24 simpr 108 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  k  e.  NN )
2524nnred 8052 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  k  e.  RR )
2623, 25remulcld 7149 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  ( ( B  -  1 )  x.  k )  e.  RR )
2726, 22readdcld 7148 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  ( ( ( B  -  1 )  x.  k )  +  1 )  e.  RR )
2827adantr 270 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( (
( B  -  1 )  x.  k )  +  1 )  e.  RR )
2924nnnn0d 8341 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  k  e.  NN0 )
30 reexpcl 9493 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  k  e.  NN0 )  -> 
( B ^ k
)  e.  RR )
3121, 29, 30syl2anc 403 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  ( B ^
k )  e.  RR )
3231adantr 270 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( B ^ k )  e.  RR )
33 simpr 108 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( ( A  -  1 )  /  ( B  - 
1 ) )  < 
k )
34 1red 7134 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  1  e.  RR )
3520, 34resubcld 7485 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( A  -  1 )  e.  RR )
36 simplr 496 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  k  e.  NN )
3736nnred 8052 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  k  e.  RR )
3821adantr 270 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  B  e.  RR )
3938, 34resubcld 7485 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( B  -  1 )  e.  RR )
40 simplrr 502 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  1  <  B
)
4140adantr 270 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  1  <  B )
4234, 38posdifd 7632 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( 1  <  B  <->  0  <  ( B  -  1 ) ) )
4341, 42mpbid 145 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  0  <  ( B  -  1 ) )
44 ltdivmul 7954 . . . . . . . . . 10  |-  ( ( ( A  -  1 )  e.  RR  /\  k  e.  RR  /\  (
( B  -  1 )  e.  RR  /\  0  <  ( B  - 
1 ) ) )  ->  ( ( ( A  -  1 )  /  ( B  - 
1 ) )  < 
k  <->  ( A  - 
1 )  <  (
( B  -  1 )  x.  k ) ) )
4535, 37, 39, 43, 44syl112anc 1173 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( (
( A  -  1 )  /  ( B  -  1 ) )  <  k  <->  ( A  -  1 )  < 
( ( B  - 
1 )  x.  k
) ) )
4633, 45mpbid 145 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( A  -  1 )  < 
( ( B  - 
1 )  x.  k
) )
4739, 37remulcld 7149 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( ( B  -  1 )  x.  k )  e.  RR )
4820, 34, 47ltsubaddd 7641 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( ( A  -  1 )  <  ( ( B  -  1 )  x.  k )  <->  A  <  ( ( ( B  - 
1 )  x.  k
)  +  1 ) ) )
4946, 48mpbid 145 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  A  <  ( ( ( B  - 
1 )  x.  k
)  +  1 ) )
5036nnnn0d 8341 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  k  e.  NN0 )
51 0red 7120 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  0  e.  RR )
52 0lt1 7236 . . . . . . . . . . . 12  |-  0  <  1
53 0re 7119 . . . . . . . . . . . . 13  |-  0  e.  RR
54 1re 7118 . . . . . . . . . . . . 13  |-  1  e.  RR
55 lttr 7185 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  B  e.  RR )  ->  (
( 0  <  1  /\  1  <  B )  ->  0  <  B
) )
5653, 54, 55mp3an12 1258 . . . . . . . . . . . 12  |-  ( B  e.  RR  ->  (
( 0  <  1  /\  1  <  B )  ->  0  <  B
) )
5752, 56mpani 420 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  (
1  <  B  ->  0  <  B ) )
5821, 40, 57sylc 61 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  0  <  B
)
5951, 21, 58ltled 7228 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  0  <_  B
)
6059adantr 270 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  0  <_  B )
61 bernneq2 9594 . . . . . . . 8  |-  ( ( B  e.  RR  /\  k  e.  NN0  /\  0  <_  B )  ->  (
( ( B  - 
1 )  x.  k
)  +  1 )  <_  ( B ^
k ) )
6238, 50, 60, 61syl3anc 1169 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( (
( B  -  1 )  x.  k )  +  1 )  <_ 
( B ^ k
) )
6320, 28, 32, 49, 62ltletrd 7527 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  A  <  ( B ^ k ) )
6463ex 113 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  ( ( ( A  -  1 )  /  ( B  - 
1 ) )  < 
k  ->  A  <  ( B ^ k ) ) )
6564reximdva 2463 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 1  < 
A  /\  1  <  B ) )  ->  ( E. k  e.  NN  ( ( A  - 
1 )  /  ( B  -  1 ) )  <  k  ->  E. k  e.  NN  A  <  ( B ^
k ) ) )
6618, 65mpd 13 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 1  < 
A  /\  1  <  B ) )  ->  E. k  e.  NN  A  <  ( B ^ k ) )
672, 4, 5, 7, 66syl22anc 1170 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  1  <  A )  ->  E. k  e.  NN  A  <  ( B ^
k ) )
68 1nn 8050 . . 3  |-  1  e.  NN
69 simpr 108 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  ->  A  <  B )
70 simpl2 942 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  ->  B  e.  RR )
7170recnd 7147 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  ->  B  e.  CC )
72 exp1 9482 . . . . 5  |-  ( B  e.  CC  ->  ( B ^ 1 )  =  B )
7371, 72syl 14 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  -> 
( B ^ 1 )  =  B )
7469, 73breqtrrd 3811 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  ->  A  <  ( B ^
1 ) )
75 oveq2 5540 . . . . 5  |-  ( k  =  1  ->  ( B ^ k )  =  ( B ^ 1 ) )
7675breq2d 3797 . . . 4  |-  ( k  =  1  ->  ( A  <  ( B ^
k )  <->  A  <  ( B ^ 1 ) ) )
7776rspcev 2701 . . 3  |-  ( ( 1  e.  NN  /\  A  <  ( B ^
1 ) )  ->  E. k  e.  NN  A  <  ( B ^
k ) )
7868, 74, 77sylancr 405 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  ->  E. k  e.  NN  A  <  ( B ^
k ) )
79 axltwlin 7180 . . . . 5  |-  ( ( 1  e.  RR  /\  B  e.  RR  /\  A  e.  RR )  ->  (
1  <  B  ->  ( 1  <  A  \/  A  <  B ) ) )
8054, 79mp3an1 1255 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( 1  <  B  ->  ( 1  <  A  \/  A  <  B ) ) )
8180ancoms 264 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  B  ->  ( 1  <  A  \/  A  <  B ) ) )
82813impia 1135 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
1  <  A  \/  A  <  B ) )
8367, 78, 82mpjaodan 744 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  E. k  e.  NN  A  <  ( B ^ k ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    /\ w3a 919    = wceq 1284    e. wcel 1433   E.wrex 2349   class class class wbr 3785  (class class class)co 5532   CCcc 6979   RRcr 6980   0cc0 6981   1c1 6982    + caddc 6984    x. cmul 6986    < clt 7153    <_ cle 7154    - cmin 7279    / cdiv 7760   NNcn 8039   NN0cn0 8288   ^cexp 9475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-iseq 9432  df-iexp 9476
This theorem is referenced by:  expnlbnd  9597
  Copyright terms: Public domain W3C validator