ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmuladdnn0 Unicode version

Theorem modqmuladdnn0 9370
Description: Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
Assertion
Ref Expression
modqmuladdnn0  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  mod  M
)  =  B  ->  E. k  e.  NN0  A  =  ( ( k  x.  M )  +  B ) ) )
Distinct variable groups:    A, k    B, k    k, M

Proof of Theorem modqmuladdnn0
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 simpr 108 . . . . . 6  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  i  e.  ZZ )
21adantr 270 . . . . 5  |-  ( ( ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  < 
M )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  -> 
i  e.  ZZ )
3 nn0cn 8298 . . . . . . . . . . . 12  |-  ( A  e.  NN0  ->  A  e.  CC )
433ad2ant1 959 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  A  e.  CC )
54ad2antrr 471 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  A  e.  CC )
6 nn0z 8371 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  NN0  ->  A  e.  ZZ )
7 zq 8711 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  ZZ  ->  A  e.  QQ )
86, 7syl 14 . . . . . . . . . . . . . . . 16  |-  ( A  e.  NN0  ->  A  e.  QQ )
983ad2ant1 959 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  A  e.  QQ )
109adantr 270 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  A  e.  QQ )
11 simpl2 942 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  M  e.  QQ )
12 simpl3 943 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
0  <  M )
1310, 11, 12modqcld 9330 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( A  mod  M
)  e.  QQ )
14 qcn 8719 . . . . . . . . . . . . 13  |-  ( ( A  mod  M )  e.  QQ  ->  ( A  mod  M )  e.  CC )
1513, 14syl 14 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( A  mod  M
)  e.  CC )
16 eleq1 2141 . . . . . . . . . . . . 13  |-  ( ( A  mod  M )  =  B  ->  (
( A  mod  M
)  e.  CC  <->  B  e.  CC ) )
1716adantl 271 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( ( A  mod  M )  e.  CC  <->  B  e.  CC ) )
1815, 17mpbid 145 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  B  e.  CC )
1918adantr 270 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  B  e.  CC )
20 zcn 8356 . . . . . . . . . . . 12  |-  ( i  e.  ZZ  ->  i  e.  CC )
2120adantl 271 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  i  e.  CC )
22 qcn 8719 . . . . . . . . . . . . 13  |-  ( M  e.  QQ  ->  M  e.  CC )
2311, 22syl 14 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  M  e.  CC )
2423adantr 270 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  M  e.  CC )
2521, 24mulcld 7139 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
i  x.  M )  e.  CC )
265, 19, 25subadd2d 7438 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( A  -  B
)  =  ( i  x.  M )  <->  ( (
i  x.  M )  +  B )  =  A ) )
27 eqcom 2083 . . . . . . . . 9  |-  ( A  =  ( ( i  x.  M )  +  B )  <->  ( (
i  x.  M )  +  B )  =  A )
2826, 27syl6rbbr 197 . . . . . . . 8  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  ( A  =  ( (
i  x.  M )  +  B )  <->  ( A  -  B )  =  ( i  x.  M ) ) )
294adantr 270 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  A  e.  CC )
3029, 18subcld 7419 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( A  -  B
)  e.  CC )
3130adantr 270 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  ( A  -  B )  e.  CC )
32 qre 8710 . . . . . . . . . . . 12  |-  ( M  e.  QQ  ->  M  e.  RR )
33323ad2ant2 960 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  M  e.  RR )
3433ad2antrr 471 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  M  e.  RR )
3512adantr 270 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  0  <  M )
3634, 35gt0ap0d 7728 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  M #  0 )
3731, 21, 24, 36divmulap3d 7911 . . . . . . . 8  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( ( A  -  B )  /  M
)  =  i  <->  ( A  -  B )  =  ( i  x.  M ) ) )
38 oveq2 5540 . . . . . . . . . . . . . 14  |-  ( B  =  ( A  mod  M )  ->  ( A  -  B )  =  ( A  -  ( A  mod  M ) ) )
3938oveq1d 5547 . . . . . . . . . . . . 13  |-  ( B  =  ( A  mod  M )  ->  ( ( A  -  B )  /  M )  =  ( ( A  -  ( A  mod  M ) )  /  M ) )
4039eqcoms 2084 . . . . . . . . . . . 12  |-  ( ( A  mod  M )  =  B  ->  (
( A  -  B
)  /  M )  =  ( ( A  -  ( A  mod  M ) )  /  M
) )
4140adantl 271 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( ( A  -  B )  /  M
)  =  ( ( A  -  ( A  mod  M ) )  /  M ) )
4241adantr 270 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( A  -  B
)  /  M )  =  ( ( A  -  ( A  mod  M ) )  /  M
) )
43 modqdiffl 9337 . . . . . . . . . . . 12  |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  -  ( A  mod  M ) )  /  M )  =  ( |_ `  ( A  /  M ) ) )
448, 43syl3an1 1202 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  -  ( A  mod  M ) )  /  M )  =  ( |_ `  ( A  /  M ) ) )
4544ad2antrr 471 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( A  -  ( A  mod  M ) )  /  M )  =  ( |_ `  ( A  /  M ) ) )
4642, 45eqtrd 2113 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( A  -  B
)  /  M )  =  ( |_ `  ( A  /  M
) ) )
4746eqeq1d 2089 . . . . . . . 8  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( ( A  -  B )  /  M
)  =  i  <->  ( |_ `  ( A  /  M
) )  =  i ) )
4828, 37, 473bitr2d 214 . . . . . . 7  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  ( A  =  ( (
i  x.  M )  +  B )  <->  ( |_ `  ( A  /  M
) )  =  i ) )
49 qre 8710 . . . . . . . . . . . 12  |-  ( A  e.  QQ  ->  A  e.  RR )
509, 49syl 14 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  A  e.  RR )
51 nn0ge0 8313 . . . . . . . . . . . 12  |-  ( A  e.  NN0  ->  0  <_  A )
52513ad2ant1 959 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  0  <_  A )
53 simp3 940 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  0  <  M )
54 divge0 7951 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( M  e.  RR  /\  0  <  M ) )  ->  0  <_  ( A  /  M ) )
5550, 52, 33, 53, 54syl22anc 1170 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  0  <_  ( A  /  M
) )
56 simp2 939 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  M  e.  QQ )
5753gt0ne0d 7613 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  M  =/=  0 )
58 qdivcl 8728 . . . . . . . . . . . 12  |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  M  =/=  0 )  ->  ( A  /  M )  e.  QQ )
599, 56, 57, 58syl3anc 1169 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  ( A  /  M )  e.  QQ )
60 0z 8362 . . . . . . . . . . 11  |-  0  e.  ZZ
61 flqge 9284 . . . . . . . . . . 11  |-  ( ( ( A  /  M
)  e.  QQ  /\  0  e.  ZZ )  ->  ( 0  <_  ( A  /  M )  <->  0  <_  ( |_ `  ( A  /  M ) ) ) )
6259, 60, 61sylancl 404 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  (
0  <_  ( A  /  M )  <->  0  <_  ( |_ `  ( A  /  M ) ) ) )
6355, 62mpbid 145 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  0  <_  ( |_ `  ( A  /  M ) ) )
64 breq2 3789 . . . . . . . . 9  |-  ( ( |_ `  ( A  /  M ) )  =  i  ->  (
0  <_  ( |_ `  ( A  /  M
) )  <->  0  <_  i ) )
6563, 64syl5ibcom 153 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  (
( |_ `  ( A  /  M ) )  =  i  ->  0  <_  i ) )
6665ad2antrr 471 . . . . . . 7  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( |_ `  ( A  /  M ) )  =  i  ->  0  <_  i ) )
6748, 66sylbid 148 . . . . . 6  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  ( A  =  ( (
i  x.  M )  +  B )  -> 
0  <_  i )
)
6867imp 122 . . . . 5  |-  ( ( ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  < 
M )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  -> 
0  <_  i )
69 elnn0z 8364 . . . . 5  |-  ( i  e.  NN0  <->  ( i  e.  ZZ  /\  0  <_ 
i ) )
702, 68, 69sylanbrc 408 . . . 4  |-  ( ( ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  < 
M )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  -> 
i  e.  NN0 )
71 oveq1 5539 . . . . . . 7  |-  ( k  =  i  ->  (
k  x.  M )  =  ( i  x.  M ) )
7271oveq1d 5547 . . . . . 6  |-  ( k  =  i  ->  (
( k  x.  M
)  +  B )  =  ( ( i  x.  M )  +  B ) )
7372eqeq2d 2092 . . . . 5  |-  ( k  =  i  ->  ( A  =  ( (
k  x.  M )  +  B )  <->  A  =  ( ( i  x.  M )  +  B
) ) )
7473adantl 271 . . . 4  |-  ( ( ( ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  /\  k  =  i )  ->  ( A  =  ( ( k  x.  M
)  +  B )  <-> 
A  =  ( ( i  x.  M )  +  B ) ) )
75 simpr 108 . . . 4  |-  ( ( ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  < 
M )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  ->  A  =  ( (
i  x.  M )  +  B ) )
7670, 74, 75rspcedvd 2708 . . 3  |-  ( ( ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  < 
M )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  ->  E. k  e.  NN0  A  =  ( ( k  x.  M )  +  B ) )
77 modqmuladdim 9369 . . . . 5  |-  ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  mod  M
)  =  B  ->  E. i  e.  ZZ  A  =  ( (
i  x.  M )  +  B ) ) )
786, 77syl3an1 1202 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  mod  M
)  =  B  ->  E. i  e.  ZZ  A  =  ( (
i  x.  M )  +  B ) ) )
7978imp 122 . . 3  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  E. i  e.  ZZ  A  =  ( (
i  x.  M )  +  B ) )
8076, 79r19.29a 2498 . 2  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  E. k  e.  NN0  A  =  ( ( k  x.  M )  +  B ) )
8180ex 113 1  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  mod  M
)  =  B  ->  E. k  e.  NN0  A  =  ( ( k  x.  M )  +  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433    =/= wne 2245   E.wrex 2349   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   CCcc 6979   RRcr 6980   0cc0 6981    + caddc 6984    x. cmul 6986    < clt 7153    <_ cle 7154    - cmin 7279    / cdiv 7760   NN0cn0 8288   ZZcz 8351   QQcq 8704   |_cfl 9272    mod cmo 9324
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-q 8705  df-rp 8735  df-ico 8917  df-fl 9274  df-mod 9325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator