ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isocnv GIF version

Theorem isocnv 5471
Description: Converse law for isomorphism. Proposition 6.30(2) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.)
Assertion
Ref Expression
isocnv (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴))

Proof of Theorem isocnv
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ocnv 5159 . . . 4 (𝐻:𝐴1-1-onto𝐵𝐻:𝐵1-1-onto𝐴)
21adantr 270 . . 3 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → 𝐻:𝐵1-1-onto𝐴)
3 f1ocnvfv2 5438 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵𝑧𝐵) → (𝐻‘(𝐻𝑧)) = 𝑧)
43adantrr 462 . . . . . . 7 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐵𝑤𝐵)) → (𝐻‘(𝐻𝑧)) = 𝑧)
5 f1ocnvfv2 5438 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵𝑤𝐵) → (𝐻‘(𝐻𝑤)) = 𝑤)
65adantrl 461 . . . . . . 7 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐵𝑤𝐵)) → (𝐻‘(𝐻𝑤)) = 𝑤)
74, 6breq12d 3798 . . . . . 6 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐵𝑤𝐵)) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ 𝑧𝑆𝑤))
87adantlr 460 . . . . 5 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝑧𝐵𝑤𝐵)) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ 𝑧𝑆𝑤))
9 f1of 5146 . . . . . . 7 (𝐻:𝐵1-1-onto𝐴𝐻:𝐵𝐴)
101, 9syl 14 . . . . . 6 (𝐻:𝐴1-1-onto𝐵𝐻:𝐵𝐴)
11 ffvelrn 5321 . . . . . . . . 9 ((𝐻:𝐵𝐴𝑧𝐵) → (𝐻𝑧) ∈ 𝐴)
12 ffvelrn 5321 . . . . . . . . 9 ((𝐻:𝐵𝐴𝑤𝐵) → (𝐻𝑤) ∈ 𝐴)
1311, 12anim12dan 564 . . . . . . . 8 ((𝐻:𝐵𝐴 ∧ (𝑧𝐵𝑤𝐵)) → ((𝐻𝑧) ∈ 𝐴 ∧ (𝐻𝑤) ∈ 𝐴))
14 breq1 3788 . . . . . . . . . . 11 (𝑥 = (𝐻𝑧) → (𝑥𝑅𝑦 ↔ (𝐻𝑧)𝑅𝑦))
15 fveq2 5198 . . . . . . . . . . . 12 (𝑥 = (𝐻𝑧) → (𝐻𝑥) = (𝐻‘(𝐻𝑧)))
1615breq1d 3795 . . . . . . . . . . 11 (𝑥 = (𝐻𝑧) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻‘(𝐻𝑧))𝑆(𝐻𝑦)))
1714, 16bibi12d 233 . . . . . . . . . 10 (𝑥 = (𝐻𝑧) → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ((𝐻𝑧)𝑅𝑦 ↔ (𝐻‘(𝐻𝑧))𝑆(𝐻𝑦))))
18 bicom 138 . . . . . . . . . 10 (((𝐻𝑧)𝑅𝑦 ↔ (𝐻‘(𝐻𝑧))𝑆(𝐻𝑦)) ↔ ((𝐻‘(𝐻𝑧))𝑆(𝐻𝑦) ↔ (𝐻𝑧)𝑅𝑦))
1917, 18syl6bb 194 . . . . . . . . 9 (𝑥 = (𝐻𝑧) → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ((𝐻‘(𝐻𝑧))𝑆(𝐻𝑦) ↔ (𝐻𝑧)𝑅𝑦)))
20 fveq2 5198 . . . . . . . . . . 11 (𝑦 = (𝐻𝑤) → (𝐻𝑦) = (𝐻‘(𝐻𝑤)))
2120breq2d 3797 . . . . . . . . . 10 (𝑦 = (𝐻𝑤) → ((𝐻‘(𝐻𝑧))𝑆(𝐻𝑦) ↔ (𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤))))
22 breq2 3789 . . . . . . . . . 10 (𝑦 = (𝐻𝑤) → ((𝐻𝑧)𝑅𝑦 ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
2321, 22bibi12d 233 . . . . . . . . 9 (𝑦 = (𝐻𝑤) → (((𝐻‘(𝐻𝑧))𝑆(𝐻𝑦) ↔ (𝐻𝑧)𝑅𝑦) ↔ ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ (𝐻𝑧)𝑅(𝐻𝑤))))
2419, 23rspc2va 2714 . . . . . . . 8 ((((𝐻𝑧) ∈ 𝐴 ∧ (𝐻𝑤) ∈ 𝐴) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
2513, 24sylan 277 . . . . . . 7 (((𝐻:𝐵𝐴 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
2625an32s 532 . . . . . 6 (((𝐻:𝐵𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝑧𝐵𝑤𝐵)) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
2710, 26sylanl1 394 . . . . 5 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝑧𝐵𝑤𝐵)) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
288, 27bitr3d 188 . . . 4 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝑧𝐵𝑤𝐵)) → (𝑧𝑆𝑤 ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
2928ralrimivva 2443 . . 3 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
302, 29jca 300 . 2 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → (𝐻:𝐵1-1-onto𝐴 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐻𝑧)𝑅(𝐻𝑤))))
31 df-isom 4931 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
32 df-isom 4931 . 2 (𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) ↔ (𝐻:𝐵1-1-onto𝐴 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐻𝑧)𝑅(𝐻𝑤))))
3330, 31, 323imtr4i 199 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  wral 2348   class class class wbr 3785  ccnv 4362  wf 4918  1-1-ontowf1o 4921  cfv 4922   Isom wiso 4923
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-isom 4931
This theorem is referenced by:  isores1  5474  isose  5480  isopo  5482  isoso  5484  isoti  6420  infrenegsupex  8682
  Copyright terms: Public domain W3C validator