ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexpr Unicode version

Theorem recexpr 6828
Description: The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
Assertion
Ref Expression
recexpr  |-  ( A  e.  P.  ->  E. x  e.  P.  ( A  .P.  x )  =  1P )
Distinct variable group:    x, A

Proof of Theorem recexpr
Dummy variables  u  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq12 3790 . . . . . . 7  |-  ( ( z  =  u  /\  w  =  v )  ->  ( z  <Q  w  <->  u 
<Q  v ) )
2 simpr 108 . . . . . . . . 9  |-  ( ( z  =  u  /\  w  =  v )  ->  w  =  v )
32fveq2d 5202 . . . . . . . 8  |-  ( ( z  =  u  /\  w  =  v )  ->  ( *Q `  w
)  =  ( *Q
`  v ) )
43eleq1d 2147 . . . . . . 7  |-  ( ( z  =  u  /\  w  =  v )  ->  ( ( *Q `  w )  e.  ( 2nd `  A )  <-> 
( *Q `  v
)  e.  ( 2nd `  A ) ) )
51, 4anbi12d 456 . . . . . 6  |-  ( ( z  =  u  /\  w  =  v )  ->  ( ( z  <Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A ) )  <->  ( u  <Q  v  /\  ( *Q `  v )  e.  ( 2nd `  A ) ) ) )
65cbvexdva 1845 . . . . 5  |-  ( z  =  u  ->  ( E. w ( z  <Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A ) )  <->  E. v ( u 
<Q  v  /\  ( *Q `  v )  e.  ( 2nd `  A
) ) ) )
76cbvabv 2202 . . . 4  |-  { z  |  E. w ( z  <Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) }  =  { u  |  E. v ( u  <Q  v  /\  ( *Q `  v )  e.  ( 2nd `  A ) ) }
8 simpl 107 . . . . . . . 8  |-  ( ( z  =  u  /\  w  =  v )  ->  z  =  u )
92, 8breq12d 3798 . . . . . . 7  |-  ( ( z  =  u  /\  w  =  v )  ->  ( w  <Q  z  <->  v 
<Q  u ) )
103eleq1d 2147 . . . . . . 7  |-  ( ( z  =  u  /\  w  =  v )  ->  ( ( *Q `  w )  e.  ( 1st `  A )  <-> 
( *Q `  v
)  e.  ( 1st `  A ) ) )
119, 10anbi12d 456 . . . . . 6  |-  ( ( z  =  u  /\  w  =  v )  ->  ( ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) )  <->  ( v  <Q  u  /\  ( *Q `  v )  e.  ( 1st `  A ) ) ) )
1211cbvexdva 1845 . . . . 5  |-  ( z  =  u  ->  ( E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) )  <->  E. v ( v 
<Q  u  /\  ( *Q `  v )  e.  ( 1st `  A
) ) ) )
1312cbvabv 2202 . . . 4  |-  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A
) ) }  =  { u  |  E. v ( v  <Q  u  /\  ( *Q `  v )  e.  ( 1st `  A ) ) }
147, 13opeq12i 3575 . . 3  |-  <. { z  |  E. w ( z  <Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >.  =  <. { u  |  E. v
( u  <Q  v  /\  ( *Q `  v
)  e.  ( 2nd `  A ) ) } ,  { u  |  E. v ( v 
<Q  u  /\  ( *Q `  v )  e.  ( 1st `  A
) ) } >.
1514recexprlempr 6822 . 2  |-  ( A  e.  P.  ->  <. { z  |  E. w ( z  <Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >.  e.  P. )
1614recexprlemex 6827 . 2  |-  ( A  e.  P.  ->  ( A  .P.  <. { z  |  E. w ( z 
<Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >. )  =  1P )
17 oveq2 5540 . . . 4  |-  ( x  =  <. { z  |  E. w ( z 
<Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >.  ->  ( A  .P.  x )  =  ( A  .P.  <. { z  |  E. w
( z  <Q  w  /\  ( *Q `  w
)  e.  ( 2nd `  A ) ) } ,  { z  |  E. w ( w 
<Q  z  /\  ( *Q `  w )  e.  ( 1st `  A
) ) } >. ) )
1817eqeq1d 2089 . . 3  |-  ( x  =  <. { z  |  E. w ( z 
<Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >.  ->  (
( A  .P.  x
)  =  1P  <->  ( A  .P.  <. { z  |  E. w ( z 
<Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >. )  =  1P ) )
1918rspcev 2701 . 2  |-  ( (
<. { z  |  E. w ( z  <Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A ) ) } ,  {
z  |  E. w
( w  <Q  z  /\  ( *Q `  w
)  e.  ( 1st `  A ) ) }
>.  e.  P.  /\  ( A  .P.  <. { z  |  E. w ( z 
<Q  w  /\  ( *Q `  w )  e.  ( 2nd `  A
) ) } ,  { z  |  E. w ( w  <Q  z  /\  ( *Q `  w )  e.  ( 1st `  A ) ) } >. )  =  1P )  ->  E. x  e.  P.  ( A  .P.  x )  =  1P )
2015, 16, 19syl2anc 403 1  |-  ( A  e.  P.  ->  E. x  e.  P.  ( A  .P.  x )  =  1P )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284   E.wex 1421    e. wcel 1433   {cab 2067   E.wrex 2349   <.cop 3401   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   1stc1st 5785   2ndc2nd 5786   *Qcrq 6474    <Q cltq 6475   P.cnp 6481   1Pc1p 6482    .P. cmp 6484
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-i1p 6657  df-imp 6659
This theorem is referenced by:  ltmprr  6832  recexgt0sr  6950
  Copyright terms: Public domain W3C validator