ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nlt1pig Unicode version

Theorem nlt1pig 6531
Description: No positive integer is less than one. (Contributed by Jim Kingdon, 31-Aug-2019.)
Assertion
Ref Expression
nlt1pig  |-  ( A  e.  N.  ->  -.  A  <N  1o )

Proof of Theorem nlt1pig
StepHypRef Expression
1 elni 6498 . . 3  |-  ( A  e.  N.  <->  ( A  e.  om  /\  A  =/=  (/) ) )
21simprbi 269 . 2  |-  ( A  e.  N.  ->  A  =/=  (/) )
3 noel 3255 . . . . 5  |-  -.  A  e.  (/)
4 1pi 6505 . . . . . . . . 9  |-  1o  e.  N.
5 ltpiord 6509 . . . . . . . . 9  |-  ( ( A  e.  N.  /\  1o  e.  N. )  -> 
( A  <N  1o  <->  A  e.  1o ) )
64, 5mpan2 415 . . . . . . . 8  |-  ( A  e.  N.  ->  ( A  <N  1o  <->  A  e.  1o ) )
7 df-1o 6024 . . . . . . . . . 10  |-  1o  =  suc  (/)
87eleq2i 2145 . . . . . . . . 9  |-  ( A  e.  1o  <->  A  e.  suc  (/) )
9 elsucg 4159 . . . . . . . . 9  |-  ( A  e.  N.  ->  ( A  e.  suc  (/)  <->  ( A  e.  (/)  \/  A  =  (/) ) ) )
108, 9syl5bb 190 . . . . . . . 8  |-  ( A  e.  N.  ->  ( A  e.  1o  <->  ( A  e.  (/)  \/  A  =  (/) ) ) )
116, 10bitrd 186 . . . . . . 7  |-  ( A  e.  N.  ->  ( A  <N  1o  <->  ( A  e.  (/)  \/  A  =  (/) ) ) )
1211biimpa 290 . . . . . 6  |-  ( ( A  e.  N.  /\  A  <N  1o )  -> 
( A  e.  (/)  \/  A  =  (/) ) )
1312ord 675 . . . . 5  |-  ( ( A  e.  N.  /\  A  <N  1o )  -> 
( -.  A  e.  (/)  ->  A  =  (/) ) )
143, 13mpi 15 . . . 4  |-  ( ( A  e.  N.  /\  A  <N  1o )  ->  A  =  (/) )
1514ex 113 . . 3  |-  ( A  e.  N.  ->  ( A  <N  1o  ->  A  =  (/) ) )
1615necon3ad 2287 . 2  |-  ( A  e.  N.  ->  ( A  =/=  (/)  ->  -.  A  <N  1o ) )
172, 16mpd 13 1  |-  ( A  e.  N.  ->  -.  A  <N  1o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    = wceq 1284    e. wcel 1433    =/= wne 2245   (/)c0 3251   class class class wbr 3785   suc csuc 4120   omcom 4331   1oc1o 6017   N.cnpi 6462    <N clti 6465
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-eprel 4044  df-suc 4126  df-iom 4332  df-xp 4369  df-1o 6024  df-ni 6494  df-lti 6497
This theorem is referenced by:  caucvgsr  6978
  Copyright terms: Public domain W3C validator