ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aptiprleml Unicode version

Theorem aptiprleml 6829
Description: Lemma for aptipr 6831. (Contributed by Jim Kingdon, 28-Jan-2020.)
Assertion
Ref Expression
aptiprleml  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  B  <P  A )  -> 
( 1st `  A
)  C_  ( 1st `  B ) )

Proof of Theorem aptiprleml
Dummy variables  f  g  h  s  t  u  v  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 6665 . . . . . . 7  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
2 prnmaxl 6678 . . . . . . 7  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  x  e.  ( 1st `  A ) )  ->  E. s  e.  ( 1st `  A ) x 
<Q  s )
31, 2sylan 277 . . . . . 6  |-  ( ( A  e.  P.  /\  x  e.  ( 1st `  A ) )  ->  E. s  e.  ( 1st `  A ) x 
<Q  s )
43ad2ant2rl 494 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  ->  E. s  e.  ( 1st `  A
) x  <Q  s
)
5 ltexnqi 6599 . . . . . . 7  |-  ( x 
<Q  s  ->  E. t  e.  Q.  ( x  +Q  t )  =  s )
65ad2antll 474 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  ( s  e.  ( 1st `  A
)  /\  x  <Q  s ) )  ->  E. t  e.  Q.  ( x  +Q  t )  =  s )
7 simplr 496 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  ->  B  e.  P. )
87ad2antrr 471 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  ( s  e.  ( 1st `  A
)  /\  x  <Q  s ) )  /\  (
t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  ->  B  e.  P. )
9 simprl 497 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  ( s  e.  ( 1st `  A
)  /\  x  <Q  s ) )  /\  (
t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  ->  t  e.  Q. )
10 prop 6665 . . . . . . . . 9  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
11 prarloc2 6694 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  t  e.  Q. )  ->  E. u  e.  ( 1st `  B ) ( u  +Q  t
)  e.  ( 2nd `  B ) )
1210, 11sylan 277 . . . . . . . 8  |-  ( ( B  e.  P.  /\  t  e.  Q. )  ->  E. u  e.  ( 1st `  B ) ( u  +Q  t
)  e.  ( 2nd `  B ) )
138, 9, 12syl2anc 403 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  ( s  e.  ( 1st `  A
)  /\  x  <Q  s ) )  /\  (
t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  ->  E. u  e.  ( 1st `  B
) ( u  +Q  t )  e.  ( 2nd `  B ) )
148adantr 270 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  B  e.  P. )
15 simprl 497 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  u  e.  ( 1st `  B
) )
16 elprnql 6671 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  u  e.  ( 1st `  B ) )  ->  u  e.  Q. )
1710, 16sylan 277 . . . . . . . . . 10  |-  ( ( B  e.  P.  /\  u  e.  ( 1st `  B ) )  ->  u  e.  Q. )
1814, 15, 17syl2anc 403 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  u  e.  Q. )
19 simpll 495 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  ->  A  e.  P. )
2019ad3antrrr 475 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  A  e.  P. )
21 simprr 498 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  ->  x  e.  ( 1st `  A
) )
2221ad3antrrr 475 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  x  e.  ( 1st `  A
) )
23 elprnql 6671 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  x  e.  ( 1st `  A ) )  ->  x  e.  Q. )
241, 23sylan 277 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  x  e.  ( 1st `  A ) )  ->  x  e.  Q. )
2520, 22, 24syl2anc 403 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  x  e.  Q. )
26 nqtri3or 6586 . . . . . . . . 9  |-  ( ( u  e.  Q.  /\  x  e.  Q. )  ->  ( u  <Q  x  \/  u  =  x  \/  x  <Q  u ) )
2718, 25, 26syl2anc 403 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  (
u  <Q  x  \/  u  =  x  \/  x  <Q  u ) )
2818adantr 270 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  /\  u  <Q  x )  ->  u  e.  Q. )
29 simplrl 501 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  t  e.  Q. )
3029adantr 270 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  /\  u  <Q  x )  ->  t  e.  Q. )
31 addclnq 6565 . . . . . . . . . . . . . 14  |-  ( ( u  e.  Q.  /\  t  e.  Q. )  ->  ( u  +Q  t
)  e.  Q. )
3228, 30, 31syl2anc 403 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  /\  u  <Q  x )  ->  (
u  +Q  t )  e.  Q. )
33 ltanqg 6590 . . . . . . . . . . . . . . . . . 18  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
3433adantl 271 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  /\  (
f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. ) )  -> 
( f  <Q  g  <->  ( h  +Q  f ) 
<Q  ( h  +Q  g
) ) )
35 addcomnqg 6571 . . . . . . . . . . . . . . . . . 18  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
3635adantl 271 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  /\  (
f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  +Q  g )  =  ( g  +Q  f ) )
3734, 18, 25, 29, 36caovord2d 5690 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  (
u  <Q  x  <->  ( u  +Q  t )  <Q  (
x  +Q  t ) ) )
38 simplrr 502 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  (
x  +Q  t )  =  s )
39 simprl 497 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  ( s  e.  ( 1st `  A
)  /\  x  <Q  s ) )  ->  s  e.  ( 1st `  A
) )
4039ad2antrr 471 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  s  e.  ( 1st `  A
) )
4138, 40eqeltrd 2155 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  (
x  +Q  t )  e.  ( 1st `  A
) )
42 prcdnql 6674 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  ( x  +Q  t
)  e.  ( 1st `  A ) )  -> 
( ( u  +Q  t )  <Q  (
x  +Q  t )  ->  ( u  +Q  t )  e.  ( 1st `  A ) ) )
431, 42sylan 277 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  P.  /\  ( x  +Q  t
)  e.  ( 1st `  A ) )  -> 
( ( u  +Q  t )  <Q  (
x  +Q  t )  ->  ( u  +Q  t )  e.  ( 1st `  A ) ) )
4420, 41, 43syl2anc 403 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  (
( u  +Q  t
)  <Q  ( x  +Q  t )  ->  (
u  +Q  t )  e.  ( 1st `  A
) ) )
4537, 44sylbid 148 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  (
u  <Q  x  ->  (
u  +Q  t )  e.  ( 1st `  A
) ) )
46 simprr 498 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  (
u  +Q  t )  e.  ( 2nd `  B
) )
4745, 46jctild 309 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  (
u  <Q  x  ->  (
( u  +Q  t
)  e.  ( 2nd `  B )  /\  (
u  +Q  t )  e.  ( 1st `  A
) ) ) )
4847imp 122 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  /\  u  <Q  x )  ->  (
( u  +Q  t
)  e.  ( 2nd `  B )  /\  (
u  +Q  t )  e.  ( 1st `  A
) ) )
49 eleq1 2141 . . . . . . . . . . . . . . 15  |-  ( v  =  ( u  +Q  t )  ->  (
v  e.  ( 2nd `  B )  <->  ( u  +Q  t )  e.  ( 2nd `  B ) ) )
50 eleq1 2141 . . . . . . . . . . . . . . 15  |-  ( v  =  ( u  +Q  t )  ->  (
v  e.  ( 1st `  A )  <->  ( u  +Q  t )  e.  ( 1st `  A ) ) )
5149, 50anbi12d 456 . . . . . . . . . . . . . 14  |-  ( v  =  ( u  +Q  t )  ->  (
( v  e.  ( 2nd `  B )  /\  v  e.  ( 1st `  A ) )  <->  ( ( u  +Q  t )  e.  ( 2nd `  B
)  /\  ( u  +Q  t )  e.  ( 1st `  A ) ) ) )
5251rspcev 2701 . . . . . . . . . . . . 13  |-  ( ( ( u  +Q  t
)  e.  Q.  /\  ( ( u  +Q  t )  e.  ( 2nd `  B )  /\  ( u  +Q  t )  e.  ( 1st `  A ) ) )  ->  E. v  e.  Q.  ( v  e.  ( 2nd `  B
)  /\  v  e.  ( 1st `  A ) ) )
5332, 48, 52syl2anc 403 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  /\  u  <Q  x )  ->  E. v  e.  Q.  ( v  e.  ( 2nd `  B
)  /\  v  e.  ( 1st `  A ) ) )
54 ltdfpr 6696 . . . . . . . . . . . . . 14  |-  ( ( B  e.  P.  /\  A  e.  P. )  ->  ( B  <P  A  <->  E. v  e.  Q.  ( v  e.  ( 2nd `  B
)  /\  v  e.  ( 1st `  A ) ) ) )
5514, 20, 54syl2anc 403 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  ( B  <P  A  <->  E. v  e.  Q.  ( v  e.  ( 2nd `  B
)  /\  v  e.  ( 1st `  A ) ) ) )
5655adantr 270 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  /\  u  <Q  x )  ->  ( B  <P  A  <->  E. v  e.  Q.  ( v  e.  ( 2nd `  B
)  /\  v  e.  ( 1st `  A ) ) ) )
5753, 56mpbird 165 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  /\  u  <Q  x )  ->  B  <P  A )
58 simplrl 501 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  ( s  e.  ( 1st `  A
)  /\  x  <Q  s ) )  ->  -.  B  <P  A )
5958ad3antrrr 475 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  /\  u  <Q  x )  ->  -.  B  <P  A )
6057, 59pm2.21dd 582 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  /\  u  <Q  x )  ->  x  e.  ( 1st `  B
) )
6160ex 113 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  (
u  <Q  x  ->  x  e.  ( 1st `  B
) ) )
62 eleq1 2141 . . . . . . . . . 10  |-  ( u  =  x  ->  (
u  e.  ( 1st `  B )  <->  x  e.  ( 1st `  B ) ) )
6315, 62syl5ibcom 153 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  (
u  =  x  ->  x  e.  ( 1st `  B ) ) )
64 prcdnql 6674 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  u  e.  ( 1st `  B ) )  -> 
( x  <Q  u  ->  x  e.  ( 1st `  B ) ) )
6510, 64sylan 277 . . . . . . . . . 10  |-  ( ( B  e.  P.  /\  u  e.  ( 1st `  B ) )  -> 
( x  <Q  u  ->  x  e.  ( 1st `  B ) ) )
6614, 15, 65syl2anc 403 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  (
x  <Q  u  ->  x  e.  ( 1st `  B
) ) )
6761, 63, 663jaod 1235 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  (
( u  <Q  x  \/  u  =  x  \/  x  <Q  u )  ->  x  e.  ( 1st `  B ) ) )
6827, 67mpd 13 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  x  e.  ( 1st `  B
) )
6913, 68rexlimddv 2481 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  ( s  e.  ( 1st `  A
)  /\  x  <Q  s ) )  /\  (
t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  ->  x  e.  ( 1st `  B ) )
706, 69rexlimddv 2481 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  ( s  e.  ( 1st `  A
)  /\  x  <Q  s ) )  ->  x  e.  ( 1st `  B
) )
714, 70rexlimddv 2481 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  ->  x  e.  ( 1st `  B
) )
7271expr 367 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  -.  B  <P  A )  ->  ( x  e.  ( 1st `  A
)  ->  x  e.  ( 1st `  B ) ) )
73723impa 1133 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  B  <P  A )  -> 
( x  e.  ( 1st `  A )  ->  x  e.  ( 1st `  B ) ) )
7473ssrdv 3005 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  B  <P  A )  -> 
( 1st `  A
)  C_  ( 1st `  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ w3o 918    /\ w3a 919    = wceq 1284    e. wcel 1433   E.wrex 2349    C_ wss 2973   <.cop 3401   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   1stc1st 5785   2ndc2nd 5786   Q.cnq 6470    +Q cplq 6472    <Q cltq 6475   P.cnp 6481    <P cltp 6485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-iltp 6660
This theorem is referenced by:  aptipr  6831
  Copyright terms: Public domain W3C validator