ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemex Unicode version

Theorem resqrexlemex 9911
Description: Lemma for resqrex 9912. Existence of square root given a sequence which converges to the square root. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) ,  RR+ )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemex  |-  ( ph  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) )
Distinct variable groups:    x, A, y, z    y, F, z    ph, z, y
Allowed substitution hints:    ph( x)    F( x)

Proof of Theorem resqrexlemex
Dummy variables  r  n  e  a  b  c  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . 3  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) ,  RR+ )
2 resqrexlemex.a . . 3  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . 3  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemcvg 9905 . 2  |-  ( ph  ->  E. r  e.  RR  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) )
5 simprl 497 . . 3  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  -> 
r  e.  RR )
62adantr 270 . . . 4  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  ->  A  e.  RR )
73adantr 270 . . . 4  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  -> 
0  <_  A )
8 simprr 498 . . . . 5  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  ->  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) )
9 fveq2 5198 . . . . . . . . . . . 12  |-  ( k  =  c  ->  ( F `  k )  =  ( F `  c ) )
109breq1d 3795 . . . . . . . . . . 11  |-  ( k  =  c  ->  (
( F `  k
)  <  ( r  +  e )  <->  ( F `  c )  <  (
r  +  e ) ) )
119oveq1d 5547 . . . . . . . . . . . 12  |-  ( k  =  c  ->  (
( F `  k
)  +  e )  =  ( ( F `
 c )  +  e ) )
1211breq2d 3797 . . . . . . . . . . 11  |-  ( k  =  c  ->  (
r  <  ( ( F `  k )  +  e )  <->  r  <  ( ( F `  c
)  +  e ) ) )
1310, 12anbi12d 456 . . . . . . . . . 10  |-  ( k  =  c  ->  (
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) )  <->  ( ( F `
 c )  < 
( r  +  e )  /\  r  < 
( ( F `  c )  +  e ) ) ) )
1413cbvralv 2577 . . . . . . . . 9  |-  ( A. k  e.  ( ZZ>= `  n ) ( ( F `  k )  <  ( r  +  e )  /\  r  <  ( ( F `  k )  +  e ) )  <->  A. c  e.  ( ZZ>= `  n )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) ) )
1514rexbii 2373 . . . . . . . 8  |-  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  k )  <  ( r  +  e )  /\  r  <  ( ( F `  k )  +  e ) )  <->  E. n  e.  NN  A. c  e.  ( ZZ>= `  n )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) ) )
16 fveq2 5198 . . . . . . . . . 10  |-  ( n  =  b  ->  ( ZZ>=
`  n )  =  ( ZZ>= `  b )
)
1716raleqdv 2555 . . . . . . . . 9  |-  ( n  =  b  ->  ( A. c  e.  ( ZZ>=
`  n ) ( ( F `  c
)  <  ( r  +  e )  /\  r  <  ( ( F `
 c )  +  e ) )  <->  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) ) ) )
1817cbvrexv 2578 . . . . . . . 8  |-  ( E. n  e.  NN  A. c  e.  ( ZZ>= `  n ) ( ( F `  c )  <  ( r  +  e )  /\  r  <  ( ( F `  c )  +  e ) )  <->  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) ) )
1915, 18bitri 182 . . . . . . 7  |-  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  k )  <  ( r  +  e )  /\  r  <  ( ( F `  k )  +  e ) )  <->  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) ) )
2019ralbii 2372 . . . . . 6  |-  ( A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) )  <->  A. e  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b ) ( ( F `  c )  <  ( r  +  e )  /\  r  <  ( ( F `  c )  +  e ) ) )
21 oveq2 5540 . . . . . . . . . 10  |-  ( e  =  a  ->  (
r  +  e )  =  ( r  +  a ) )
2221breq2d 3797 . . . . . . . . 9  |-  ( e  =  a  ->  (
( F `  c
)  <  ( r  +  e )  <->  ( F `  c )  <  (
r  +  a ) ) )
23 oveq2 5540 . . . . . . . . . 10  |-  ( e  =  a  ->  (
( F `  c
)  +  e )  =  ( ( F `
 c )  +  a ) )
2423breq2d 3797 . . . . . . . . 9  |-  ( e  =  a  ->  (
r  <  ( ( F `  c )  +  e )  <->  r  <  ( ( F `  c
)  +  a ) ) )
2522, 24anbi12d 456 . . . . . . . 8  |-  ( e  =  a  ->  (
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) )  <->  ( ( F `
 c )  < 
( r  +  a )  /\  r  < 
( ( F `  c )  +  a ) ) ) )
2625rexralbidv 2392 . . . . . . 7  |-  ( e  =  a  ->  ( E. b  e.  NN  A. c  e.  ( ZZ>= `  b ) ( ( F `  c )  <  ( r  +  e )  /\  r  <  ( ( F `  c )  +  e ) )  <->  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  a )  /\  r  <  (
( F `  c
)  +  a ) ) ) )
2726cbvralv 2577 . . . . . 6  |-  ( A. e  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) )  <->  A. a  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b ) ( ( F `  c )  <  ( r  +  a )  /\  r  <  ( ( F `  c )  +  a ) ) )
2820, 27bitri 182 . . . . 5  |-  ( A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) )  <->  A. a  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b ) ( ( F `  c )  <  ( r  +  a )  /\  r  <  ( ( F `  c )  +  a ) ) )
298, 28sylib 120 . . . 4  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  ->  A. a  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  a )  /\  r  <  (
( F `  c
)  +  a ) ) )
301, 6, 7, 5, 29resqrexlemgt0 9906 . . 3  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  -> 
0  <_  r )
311, 6, 7, 5, 8resqrexlemsqa 9910 . . 3  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  -> 
( r ^ 2 )  =  A )
32 breq2 3789 . . . . 5  |-  ( x  =  r  ->  (
0  <_  x  <->  0  <_  r ) )
33 oveq1 5539 . . . . . 6  |-  ( x  =  r  ->  (
x ^ 2 )  =  ( r ^
2 ) )
3433eqeq1d 2089 . . . . 5  |-  ( x  =  r  ->  (
( x ^ 2 )  =  A  <->  ( r ^ 2 )  =  A ) )
3532, 34anbi12d 456 . . . 4  |-  ( x  =  r  ->  (
( 0  <_  x  /\  ( x ^ 2 )  =  A )  <-> 
( 0  <_  r  /\  ( r ^ 2 )  =  A ) ) )
3635rspcev 2701 . . 3  |-  ( ( r  e.  RR  /\  ( 0  <_  r  /\  ( r ^ 2 )  =  A ) )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^
2 )  =  A ) )
375, 30, 31, 36syl12anc 1167 . 2  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) )
384, 37rexlimddv 2481 1  |-  ( ph  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   A.wral 2348   E.wrex 2349   {csn 3398   class class class wbr 3785    X. cxp 4361   ` cfv 4922  (class class class)co 5532    |-> cmpt2 5534   RRcr 6980   0cc0 6981   1c1 6982    + caddc 6984    < clt 7153    <_ cle 7154    / cdiv 7760   NNcn 8039   2c2 8089   ZZ>=cuz 8619   RR+crp 8734    seqcseq 9431   ^cexp 9475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-rp 8735  df-iseq 9432  df-iexp 9476
This theorem is referenced by:  resqrex  9912
  Copyright terms: Public domain W3C validator