| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resqrexlemcvg | Unicode version | ||
| Description: Lemma for resqrex 9912. The sequence has a limit. (Contributed by Jim Kingdon, 6-Aug-2021.) |
| Ref | Expression |
|---|---|
| resqrexlemex.seq |
|
| resqrexlemex.a |
|
| resqrexlemex.agt0 |
|
| Ref | Expression |
|---|---|
| resqrexlemcvg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqrexlemex.seq |
. . . 4
| |
| 2 | resqrexlemex.a |
. . . 4
| |
| 3 | resqrexlemex.agt0 |
. . . 4
| |
| 4 | 1, 2, 3 | resqrexlemf 9893 |
. . 3
|
| 5 | rpssre 8744 |
. . . 4
| |
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | 4, 6 | fssd 5075 |
. 2
|
| 8 | 1nn 8050 |
. . . . . . 7
| |
| 9 | 8 | a1i 9 |
. . . . . 6
|
| 10 | 4, 9 | ffvelrnd 5324 |
. . . . 5
|
| 11 | 2z 8379 |
. . . . . 6
| |
| 12 | 11 | a1i 9 |
. . . . 5
|
| 13 | 10, 12 | rpexpcld 9629 |
. . . 4
|
| 14 | 2rp 8739 |
. . . . 5
| |
| 15 | 14 | a1i 9 |
. . . 4
|
| 16 | 13, 15 | rpmulcld 8790 |
. . 3
|
| 17 | 16, 15 | rpmulcld 8790 |
. 2
|
| 18 | 4 | ad2antrr 471 |
. . . . . . . . . 10
|
| 19 | simplr 496 |
. . . . . . . . . 10
| |
| 20 | 18, 19 | ffvelrnd 5324 |
. . . . . . . . 9
|
| 21 | 20 | rpred 8773 |
. . . . . . . 8
|
| 22 | eluznn 8687 |
. . . . . . . . . . 11
| |
| 23 | 22 | adantll 459 |
. . . . . . . . . 10
|
| 24 | 18, 23 | ffvelrnd 5324 |
. . . . . . . . 9
|
| 25 | 24 | rpred 8773 |
. . . . . . . 8
|
| 26 | 21, 25 | resubcld 7485 |
. . . . . . 7
|
| 27 | 17 | ad2antrr 471 |
. . . . . . . . 9
|
| 28 | 14 | a1i 9 |
. . . . . . . . . 10
|
| 29 | 19 | nnzd 8468 |
. . . . . . . . . 10
|
| 30 | 28, 29 | rpexpcld 9629 |
. . . . . . . . 9
|
| 31 | 27, 30 | rpdivcld 8791 |
. . . . . . . 8
|
| 32 | 31 | rpred 8773 |
. . . . . . 7
|
| 33 | 19 | nnrpd 8772 |
. . . . . . . . 9
|
| 34 | 27, 33 | rpdivcld 8791 |
. . . . . . . 8
|
| 35 | 34 | rpred 8773 |
. . . . . . 7
|
| 36 | 2 | ad2antrr 471 |
. . . . . . . . 9
|
| 37 | 3 | ad2antrr 471 |
. . . . . . . . 9
|
| 38 | eluzle 8631 |
. . . . . . . . . 10
| |
| 39 | 38 | adantl 271 |
. . . . . . . . 9
|
| 40 | 1, 36, 37, 19, 23, 39 | resqrexlemnm 9904 |
. . . . . . . 8
|
| 41 | 2cn 8110 |
. . . . . . . . . . 11
| |
| 42 | expm1t 9504 |
. . . . . . . . . . 11
| |
| 43 | 41, 19, 42 | sylancr 405 |
. . . . . . . . . 10
|
| 44 | 43 | oveq2d 5548 |
. . . . . . . . 9
|
| 45 | 8 | a1i 9 |
. . . . . . . . . . . . . 14
|
| 46 | 18, 45 | ffvelrnd 5324 |
. . . . . . . . . . . . 13
|
| 47 | 11 | a1i 9 |
. . . . . . . . . . . . 13
|
| 48 | 46, 47 | rpexpcld 9629 |
. . . . . . . . . . . 12
|
| 49 | 48, 28 | rpmulcld 8790 |
. . . . . . . . . . 11
|
| 50 | 49 | rpcnd 8775 |
. . . . . . . . . 10
|
| 51 | 41 | a1i 9 |
. . . . . . . . . . 11
|
| 52 | nnm1nn0 8329 |
. . . . . . . . . . . 12
| |
| 53 | 19, 52 | syl 14 |
. . . . . . . . . . 11
|
| 54 | 51, 53 | expcld 9605 |
. . . . . . . . . 10
|
| 55 | 2ap0 8132 |
. . . . . . . . . . . 12
| |
| 56 | 55 | a1i 9 |
. . . . . . . . . . 11
|
| 57 | 1zzd 8378 |
. . . . . . . . . . . 12
| |
| 58 | 29, 57 | zsubcld 8474 |
. . . . . . . . . . 11
|
| 59 | 51, 56, 58 | expap0d 9611 |
. . . . . . . . . 10
|
| 60 | 50, 54, 51, 59, 56 | divcanap5rd 7904 |
. . . . . . . . 9
|
| 61 | 44, 60 | eqtrd 2113 |
. . . . . . . 8
|
| 62 | 40, 61 | breqtrrd 3811 |
. . . . . . 7
|
| 63 | uzid 8633 |
. . . . . . . . . 10
| |
| 64 | 11, 63 | ax-mp 7 |
. . . . . . . . 9
|
| 65 | 19 | nnnn0d 8341 |
. . . . . . . . 9
|
| 66 | bernneq3 9595 |
. . . . . . . . 9
| |
| 67 | 64, 65, 66 | sylancr 405 |
. . . . . . . 8
|
| 68 | 33, 30, 27 | ltdiv2d 8797 |
. . . . . . . 8
|
| 69 | 67, 68 | mpbid 145 |
. . . . . . 7
|
| 70 | 26, 32, 35, 62, 69 | lttrd 7235 |
. . . . . 6
|
| 71 | 21, 25, 35 | ltsubadd2d 7643 |
. . . . . 6
|
| 72 | 70, 71 | mpbid 145 |
. . . . 5
|
| 73 | 21, 35 | readdcld 7148 |
. . . . . 6
|
| 74 | 25 | adantr 270 |
. . . . . . . 8
|
| 75 | 21 | adantr 270 |
. . . . . . . 8
|
| 76 | 36 | adantr 270 |
. . . . . . . . 9
|
| 77 | 37 | adantr 270 |
. . . . . . . . 9
|
| 78 | 19 | adantr 270 |
. . . . . . . . 9
|
| 79 | 23 | adantr 270 |
. . . . . . . . 9
|
| 80 | simpr 108 |
. . . . . . . . 9
| |
| 81 | 1, 76, 77, 78, 79, 80 | resqrexlemdecn 9898 |
. . . . . . . 8
|
| 82 | 74, 75, 81 | ltled 7228 |
. . . . . . 7
|
| 83 | fveq2 5198 |
. . . . . . . . 9
| |
| 84 | 83 | eqcomd 2086 |
. . . . . . . 8
|
| 85 | eqle 7202 |
. . . . . . . 8
| |
| 86 | 25, 84, 85 | syl2an 283 |
. . . . . . 7
|
| 87 | 23 | nnzd 8468 |
. . . . . . . . 9
|
| 88 | zleloe 8398 |
. . . . . . . . 9
| |
| 89 | 29, 87, 88 | syl2anc 403 |
. . . . . . . 8
|
| 90 | 39, 89 | mpbid 145 |
. . . . . . 7
|
| 91 | 82, 86, 90 | mpjaodan 744 |
. . . . . 6
|
| 92 | 21, 34 | ltaddrpd 8807 |
. . . . . 6
|
| 93 | 25, 21, 73, 91, 92 | lelttrd 7234 |
. . . . 5
|
| 94 | 72, 93 | jca 300 |
. . . 4
|
| 95 | 94 | ralrimiva 2434 |
. . 3
|
| 96 | 95 | ralrimiva 2434 |
. 2
|
| 97 | 7, 17, 96 | cvg1n 9872 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 ax-arch 7095 ax-caucvg 7096 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-2 8098 df-3 8099 df-4 8100 df-n0 8289 df-z 8352 df-uz 8620 df-rp 8735 df-iseq 9432 df-iexp 9476 |
| This theorem is referenced by: resqrexlemex 9911 |
| Copyright terms: Public domain | W3C validator |