ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemsqa Unicode version

Theorem resqrexlemsqa 9910
Description: Lemma for resqrex 9912. The square of a limit is  A. (Contributed by Jim Kingdon, 7-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) ,  RR+ )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemgt0.rr  |-  ( ph  ->  L  e.  RR )
resqrexlemgt0.lim  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
Assertion
Ref Expression
resqrexlemsqa  |-  ( ph  ->  ( L ^ 2 )  =  A )
Distinct variable groups:    A, e, j   
y, A, z    e, F, j    y, F, z   
i, F    e, L, j, i    y, L, z   
e, i, j    ph, y,
z
Allowed substitution hints:    ph( e, i, j)    A( i)

Proof of Theorem resqrexlemsqa
Dummy variables  a  b  c  d  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . . . . . 7  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) ,  RR+ )
2 resqrexlemex.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . . . . . 7  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemf 9893 . . . . . 6  |-  ( ph  ->  F : NN --> RR+ )
54ffvelrnda 5323 . . . . 5  |-  ( (
ph  /\  x  e.  NN )  ->  ( F `
 x )  e.  RR+ )
6 2z 8379 . . . . . 6  |-  2  e.  ZZ
76a1i 9 . . . . 5  |-  ( (
ph  /\  x  e.  NN )  ->  2  e.  ZZ )
85, 7rpexpcld 9629 . . . 4  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( F `  x ) ^ 2 )  e.  RR+ )
9 eqid 2081 . . . 4  |-  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) )  =  ( x  e.  NN  |->  ( ( F `
 x ) ^
2 ) )
108, 9fmptd 5343 . . 3  |-  ( ph  ->  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) ) : NN --> RR+ )
11 rpssre 8744 . . . 4  |-  RR+  C_  RR
1211a1i 9 . . 3  |-  ( ph  -> 
RR+  C_  RR )
1310, 12fssd 5075 . 2  |-  ( ph  ->  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) ) : NN --> RR )
14 resqrexlemgt0.rr . . 3  |-  ( ph  ->  L  e.  RR )
1514resqcld 9631 . 2  |-  ( ph  ->  ( L ^ 2 )  e.  RR )
16 resqrexlemgt0.lim . . . 4  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
17 oveq2 5540 . . . . . . . . 9  |-  ( e  =  a  ->  ( L  +  e )  =  ( L  +  a ) )
1817breq2d 3797 . . . . . . . 8  |-  ( e  =  a  ->  (
( F `  i
)  <  ( L  +  e )  <->  ( F `  i )  <  ( L  +  a )
) )
19 oveq2 5540 . . . . . . . . 9  |-  ( e  =  a  ->  (
( F `  i
)  +  e )  =  ( ( F `
 i )  +  a ) )
2019breq2d 3797 . . . . . . . 8  |-  ( e  =  a  ->  ( L  <  ( ( F `
 i )  +  e )  <->  L  <  ( ( F `  i
)  +  a ) ) )
2118, 20anbi12d 456 . . . . . . 7  |-  ( e  =  a  ->  (
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <-> 
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) ) ) )
2221rexralbidv 2392 . . . . . 6  |-  ( e  =  a  ->  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) ) ) )
2322cbvralv 2577 . . . . 5  |-  ( A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  A. a  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) ) )
24 fveq2 5198 . . . . . . . 8  |-  ( j  =  b  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  b )
)
2524raleqdv 2555 . . . . . . 7  |-  ( j  =  b  ->  ( A. i  e.  ( ZZ>=
`  j ) ( ( F `  i
)  <  ( L  +  a )  /\  L  <  ( ( F `
 i )  +  a ) )  <->  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) ) ) )
2625cbvrexv 2578 . . . . . 6  |-  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) )  <->  E. b  e.  NN  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) ) )
2726ralbii 2372 . . . . 5  |-  ( A. a  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) )  <->  A. a  e.  RR+  E. b  e.  NN  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) ) )
28 fveq2 5198 . . . . . . . . . 10  |-  ( i  =  c  ->  ( F `  i )  =  ( F `  c ) )
2928breq1d 3795 . . . . . . . . 9  |-  ( i  =  c  ->  (
( F `  i
)  <  ( L  +  a )  <->  ( F `  c )  <  ( L  +  a )
) )
3028oveq1d 5547 . . . . . . . . . 10  |-  ( i  =  c  ->  (
( F `  i
)  +  a )  =  ( ( F `
 c )  +  a ) )
3130breq2d 3797 . . . . . . . . 9  |-  ( i  =  c  ->  ( L  <  ( ( F `
 i )  +  a )  <->  L  <  ( ( F `  c
)  +  a ) ) )
3229, 31anbi12d 456 . . . . . . . 8  |-  ( i  =  c  ->  (
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) )  <-> 
( ( F `  c )  <  ( L  +  a )  /\  L  <  ( ( F `  c )  +  a ) ) ) )
3332cbvralv 2577 . . . . . . 7  |-  ( A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) )  <->  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  ( L  +  a )  /\  L  <  ( ( F `  c )  +  a ) ) )
3433rexbii 2373 . . . . . 6  |-  ( E. b  e.  NN  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) )  <->  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  ( L  +  a )  /\  L  <  ( ( F `  c )  +  a ) ) )
3534ralbii 2372 . . . . 5  |-  ( A. a  e.  RR+  E. b  e.  NN  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  a )  /\  L  <  ( ( F `  i )  +  a ) )  <->  A. a  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  ( L  +  a )  /\  L  <  ( ( F `  c )  +  a ) ) )
3623, 27, 353bitri 204 . . . 4  |-  ( A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  A. a  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  ( L  +  a )  /\  L  <  ( ( F `  c )  +  a ) ) )
3716, 36sylib 120 . . 3  |-  ( ph  ->  A. a  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b ) ( ( F `  c )  <  ( L  +  a )  /\  L  <  ( ( F `  c )  +  a ) ) )
381, 2, 3, 14, 37, 9resqrexlemglsq 9908 . 2  |-  ( ph  ->  A. a  e.  RR+  E. b  e.  NN  A. d  e.  ( ZZ>= `  b ) ( ( ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) ) `  d
)  <  ( ( L ^ 2 )  +  a )  /\  ( L ^ 2 )  < 
( ( ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) ) `
 d )  +  a ) ) )
391, 2, 3, 14, 37, 9resqrexlemga 9909 . 2  |-  ( ph  ->  A. a  e.  RR+  E. b  e.  NN  A. d  e.  ( ZZ>= `  b ) ( ( ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) ) `  d
)  <  ( A  +  a )  /\  A  <  ( ( ( x  e.  NN  |->  ( ( F `  x
) ^ 2 ) ) `  d )  +  a ) ) )
4013, 15, 38, 2, 39recvguniq 9881 1  |-  ( ph  ->  ( L ^ 2 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   A.wral 2348   E.wrex 2349    C_ wss 2973   {csn 3398   class class class wbr 3785    |-> cmpt 3839    X. cxp 4361   ` cfv 4922  (class class class)co 5532    |-> cmpt2 5534   RRcr 6980   0cc0 6981   1c1 6982    + caddc 6984    < clt 7153    <_ cle 7154    / cdiv 7760   NNcn 8039   2c2 8089   ZZcz 8351   ZZ>=cuz 8619   RR+crp 8734    seqcseq 9431   ^cexp 9475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-rp 8735  df-iseq 9432  df-iexp 9476
This theorem is referenced by:  resqrexlemex  9911
  Copyright terms: Public domain W3C validator