ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrnres Unicode version

Theorem ssrnres 4783
Description: Subset of the range of a restriction. (Contributed by NM, 16-Jan-2006.)
Assertion
Ref Expression
ssrnres  |-  ( B 
C_  ran  ( C  |`  A )  <->  ran  ( C  i^i  ( A  X.  B ) )  =  B )

Proof of Theorem ssrnres
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 3187 . . . . 5  |-  ( C  i^i  ( A  X.  B ) )  C_  ( A  X.  B
)
2 rnss 4582 . . . . 5  |-  ( ( C  i^i  ( A  X.  B ) ) 
C_  ( A  X.  B )  ->  ran  ( C  i^i  ( A  X.  B ) ) 
C_  ran  ( A  X.  B ) )
31, 2ax-mp 7 . . . 4  |-  ran  ( C  i^i  ( A  X.  B ) )  C_  ran  ( A  X.  B
)
4 rnxpss 4774 . . . 4  |-  ran  ( A  X.  B )  C_  B
53, 4sstri 3008 . . 3  |-  ran  ( C  i^i  ( A  X.  B ) )  C_  B
6 eqss 3014 . . 3  |-  ( ran  ( C  i^i  ( A  X.  B ) )  =  B  <->  ( ran  ( C  i^i  ( A  X.  B ) ) 
C_  B  /\  B  C_ 
ran  ( C  i^i  ( A  X.  B
) ) ) )
75, 6mpbiran 881 . 2  |-  ( ran  ( C  i^i  ( A  X.  B ) )  =  B  <->  B  C_  ran  ( C  i^i  ( A  X.  B ) ) )
8 ssid 3018 . . . . . . . 8  |-  A  C_  A
9 ssv 3019 . . . . . . . 8  |-  B  C_  _V
10 xpss12 4463 . . . . . . . 8  |-  ( ( A  C_  A  /\  B  C_  _V )  -> 
( A  X.  B
)  C_  ( A  X.  _V ) )
118, 9, 10mp2an 416 . . . . . . 7  |-  ( A  X.  B )  C_  ( A  X.  _V )
12 sslin 3192 . . . . . . 7  |-  ( ( A  X.  B ) 
C_  ( A  X.  _V )  ->  ( C  i^i  ( A  X.  B ) )  C_  ( C  i^i  ( A  X.  _V ) ) )
1311, 12ax-mp 7 . . . . . 6  |-  ( C  i^i  ( A  X.  B ) )  C_  ( C  i^i  ( A  X.  _V ) )
14 df-res 4375 . . . . . 6  |-  ( C  |`  A )  =  ( C  i^i  ( A  X.  _V ) )
1513, 14sseqtr4i 3032 . . . . 5  |-  ( C  i^i  ( A  X.  B ) )  C_  ( C  |`  A )
16 rnss 4582 . . . . 5  |-  ( ( C  i^i  ( A  X.  B ) ) 
C_  ( C  |`  A )  ->  ran  ( C  i^i  ( A  X.  B ) ) 
C_  ran  ( C  |`  A ) )
1715, 16ax-mp 7 . . . 4  |-  ran  ( C  i^i  ( A  X.  B ) )  C_  ran  ( C  |`  A )
18 sstr 3007 . . . 4  |-  ( ( B  C_  ran  ( C  i^i  ( A  X.  B ) )  /\  ran  ( C  i^i  ( A  X.  B ) ) 
C_  ran  ( C  |`  A ) )  ->  B  C_  ran  ( C  |`  A ) )
1917, 18mpan2 415 . . 3  |-  ( B 
C_  ran  ( C  i^i  ( A  X.  B
) )  ->  B  C_ 
ran  ( C  |`  A ) )
20 ssel 2993 . . . . . . 7  |-  ( B 
C_  ran  ( C  |`  A )  ->  (
y  e.  B  -> 
y  e.  ran  ( C  |`  A ) ) )
21 vex 2604 . . . . . . . 8  |-  y  e. 
_V
2221elrn2 4594 . . . . . . 7  |-  ( y  e.  ran  ( C  |`  A )  <->  E. x <. x ,  y >.  e.  ( C  |`  A ) )
2320, 22syl6ib 159 . . . . . 6  |-  ( B 
C_  ran  ( C  |`  A )  ->  (
y  e.  B  ->  E. x <. x ,  y
>.  e.  ( C  |`  A ) ) )
2423ancrd 319 . . . . 5  |-  ( B 
C_  ran  ( C  |`  A )  ->  (
y  e.  B  -> 
( E. x <. x ,  y >.  e.  ( C  |`  A )  /\  y  e.  B
) ) )
2521elrn2 4594 . . . . . 6  |-  ( y  e.  ran  ( C  i^i  ( A  X.  B ) )  <->  E. x <. x ,  y >.  e.  ( C  i^i  ( A  X.  B ) ) )
26 elin 3155 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  ( C  i^i  ( A  X.  B ) )  <-> 
( <. x ,  y
>.  e.  C  /\  <. x ,  y >.  e.  ( A  X.  B ) ) )
27 opelxp 4392 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
2827anbi2i 444 . . . . . . . 8  |-  ( (
<. x ,  y >.  e.  C  /\  <. x ,  y >.  e.  ( A  X.  B ) )  <->  ( <. x ,  y >.  e.  C  /\  ( x  e.  A  /\  y  e.  B
) ) )
2921opelres 4635 . . . . . . . . . 10  |-  ( <.
x ,  y >.  e.  ( C  |`  A )  <-> 
( <. x ,  y
>.  e.  C  /\  x  e.  A ) )
3029anbi1i 445 . . . . . . . . 9  |-  ( (
<. x ,  y >.  e.  ( C  |`  A )  /\  y  e.  B
)  <->  ( ( <.
x ,  y >.  e.  C  /\  x  e.  A )  /\  y  e.  B ) )
31 anass 393 . . . . . . . . 9  |-  ( ( ( <. x ,  y
>.  e.  C  /\  x  e.  A )  /\  y  e.  B )  <->  ( <. x ,  y >.  e.  C  /\  ( x  e.  A  /\  y  e.  B
) ) )
3230, 31bitr2i 183 . . . . . . . 8  |-  ( (
<. x ,  y >.  e.  C  /\  (
x  e.  A  /\  y  e.  B )
)  <->  ( <. x ,  y >.  e.  ( C  |`  A )  /\  y  e.  B
) )
3326, 28, 323bitri 204 . . . . . . 7  |-  ( <.
x ,  y >.  e.  ( C  i^i  ( A  X.  B ) )  <-> 
( <. x ,  y
>.  e.  ( C  |`  A )  /\  y  e.  B ) )
3433exbii 1536 . . . . . 6  |-  ( E. x <. x ,  y
>.  e.  ( C  i^i  ( A  X.  B
) )  <->  E. x
( <. x ,  y
>.  e.  ( C  |`  A )  /\  y  e.  B ) )
35 19.41v 1823 . . . . . 6  |-  ( E. x ( <. x ,  y >.  e.  ( C  |`  A )  /\  y  e.  B
)  <->  ( E. x <. x ,  y >.  e.  ( C  |`  A )  /\  y  e.  B
) )
3625, 34, 353bitri 204 . . . . 5  |-  ( y  e.  ran  ( C  i^i  ( A  X.  B ) )  <->  ( E. x <. x ,  y
>.  e.  ( C  |`  A )  /\  y  e.  B ) )
3724, 36syl6ibr 160 . . . 4  |-  ( B 
C_  ran  ( C  |`  A )  ->  (
y  e.  B  -> 
y  e.  ran  ( C  i^i  ( A  X.  B ) ) ) )
3837ssrdv 3005 . . 3  |-  ( B 
C_  ran  ( C  |`  A )  ->  B  C_ 
ran  ( C  i^i  ( A  X.  B
) ) )
3919, 38impbii 124 . 2  |-  ( B 
C_  ran  ( C  i^i  ( A  X.  B
) )  <->  B  C_  ran  ( C  |`  A ) )
407, 39bitr2i 183 1  |-  ( B 
C_  ran  ( C  |`  A )  <->  ran  ( C  i^i  ( A  X.  B ) )  =  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    = wceq 1284   E.wex 1421    e. wcel 1433   _Vcvv 2601    i^i cin 2972    C_ wss 2973   <.cop 3401    X. cxp 4361   ran crn 4364    |` cres 4365
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-dm 4373  df-rn 4374  df-res 4375
This theorem is referenced by:  rninxp  4784
  Copyright terms: Public domain W3C validator