ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrlttr Unicode version

Theorem xrlttr 8870
Description: Ordering on the extended reals is transitive. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
xrlttr  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )

Proof of Theorem xrlttr
StepHypRef Expression
1 elxr 8850 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 elxr 8850 . . 3  |-  ( C  e.  RR*  <->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
3 elxr 8850 . . . . . . . . 9  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
4 lttr 7185 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
543expa 1138 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
65an32s 532 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  B  e.  RR )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
7 rexr 7164 . . . . . . . . . . . . . . . 16  |-  ( C  e.  RR  ->  C  e.  RR* )
8 pnfnlt 8862 . . . . . . . . . . . . . . . 16  |-  ( C  e.  RR*  ->  -. +oo  <  C )
97, 8syl 14 . . . . . . . . . . . . . . 15  |-  ( C  e.  RR  ->  -. +oo 
<  C )
109adantr 270 . . . . . . . . . . . . . 14  |-  ( ( C  e.  RR  /\  B  = +oo )  ->  -. +oo  <  C
)
11 breq1 3788 . . . . . . . . . . . . . . 15  |-  ( B  = +oo  ->  ( B  <  C  <-> +oo  <  C
) )
1211adantl 271 . . . . . . . . . . . . . 14  |-  ( ( C  e.  RR  /\  B  = +oo )  ->  ( B  <  C  <-> +oo 
<  C ) )
1310, 12mtbird 630 . . . . . . . . . . . . 13  |-  ( ( C  e.  RR  /\  B  = +oo )  ->  -.  B  <  C
)
1413pm2.21d 581 . . . . . . . . . . . 12  |-  ( ( C  e.  RR  /\  B  = +oo )  ->  ( B  <  C  ->  A  <  C ) )
1514adantll 459 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  B  = +oo )  ->  ( B  < 
C  ->  A  <  C ) )
1615adantld 272 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  B  = +oo )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
17 rexr 7164 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR  ->  A  e.  RR* )
18 nltmnf 8863 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR*  ->  -.  A  < -oo )
1917, 18syl 14 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR  ->  -.  A  < -oo )
2019adantr 270 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  -.  A  < -oo )
21 breq2 3789 . . . . . . . . . . . . . . 15  |-  ( B  = -oo  ->  ( A  <  B  <->  A  < -oo ) )
2221adantl 271 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A  <  B  <->  A  < -oo ) )
2320, 22mtbird 630 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  -.  A  <  B
)
2423pm2.21d 581 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A  <  B  ->  A  <  C ) )
2524adantlr 460 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  B  = -oo )  ->  ( A  < 
B  ->  A  <  C ) )
2625adantrd 273 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  B  = -oo )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
276, 16, 263jaodan 1237 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )  -> 
( ( A  < 
B  /\  B  <  C )  ->  A  <  C ) )
283, 27sylan2b 281 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  B  e.  RR* )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
2928an32s 532 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  C  e.  RR )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
30 ltpnf 8856 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  A  < +oo )
3130adantr 270 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  C  = +oo )  ->  A  < +oo )
32 breq2 3789 . . . . . . . . . . 11  |-  ( C  = +oo  ->  ( A  <  C  <->  A  < +oo ) )
3332adantl 271 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  C  = +oo )  ->  ( A  <  C  <->  A  < +oo ) )
3431, 33mpbird 165 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  C  = +oo )  ->  A  <  C )
3534adantlr 460 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  C  = +oo )  ->  A  <  C
)
3635a1d 22 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  C  = +oo )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
37 nltmnf 8863 . . . . . . . . . . . 12  |-  ( B  e.  RR*  ->  -.  B  < -oo )
3837adantr 270 . . . . . . . . . . 11  |-  ( ( B  e.  RR*  /\  C  = -oo )  ->  -.  B  < -oo )
39 breq2 3789 . . . . . . . . . . . 12  |-  ( C  = -oo  ->  ( B  <  C  <->  B  < -oo ) )
4039adantl 271 . . . . . . . . . . 11  |-  ( ( B  e.  RR*  /\  C  = -oo )  ->  ( B  <  C  <->  B  < -oo ) )
4138, 40mtbird 630 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  C  = -oo )  ->  -.  B  <  C )
4241pm2.21d 581 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  C  = -oo )  ->  ( B  <  C  ->  A  <  C ) )
4342adantld 272 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  C  = -oo )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
4443adantll 459 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  C  = -oo )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
4529, 36, 443jaodan 1237 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
4645anasss 391 . . . . 5  |-  ( ( A  e.  RR  /\  ( B  e.  RR*  /\  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) ) )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
47 pnfnlt 8862 . . . . . . . . . 10  |-  ( B  e.  RR*  ->  -. +oo  <  B )
4847adantl 271 . . . . . . . . 9  |-  ( ( A  = +oo  /\  B  e.  RR* )  ->  -. +oo  <  B )
49 breq1 3788 . . . . . . . . . 10  |-  ( A  = +oo  ->  ( A  <  B  <-> +oo  <  B
) )
5049adantr 270 . . . . . . . . 9  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( A  <  B  <-> +oo 
<  B ) )
5148, 50mtbird 630 . . . . . . . 8  |-  ( ( A  = +oo  /\  B  e.  RR* )  ->  -.  A  <  B )
5251pm2.21d 581 . . . . . . 7  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( A  <  B  ->  A  <  C ) )
5352adantrd 273 . . . . . 6  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( ( A  < 
B  /\  B  <  C )  ->  A  <  C ) )
5453adantrr 462 . . . . 5  |-  ( ( A  = +oo  /\  ( B  e.  RR*  /\  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) ) )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
55 mnflt 8858 . . . . . . . . . . 11  |-  ( C  e.  RR  -> -oo  <  C )
5655adantl 271 . . . . . . . . . 10  |-  ( ( A  = -oo  /\  C  e.  RR )  -> -oo  <  C )
57 breq1 3788 . . . . . . . . . . 11  |-  ( A  = -oo  ->  ( A  <  C  <-> -oo  <  C
) )
5857adantr 270 . . . . . . . . . 10  |-  ( ( A  = -oo  /\  C  e.  RR )  ->  ( A  <  C  <-> -oo 
<  C ) )
5956, 58mpbird 165 . . . . . . . . 9  |-  ( ( A  = -oo  /\  C  e.  RR )  ->  A  <  C )
6059a1d 22 . . . . . . . 8  |-  ( ( A  = -oo  /\  C  e.  RR )  ->  ( ( A  < 
B  /\  B  <  C )  ->  A  <  C ) )
6160adantlr 460 . . . . . . 7  |-  ( ( ( A  = -oo  /\  B  e.  RR* )  /\  C  e.  RR )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
62 mnfltpnf 8860 . . . . . . . . . 10  |- -oo  < +oo
63 breq12 3790 . . . . . . . . . 10  |-  ( ( A  = -oo  /\  C  = +oo )  ->  ( A  <  C  <-> -oo 
< +oo ) )
6462, 63mpbiri 166 . . . . . . . . 9  |-  ( ( A  = -oo  /\  C  = +oo )  ->  A  <  C )
6564a1d 22 . . . . . . . 8  |-  ( ( A  = -oo  /\  C  = +oo )  ->  ( ( A  < 
B  /\  B  <  C )  ->  A  <  C ) )
6665adantlr 460 . . . . . . 7  |-  ( ( ( A  = -oo  /\  B  e.  RR* )  /\  C  = +oo )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
6743adantll 459 . . . . . . 7  |-  ( ( ( A  = -oo  /\  B  e.  RR* )  /\  C  = -oo )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
6861, 66, 673jaodan 1237 . . . . . 6  |-  ( ( ( A  = -oo  /\  B  e.  RR* )  /\  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
6968anasss 391 . . . . 5  |-  ( ( A  = -oo  /\  ( B  e.  RR*  /\  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) ) )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
7046, 54, 693jaoian 1236 . . . 4  |-  ( ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  /\  ( B  e. 
RR*  /\  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) ) )  ->  ( ( A  <  B  /\  B  <  C )  ->  A  <  C ) )
71703impb 1134 . . 3  |-  ( ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  /\  B  e.  RR*  /\  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
722, 71syl3an3b 1207 . 2  |-  ( ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( ( A  < 
B  /\  B  <  C )  ->  A  <  C ) )
731, 72syl3an1b 1205 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ w3o 918    /\ w3a 919    = wceq 1284    e. wcel 1433   class class class wbr 3785   RRcr 6980   +oocpnf 7150   -oocmnf 7151   RR*cxr 7152    < clt 7153
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-pre-lttrn 7090
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-xp 4369  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158
This theorem is referenced by:  xrltso  8871  xrlttrd  8879  ioo0  9268
  Copyright terms: Public domain W3C validator