![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0mnnnnn0 | GIF version |
Description: The result of subtracting a positive integer from 0 is not a nonnegative integer. (Contributed by Alexander van der Vekens, 19-Mar-2018.) |
Ref | Expression |
---|---|
0mnnnnn0 | ⊢ (𝑁 ∈ ℕ → (0 − 𝑁) ∉ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7119 | . . 3 ⊢ 0 ∈ ℝ | |
2 | df-neg 7282 | . . . . . 6 ⊢ -𝑁 = (0 − 𝑁) | |
3 | 2 | eqcomi 2085 | . . . . 5 ⊢ (0 − 𝑁) = -𝑁 |
4 | 3 | eleq1i 2144 | . . . 4 ⊢ ((0 − 𝑁) ∈ ℕ0 ↔ -𝑁 ∈ ℕ0) |
5 | nn0ge0 8313 | . . . . 5 ⊢ (-𝑁 ∈ ℕ0 → 0 ≤ -𝑁) | |
6 | nnre 8046 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
7 | 6 | le0neg1d 7618 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 ≤ 0 ↔ 0 ≤ -𝑁)) |
8 | nngt0 8064 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
9 | 0red 7120 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 0 ∈ ℝ) | |
10 | 6, 9 | lenltd 7227 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (𝑁 ≤ 0 ↔ ¬ 0 < 𝑁)) |
11 | pm2.21 579 | . . . . . . . 8 ⊢ (¬ 0 < 𝑁 → (0 < 𝑁 → ¬ 0 ∈ ℝ)) | |
12 | 10, 11 | syl6bi 161 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (𝑁 ≤ 0 → (0 < 𝑁 → ¬ 0 ∈ ℝ))) |
13 | 8, 12 | mpid 41 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 ≤ 0 → ¬ 0 ∈ ℝ)) |
14 | 7, 13 | sylbird 168 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (0 ≤ -𝑁 → ¬ 0 ∈ ℝ)) |
15 | 5, 14 | syl5 32 | . . . 4 ⊢ (𝑁 ∈ ℕ → (-𝑁 ∈ ℕ0 → ¬ 0 ∈ ℝ)) |
16 | 4, 15 | syl5bi 150 | . . 3 ⊢ (𝑁 ∈ ℕ → ((0 − 𝑁) ∈ ℕ0 → ¬ 0 ∈ ℝ)) |
17 | 1, 16 | mt2i 605 | . 2 ⊢ (𝑁 ∈ ℕ → ¬ (0 − 𝑁) ∈ ℕ0) |
18 | df-nel 2340 | . 2 ⊢ ((0 − 𝑁) ∉ ℕ0 ↔ ¬ (0 − 𝑁) ∈ ℕ0) | |
19 | 17, 18 | sylibr 132 | 1 ⊢ (𝑁 ∈ ℕ → (0 − 𝑁) ∉ ℕ0) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 1433 ∉ wnel 2339 class class class wbr 3785 (class class class)co 5532 ℝcr 6980 0cc0 6981 < clt 7153 ≤ cle 7154 − cmin 7279 -cneg 7280 ℕcn 8039 ℕ0cn0 8288 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-ltadd 7092 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-n0 8289 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |