ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgt0sr GIF version

Theorem mulgt0sr 6954
Description: The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.)
Assertion
Ref Expression
mulgt0sr ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵))

Proof of Theorem mulgt0sr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelsr 6915 . . . . 5 <R ⊆ (R × R)
21brel 4410 . . . 4 (0R <R 𝐴 → (0RR𝐴R))
32simprd 112 . . 3 (0R <R 𝐴𝐴R)
41brel 4410 . . . 4 (0R <R 𝐵 → (0RR𝐵R))
54simprd 112 . . 3 (0R <R 𝐵𝐵R)
63, 5anim12i 331 . 2 ((0R <R 𝐴 ∧ 0R <R 𝐵) → (𝐴R𝐵R))
7 df-nr 6904 . . 3 R = ((P × P) / ~R )
8 breq2 3789 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (0R <R [⟨𝑥, 𝑦⟩] ~R ↔ 0R <R 𝐴))
98anbi1d 452 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ((0R <R [⟨𝑥, 𝑦⟩] ~R ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) ↔ (0R <R 𝐴 ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R )))
10 oveq1 5539 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ))
1110breq2d 3797 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) ↔ 0R <R (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R )))
129, 11imbi12d 232 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (((0R <R [⟨𝑥, 𝑦⟩] ~R ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) → 0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R )) ↔ ((0R <R 𝐴 ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) → 0R <R (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ))))
13 breq2 3789 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (0R <R [⟨𝑧, 𝑤⟩] ~R ↔ 0R <R 𝐵))
1413anbi2d 451 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((0R <R 𝐴 ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) ↔ (0R <R 𝐴 ∧ 0R <R 𝐵)))
15 oveq2 5540 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ) = (𝐴 ·R 𝐵))
1615breq2d 3797 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (0R <R (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ) ↔ 0R <R (𝐴 ·R 𝐵)))
1714, 16imbi12d 232 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (((0R <R 𝐴 ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) → 0R <R (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R )) ↔ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵))))
18 gt0srpr 6925 . . . . 5 (0R <R [⟨𝑥, 𝑦⟩] ~R𝑦<P 𝑥)
19 gt0srpr 6925 . . . . 5 (0R <R [⟨𝑧, 𝑤⟩] ~R𝑤<P 𝑧)
2018, 19anbi12i 447 . . . 4 ((0R <R [⟨𝑥, 𝑦⟩] ~R ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) ↔ (𝑦<P 𝑥𝑤<P 𝑧))
21 ltexpri 6803 . . . . . . 7 (𝑦<P 𝑥 → ∃𝑣P (𝑦 +P 𝑣) = 𝑥)
22 ltexpri 6803 . . . . . . . . 9 (𝑤<P 𝑧 → ∃𝑢P (𝑤 +P 𝑢) = 𝑧)
23 addclpr 6727 . . . . . . . . . . . . . 14 ((𝑓P𝑔P) → (𝑓 +P 𝑔) ∈ P)
2423adantl 271 . . . . . . . . . . . . 13 ((((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) ∈ P)
25 simplrr 502 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 +P 𝑣) = 𝑥)
26 simplr 496 . . . . . . . . . . . . . . . . 17 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → 𝑦P)
2726ad2antrr 471 . . . . . . . . . . . . . . . 16 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → 𝑦P)
28 simplrl 501 . . . . . . . . . . . . . . . 16 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → 𝑣P)
2924, 27, 28caovcld 5674 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 +P 𝑣) ∈ P)
3025, 29eqeltrrd 2156 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → 𝑥P)
31 simplrr 502 . . . . . . . . . . . . . . 15 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) → 𝑤P)
3231adantr 270 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → 𝑤P)
33 mulclpr 6762 . . . . . . . . . . . . . 14 ((𝑥P𝑤P) → (𝑥 ·P 𝑤) ∈ P)
3430, 32, 33syl2anc 403 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑥 ·P 𝑤) ∈ P)
35 simplrl 501 . . . . . . . . . . . . . . 15 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) → 𝑧P)
3635adantr 270 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → 𝑧P)
37 mulclpr 6762 . . . . . . . . . . . . . 14 ((𝑦P𝑧P) → (𝑦 ·P 𝑧) ∈ P)
3827, 36, 37syl2anc 403 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 ·P 𝑧) ∈ P)
3924, 34, 38caovcld 5674 . . . . . . . . . . . 12 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
40 simprl 497 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → 𝑢P)
41 mulclpr 6762 . . . . . . . . . . . . 13 ((𝑣P𝑢P) → (𝑣 ·P 𝑢) ∈ P)
4228, 40, 41syl2anc 403 . . . . . . . . . . . 12 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑣 ·P 𝑢) ∈ P)
43 ltaddpr 6787 . . . . . . . . . . . 12 ((((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P ∧ (𝑣 ·P 𝑢) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)))
4439, 42, 43syl2anc 403 . . . . . . . . . . 11 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)))
45 simprr 498 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑤 +P 𝑢) = 𝑧)
46 oveq12 5541 . . . . . . . . . . . . . . . 16 (((𝑦 +P 𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = (𝑥 ·P 𝑧))
4746oveq1d 5547 . . . . . . . . . . . . . . 15 (((𝑦 +P 𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → (((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))))
4825, 45, 47syl2anc 403 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))))
49 distrprg 6778 . . . . . . . . . . . . . . . . . . 19 ((𝑦P𝑤P𝑢P) → (𝑦 ·P (𝑤 +P 𝑢)) = ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)))
5027, 32, 40, 49syl3anc 1169 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 ·P (𝑤 +P 𝑢)) = ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)))
51 oveq2 5540 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 +P 𝑢) = 𝑧 → (𝑦 ·P (𝑤 +P 𝑢)) = (𝑦 ·P 𝑧))
5251adantl 271 . . . . . . . . . . . . . . . . . . 19 ((𝑢P ∧ (𝑤 +P 𝑢) = 𝑧) → (𝑦 ·P (𝑤 +P 𝑢)) = (𝑦 ·P 𝑧))
5352adantl 271 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 ·P (𝑤 +P 𝑢)) = (𝑦 ·P 𝑧))
5450, 53eqtr3d 2115 . . . . . . . . . . . . . . . . 17 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)) = (𝑦 ·P 𝑧))
5554oveq1d 5547 . . . . . . . . . . . . . . . 16 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢))) = ((𝑦 ·P 𝑧) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢))))
56 distrprg 6778 . . . . . . . . . . . . . . . . . . . 20 ((𝑓P𝑔PP) → (𝑓 ·P (𝑔 +P )) = ((𝑓 ·P 𝑔) +P (𝑓 ·P )))
5756adantl 271 . . . . . . . . . . . . . . . . . . 19 ((((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) ∧ (𝑓P𝑔PP)) → (𝑓 ·P (𝑔 +P )) = ((𝑓 ·P 𝑔) +P (𝑓 ·P )))
58 mulcomprg 6770 . . . . . . . . . . . . . . . . . . . 20 ((𝑓P𝑔P) → (𝑓 ·P 𝑔) = (𝑔 ·P 𝑓))
5958adantl 271 . . . . . . . . . . . . . . . . . . 19 ((((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) ∧ (𝑓P𝑔P)) → (𝑓 ·P 𝑔) = (𝑔 ·P 𝑓))
6057, 27, 28, 32, 24, 59caovdir2d 5697 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 +P 𝑣) ·P 𝑤) = ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤)))
6157, 27, 28, 40, 24, 59caovdir2d 5697 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 +P 𝑣) ·P 𝑢) = ((𝑦 ·P 𝑢) +P (𝑣 ·P 𝑢)))
6260, 61oveq12d 5550 . . . . . . . . . . . . . . . . 17 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑦 +P 𝑣) ·P 𝑤) +P ((𝑦 +P 𝑣) ·P 𝑢)) = (((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤)) +P ((𝑦 ·P 𝑢) +P (𝑣 ·P 𝑢))))
63 distrprg 6778 . . . . . . . . . . . . . . . . . 18 (((𝑦 +P 𝑣) ∈ P𝑤P𝑢P) → ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = (((𝑦 +P 𝑣) ·P 𝑤) +P ((𝑦 +P 𝑣) ·P 𝑢)))
6429, 32, 40, 63syl3anc 1169 . . . . . . . . . . . . . . . . 17 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = (((𝑦 +P 𝑣) ·P 𝑤) +P ((𝑦 +P 𝑣) ·P 𝑢)))
65 mulclpr 6762 . . . . . . . . . . . . . . . . . . 19 ((𝑦P𝑤P) → (𝑦 ·P 𝑤) ∈ P)
6627, 32, 65syl2anc 403 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 ·P 𝑤) ∈ P)
67 mulclpr 6762 . . . . . . . . . . . . . . . . . . 19 ((𝑦P𝑢P) → (𝑦 ·P 𝑢) ∈ P)
6827, 40, 67syl2anc 403 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 ·P 𝑢) ∈ P)
69 mulclpr 6762 . . . . . . . . . . . . . . . . . . 19 ((𝑣P𝑤P) → (𝑣 ·P 𝑤) ∈ P)
7028, 32, 69syl2anc 403 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑣 ·P 𝑤) ∈ P)
71 addcomprg 6768 . . . . . . . . . . . . . . . . . . 19 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
7271adantl 271 . . . . . . . . . . . . . . . . . 18 ((((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
73 addassprg 6769 . . . . . . . . . . . . . . . . . . 19 ((𝑓P𝑔PP) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
7473adantl 271 . . . . . . . . . . . . . . . . . 18 ((((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) ∧ (𝑓P𝑔PP)) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
7566, 68, 70, 72, 74, 42, 24caov4d 5705 . . . . . . . . . . . . . . . . 17 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢))) = (((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤)) +P ((𝑦 ·P 𝑢) +P (𝑣 ·P 𝑢))))
7662, 64, 753eqtr4d 2123 . . . . . . . . . . . . . . . 16 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = (((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢))))
7770, 38, 42, 72, 74caov12d 5702 . . . . . . . . . . . . . . . 16 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) = ((𝑦 ·P 𝑧) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢))))
7855, 76, 773eqtr4d 2123 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = ((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))))
79 oveq1 5539 . . . . . . . . . . . . . . . . . 18 ((𝑦 +P 𝑣) = 𝑥 → ((𝑦 +P 𝑣) ·P 𝑤) = (𝑥 ·P 𝑤))
8079adantl 271 . . . . . . . . . . . . . . . . 17 ((𝑣P ∧ (𝑦 +P 𝑣) = 𝑥) → ((𝑦 +P 𝑣) ·P 𝑤) = (𝑥 ·P 𝑤))
8180ad2antlr 472 . . . . . . . . . . . . . . . 16 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 +P 𝑣) ·P 𝑤) = (𝑥 ·P 𝑤))
8260, 81eqtr3d 2115 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤)) = (𝑥 ·P 𝑤))
8378, 82oveq12d 5550 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = (((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) +P (𝑥 ·P 𝑤)))
8448, 83eqtr3d 2115 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = (((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) +P (𝑥 ·P 𝑤)))
85 mulclpr 6762 . . . . . . . . . . . . . . . 16 ((𝑥P𝑧P) → (𝑥 ·P 𝑧) ∈ P)
8630, 36, 85syl2anc 403 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑥 ·P 𝑧) ∈ P)
87 addassprg 6769 . . . . . . . . . . . . . . 15 (((𝑥 ·P 𝑧) ∈ P ∧ (𝑦 ·P 𝑤) ∈ P ∧ (𝑣 ·P 𝑤) ∈ P) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P (𝑣 ·P 𝑤)) = ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))))
8886, 66, 70, 87syl3anc 1169 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P (𝑣 ·P 𝑤)) = ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))))
89 addclpr 6727 . . . . . . . . . . . . . . . 16 (((𝑥 ·P 𝑧) ∈ P ∧ (𝑦 ·P 𝑤) ∈ P) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
9086, 66, 89syl2anc 403 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
91 addcomprg 6768 . . . . . . . . . . . . . . 15 ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ (𝑣 ·P 𝑤) ∈ P) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P (𝑣 ·P 𝑤)) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
9290, 70, 91syl2anc 403 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P (𝑣 ·P 𝑤)) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
9388, 92eqtr3d 2115 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
9424, 38, 42caovcld 5674 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢)) ∈ P)
95 addassprg 6769 . . . . . . . . . . . . . . 15 (((𝑣 ·P 𝑤) ∈ P ∧ (𝑥 ·P 𝑤) ∈ P ∧ ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢)) ∈ P) → (((𝑣 ·P 𝑤) +P (𝑥 ·P 𝑤)) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢)))))
9670, 34, 94, 95syl3anc 1169 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑣 ·P 𝑤) +P (𝑥 ·P 𝑤)) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢)))))
9770, 94, 34, 72, 74caov32d 5701 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) +P (𝑥 ·P 𝑤)) = (((𝑣 ·P 𝑤) +P (𝑥 ·P 𝑤)) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))))
98 addassprg 6769 . . . . . . . . . . . . . . . 16 (((𝑥 ·P 𝑤) ∈ P ∧ (𝑦 ·P 𝑧) ∈ P ∧ (𝑣 ·P 𝑢) ∈ P) → (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) = ((𝑥 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))))
9934, 38, 42, 98syl3anc 1169 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) = ((𝑥 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))))
10099oveq2d 5548 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢)))))
10196, 97, 1003eqtr4d 2123 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) +P (𝑥 ·P 𝑤)) = ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))))
10284, 93, 1013eqtr3d 2121 . . . . . . . . . . . 12 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))) = ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))))
10324, 39, 42caovcld 5674 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) ∈ P)
104 addcanprg 6806 . . . . . . . . . . . . 13 (((𝑣 ·P 𝑤) ∈ P ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) ∈ P) → (((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))) = ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))))
10570, 90, 103, 104syl3anc 1169 . . . . . . . . . . . 12 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))) = ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))))
106102, 105mpd 13 . . . . . . . . . . 11 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)))
10744, 106breqtrrd 3811 . . . . . . . . . 10 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))
108107rexlimdvaa 2478 . . . . . . . . 9 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) → (∃𝑢P (𝑤 +P 𝑢) = 𝑧 → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
10922, 108syl5 32 . . . . . . . 8 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) → (𝑤<P 𝑧 → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
110109rexlimdvaa 2478 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (∃𝑣P (𝑦 +P 𝑣) = 𝑥 → (𝑤<P 𝑧 → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))))
11121, 110syl5 32 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦<P 𝑥 → (𝑤<P 𝑧 → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))))
112111impd 251 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑦<P 𝑥𝑤<P 𝑧) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
113 mulsrpr 6923 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R )
114113breq2d 3797 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) ↔ 0R <R [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R ))
115 gt0srpr 6925 . . . . . 6 (0R <R [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R ↔ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))
116114, 115syl6bb 194 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) ↔ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
117112, 116sylibrd 167 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑦<P 𝑥𝑤<P 𝑧) → 0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R )))
11820, 117syl5bi 150 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((0R <R [⟨𝑥, 𝑦⟩] ~R ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) → 0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R )))
1197, 12, 17, 1182ecoptocl 6217 . 2 ((𝐴R𝐵R) → ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵)))
1206, 119mpcom 36 1 ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 919   = wceq 1284  wcel 1433  wrex 2349  cop 3401   class class class wbr 3785  (class class class)co 5532  [cec 6127  Pcnp 6481   +P cpp 6483   ·P cmp 6484  <P cltp 6485   ~R cer 6486  Rcnr 6487  0Rc0r 6488   ·R cmr 6492   <R cltr 6493
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-i1p 6657  df-iplp 6658  df-imp 6659  df-iltp 6660  df-enr 6903  df-nr 6904  df-mr 6906  df-ltr 6907  df-0r 6908
This theorem is referenced by:  axpre-mulgt0  7053
  Copyright terms: Public domain W3C validator