![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > algrflem | GIF version |
Description: Lemma for algrf and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
algrflem.1 | ⊢ 𝐵 ∈ V |
algrflem.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
algrflem | ⊢ (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5535 | . 2 ⊢ (𝐵(𝐹 ∘ 1st )𝐶) = ((𝐹 ∘ 1st )‘〈𝐵, 𝐶〉) | |
2 | fo1st 5804 | . . . 4 ⊢ 1st :V–onto→V | |
3 | fof 5126 | . . . 4 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
4 | 2, 3 | ax-mp 7 | . . 3 ⊢ 1st :V⟶V |
5 | algrflem.1 | . . . 4 ⊢ 𝐵 ∈ V | |
6 | algrflem.2 | . . . 4 ⊢ 𝐶 ∈ V | |
7 | opexg 3983 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ V) → 〈𝐵, 𝐶〉 ∈ V) | |
8 | 5, 6, 7 | mp2an 416 | . . 3 ⊢ 〈𝐵, 𝐶〉 ∈ V |
9 | fvco3 5265 | . . 3 ⊢ ((1st :V⟶V ∧ 〈𝐵, 𝐶〉 ∈ V) → ((𝐹 ∘ 1st )‘〈𝐵, 𝐶〉) = (𝐹‘(1st ‘〈𝐵, 𝐶〉))) | |
10 | 4, 8, 9 | mp2an 416 | . 2 ⊢ ((𝐹 ∘ 1st )‘〈𝐵, 𝐶〉) = (𝐹‘(1st ‘〈𝐵, 𝐶〉)) |
11 | 5, 6 | op1st 5793 | . . 3 ⊢ (1st ‘〈𝐵, 𝐶〉) = 𝐵 |
12 | 11 | fveq2i 5201 | . 2 ⊢ (𝐹‘(1st ‘〈𝐵, 𝐶〉)) = (𝐹‘𝐵) |
13 | 1, 10, 12 | 3eqtri 2105 | 1 ⊢ (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵) |
Colors of variables: wff set class |
Syntax hints: = wceq 1284 ∈ wcel 1433 Vcvv 2601 〈cop 3401 ∘ ccom 4367 ⟶wf 4918 –onto→wfo 4920 ‘cfv 4922 (class class class)co 5532 1st c1st 5785 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fo 4928 df-fv 4930 df-ov 5535 df-1st 5787 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |