ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algrflemg GIF version

Theorem algrflemg 5871
Description: Lemma for algrf and related theorems. (Contributed by Jim Kingdon, 22-Jul-2021.)
Assertion
Ref Expression
algrflemg ((𝐵𝑉𝐶𝑊) → (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵))

Proof of Theorem algrflemg
StepHypRef Expression
1 df-ov 5535 . 2 (𝐵(𝐹 ∘ 1st )𝐶) = ((𝐹 ∘ 1st )‘⟨𝐵, 𝐶⟩)
2 fo1st 5804 . . . . 5 1st :V–onto→V
3 fof 5126 . . . . 5 (1st :V–onto→V → 1st :V⟶V)
42, 3ax-mp 7 . . . 4 1st :V⟶V
5 opexg 3983 . . . 4 ((𝐵𝑉𝐶𝑊) → ⟨𝐵, 𝐶⟩ ∈ V)
6 fvco3 5265 . . . 4 ((1st :V⟶V ∧ ⟨𝐵, 𝐶⟩ ∈ V) → ((𝐹 ∘ 1st )‘⟨𝐵, 𝐶⟩) = (𝐹‘(1st ‘⟨𝐵, 𝐶⟩)))
74, 5, 6sylancr 405 . . 3 ((𝐵𝑉𝐶𝑊) → ((𝐹 ∘ 1st )‘⟨𝐵, 𝐶⟩) = (𝐹‘(1st ‘⟨𝐵, 𝐶⟩)))
8 op1stg 5797 . . . 4 ((𝐵𝑉𝐶𝑊) → (1st ‘⟨𝐵, 𝐶⟩) = 𝐵)
98fveq2d 5202 . . 3 ((𝐵𝑉𝐶𝑊) → (𝐹‘(1st ‘⟨𝐵, 𝐶⟩)) = (𝐹𝐵))
107, 9eqtrd 2113 . 2 ((𝐵𝑉𝐶𝑊) → ((𝐹 ∘ 1st )‘⟨𝐵, 𝐶⟩) = (𝐹𝐵))
111, 10syl5eq 2125 1 ((𝐵𝑉𝐶𝑊) → (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  Vcvv 2601  cop 3401  ccom 4367  wf 4918  ontowfo 4920  cfv 4922  (class class class)co 5532  1st c1st 5785
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fo 4928  df-fv 4930  df-ov 5535  df-1st 5787
This theorem is referenced by:  ialgrlem1st  10424  ialgrp1  10428
  Copyright terms: Public domain W3C validator