ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemcanl GIF version

Theorem caucvgprlemcanl 6834
Description: Lemma for cauappcvgprlemladdrl 6847. Cancelling a term from both sides. (Contributed by Jim Kingdon, 15-Aug-2020.)
Hypotheses
Ref Expression
caucvgprlemcanl.l (𝜑𝐿P)
caucvgprlemcanl.s (𝜑𝑆Q)
caucvgprlemcanl.r (𝜑𝑅Q)
caucvgprlemcanl.q (𝜑𝑄Q)
Assertion
Ref Expression
caucvgprlemcanl (𝜑 → ((𝑅 +Q 𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)) ↔ 𝑅 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
Distinct variable groups:   𝑄,𝑙,𝑢   𝑅,𝑙,𝑢   𝑆,𝑙,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem caucvgprlemcanl
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltaprg 6809 . . . 4 ((𝑓P𝑔PP) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
21adantl 271 . . 3 ((𝜑 ∧ (𝑓P𝑔PP)) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
3 caucvgprlemcanl.r . . . 4 (𝜑𝑅Q)
4 nqprlu 6737 . . . 4 (𝑅Q → ⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ ∈ P)
53, 4syl 14 . . 3 (𝜑 → ⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ ∈ P)
6 caucvgprlemcanl.l . . . 4 (𝜑𝐿P)
7 caucvgprlemcanl.s . . . . 5 (𝜑𝑆Q)
8 nqprlu 6737 . . . . 5 (𝑆Q → ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ ∈ P)
97, 8syl 14 . . . 4 (𝜑 → ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ ∈ P)
10 addclpr 6727 . . . 4 ((𝐿P ∧ ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ ∈ P) → (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) ∈ P)
116, 9, 10syl2anc 403 . . 3 (𝜑 → (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) ∈ P)
12 caucvgprlemcanl.q . . . 4 (𝜑𝑄Q)
13 nqprlu 6737 . . . 4 (𝑄Q → ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P)
1412, 13syl 14 . . 3 (𝜑 → ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P)
15 addcomprg 6768 . . . 4 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
1615adantl 271 . . 3 ((𝜑 ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
172, 5, 11, 14, 16caovord2d 5690 . 2 (𝜑 → (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) ↔ (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)<P ((𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
18 nqprl 6741 . . 3 ((𝑅Q ∧ (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) ∈ P) → (𝑅 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
193, 11, 18syl2anc 403 . 2 (𝜑 → (𝑅 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
20 addnqpr 6751 . . . . 5 ((𝑅Q𝑄Q) → ⟨{𝑙𝑙 <Q (𝑅 +Q 𝑄)}, {𝑢 ∣ (𝑅 +Q 𝑄) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
213, 12, 20syl2anc 403 . . . 4 (𝜑 → ⟨{𝑙𝑙 <Q (𝑅 +Q 𝑄)}, {𝑢 ∣ (𝑅 +Q 𝑄) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
22 addnqpr 6751 . . . . . 6 ((𝑆Q𝑄Q) → ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
237, 12, 22syl2anc 403 . . . . 5 (𝜑 → ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
2423oveq2d 5548 . . . 4 (𝜑 → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩) = (𝐿 +P (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
2521, 24breq12d 3798 . . 3 (𝜑 → (⟨{𝑙𝑙 <Q (𝑅 +Q 𝑄)}, {𝑢 ∣ (𝑅 +Q 𝑄) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩) ↔ (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)<P (𝐿 +P (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))))
26 addclnq 6565 . . . . 5 ((𝑅Q𝑄Q) → (𝑅 +Q 𝑄) ∈ Q)
273, 12, 26syl2anc 403 . . . 4 (𝜑 → (𝑅 +Q 𝑄) ∈ Q)
28 addclnq 6565 . . . . . . 7 ((𝑆Q𝑄Q) → (𝑆 +Q 𝑄) ∈ Q)
297, 12, 28syl2anc 403 . . . . . 6 (𝜑 → (𝑆 +Q 𝑄) ∈ Q)
30 nqprlu 6737 . . . . . 6 ((𝑆 +Q 𝑄) ∈ Q → ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩ ∈ P)
3129, 30syl 14 . . . . 5 (𝜑 → ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩ ∈ P)
32 addclpr 6727 . . . . 5 ((𝐿P ∧ ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩ ∈ P) → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩) ∈ P)
336, 31, 32syl2anc 403 . . . 4 (𝜑 → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩) ∈ P)
34 nqprl 6741 . . . 4 (((𝑅 +Q 𝑄) ∈ Q ∧ (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩) ∈ P) → ((𝑅 +Q 𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q (𝑅 +Q 𝑄)}, {𝑢 ∣ (𝑅 +Q 𝑄) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)))
3527, 33, 34syl2anc 403 . . 3 (𝜑 → ((𝑅 +Q 𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q (𝑅 +Q 𝑄)}, {𝑢 ∣ (𝑅 +Q 𝑄) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)))
36 addassprg 6769 . . . . 5 ((𝐿P ∧ ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ ∈ P ∧ ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P) → ((𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) = (𝐿 +P (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
376, 9, 14, 36syl3anc 1169 . . . 4 (𝜑 → ((𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) = (𝐿 +P (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
3837breq2d 3797 . . 3 (𝜑 → ((⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)<P ((𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) ↔ (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)<P (𝐿 +P (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))))
3925, 35, 383bitr4d 218 . 2 (𝜑 → ((𝑅 +Q 𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)) ↔ (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)<P ((𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
4017, 19, 393bitr4rd 219 1 (𝜑 → ((𝑅 +Q 𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)) ↔ 𝑅 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919   = wceq 1284  wcel 1433  {cab 2067  cop 3401   class class class wbr 3785  cfv 4922  (class class class)co 5532  1st c1st 5785  Qcnq 6470   +Q cplq 6472   <Q cltq 6475  Pcnp 6481   +P cpp 6483  <P cltp 6485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-iplp 6658  df-iltp 6660
This theorem is referenced by:  cauappcvgprlemladdrl  6847  caucvgprlemladdrl  6868
  Copyright terms: Public domain W3C validator