ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addclnq GIF version

Theorem addclnq 6565
Description: Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995.)
Assertion
Ref Expression
addclnq ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) ∈ Q)

Proof of Theorem addclnq
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 6538 . . 3 Q = ((N × N) / ~Q )
2 oveq1 5539 . . . 4 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) = (𝐴 +Q [⟨𝑧, 𝑤⟩] ~Q ))
32eleq1d 2147 . . 3 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → (([⟨𝑥, 𝑦⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) ∈ ((N × N) / ~Q ) ↔ (𝐴 +Q [⟨𝑧, 𝑤⟩] ~Q ) ∈ ((N × N) / ~Q )))
4 oveq2 5540 . . . 4 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → (𝐴 +Q [⟨𝑧, 𝑤⟩] ~Q ) = (𝐴 +Q 𝐵))
54eleq1d 2147 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → ((𝐴 +Q [⟨𝑧, 𝑤⟩] ~Q ) ∈ ((N × N) / ~Q ) ↔ (𝐴 +Q 𝐵) ∈ ((N × N) / ~Q )))
6 addpipqqs 6560 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)), (𝑦 ·N 𝑤)⟩] ~Q )
7 mulclpi 6518 . . . . . . . 8 ((𝑥N𝑤N) → (𝑥 ·N 𝑤) ∈ N)
8 mulclpi 6518 . . . . . . . 8 ((𝑦N𝑧N) → (𝑦 ·N 𝑧) ∈ N)
9 addclpi 6517 . . . . . . . 8 (((𝑥 ·N 𝑤) ∈ N ∧ (𝑦 ·N 𝑧) ∈ N) → ((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N)
107, 8, 9syl2an 283 . . . . . . 7 (((𝑥N𝑤N) ∧ (𝑦N𝑧N)) → ((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N)
1110an42s 553 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N)
12 mulclpi 6518 . . . . . . 7 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) ∈ N)
1312ad2ant2l 491 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑦 ·N 𝑤) ∈ N)
1411, 13jca 300 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N))
15 opelxpi 4394 . . . . 5 ((((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N) → ⟨((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)), (𝑦 ·N 𝑤)⟩ ∈ (N × N))
16 enqex 6550 . . . . . 6 ~Q ∈ V
1716ecelqsi 6183 . . . . 5 (⟨((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)), (𝑦 ·N 𝑤)⟩ ∈ (N × N) → [⟨((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)), (𝑦 ·N 𝑤)⟩] ~Q ∈ ((N × N) / ~Q ))
1814, 15, 173syl 17 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → [⟨((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)), (𝑦 ·N 𝑤)⟩] ~Q ∈ ((N × N) / ~Q ))
196, 18eqeltrd 2155 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) ∈ ((N × N) / ~Q ))
201, 3, 5, 192ecoptocl 6217 . 2 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) ∈ ((N × N) / ~Q ))
2120, 1syl6eleqr 2172 1 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) ∈ Q)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  cop 3401   × cxp 4361  (class class class)co 5532  [cec 6127   / cqs 6128  Ncnpi 6462   +N cpli 6463   ·N cmi 6464   ~Q ceq 6469  Qcnq 6470   +Q cplq 6472
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-plpq 6534  df-enq 6537  df-nqqs 6538  df-plqqs 6539
This theorem is referenced by:  ltaddnq  6597  halfnqq  6600  ltbtwnnqq  6605  prarloclemcalc  6692  addnqprl  6719  addnqpru  6720  addlocprlemeqgt  6722  addlocprlemgt  6724  addlocprlem  6725  addclpr  6727  plpvlu  6728  dmplp  6730  addnqprlemrl  6747  addnqprlemru  6748  addnqprlemfl  6749  addnqprlemfu  6750  addnqpr  6751  addassprg  6769  distrlem1prl  6772  distrlem1pru  6773  distrlem4prl  6774  distrlem4pru  6775  distrlem5prl  6776  distrlem5pru  6777  ltaddpr  6787  ltexprlemloc  6797  ltexprlemfl  6799  ltexprlemrl  6800  ltexprlemfu  6801  ltexprlemru  6802  addcanprleml  6804  addcanprlemu  6805  recexprlemm  6814  aptiprleml  6829  aptiprlemu  6830  caucvgprlemcanl  6834  cauappcvgprlemm  6835  cauappcvgprlemdisj  6841  cauappcvgprlemloc  6842  cauappcvgprlemladdfu  6844  cauappcvgprlemladdfl  6845  cauappcvgprlemladdru  6846  cauappcvgprlemladdrl  6847  cauappcvgprlem1  6849  cauappcvgprlem2  6850  caucvgprlemnkj  6856  caucvgprlemnbj  6857  caucvgprlemm  6858  caucvgprlemloc  6865  caucvgprlemladdfu  6867  caucvgprlemladdrl  6868  caucvgprlem2  6870  caucvgprprlemloccalc  6874  caucvgprprlemml  6884  caucvgprprlemmu  6885  caucvgprprlemopl  6887  caucvgprprlemloc  6893
  Copyright terms: Public domain W3C validator