ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemofff GIF version

Theorem caucvgsrlemofff 6973
Description: Lemma for caucvgsr 6978. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
caucvgsrlembnd.bnd (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
caucvgsrlembnd.offset 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))
Assertion
Ref Expression
caucvgsrlemofff (𝜑𝐺:NR)
Distinct variable groups:   𝐴,𝑚   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑎,𝑙)   𝐹(𝑢,𝑘,𝑚,𝑛,𝑎,𝑙)   𝐺(𝑢,𝑘,𝑚,𝑛,𝑎,𝑙)

Proof of Theorem caucvgsrlemofff
StepHypRef Expression
1 caucvgsr.f . . . . 5 (𝜑𝐹:NR)
21ffvelrnda 5323 . . . 4 ((𝜑𝑎N) → (𝐹𝑎) ∈ R)
3 1sr 6928 . . . 4 1RR
4 addclsr 6930 . . . 4 (((𝐹𝑎) ∈ R ∧ 1RR) → ((𝐹𝑎) +R 1R) ∈ R)
52, 3, 4sylancl 404 . . 3 ((𝜑𝑎N) → ((𝐹𝑎) +R 1R) ∈ R)
6 caucvgsrlembnd.bnd . . . . . 6 (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
76caucvgsrlemasr 6966 . . . . 5 (𝜑𝐴R)
87adantr 270 . . . 4 ((𝜑𝑎N) → 𝐴R)
9 m1r 6929 . . . 4 -1RR
10 mulclsr 6931 . . . 4 ((𝐴R ∧ -1RR) → (𝐴 ·R -1R) ∈ R)
118, 9, 10sylancl 404 . . 3 ((𝜑𝑎N) → (𝐴 ·R -1R) ∈ R)
12 addclsr 6930 . . 3 ((((𝐹𝑎) +R 1R) ∈ R ∧ (𝐴 ·R -1R) ∈ R) → (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)) ∈ R)
135, 11, 12syl2anc 403 . 2 ((𝜑𝑎N) → (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)) ∈ R)
14 caucvgsrlembnd.offset . 2 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))
1513, 14fmptd 5343 1 (𝜑𝐺:NR)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  {cab 2067  wral 2348  cop 3401   class class class wbr 3785  cmpt 3839  wf 4918  cfv 4922  (class class class)co 5532  1𝑜c1o 6017  [cec 6127  Ncnpi 6462   <N clti 6465   ~Q ceq 6469  *Qcrq 6474   <Q cltq 6475  1Pc1p 6482   +P cpp 6483   ~R cer 6486  Rcnr 6487  1Rc1r 6489  -1Rcm1r 6490   +R cplr 6491   ·R cmr 6492   <R cltr 6493
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-i1p 6657  df-iplp 6658  df-imp 6659  df-enr 6903  df-nr 6904  df-plr 6905  df-mr 6906  df-ltr 6907  df-1r 6909  df-m1r 6910
This theorem is referenced by:  caucvgsrlemoffcau  6974  caucvgsrlemoffgt1  6975  caucvgsrlemoffres  6976
  Copyright terms: Public domain W3C validator