| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > climshft | GIF version | ||
| Description: A shifted function converges iff the original function converges. (Contributed by NM, 16-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| climshft | ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5539 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓 shift 𝑀) = (𝐹 shift 𝑀)) | |
| 2 | 1 | breq1d 3795 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓 shift 𝑀) ⇝ 𝐴 ↔ (𝐹 shift 𝑀) ⇝ 𝐴)) |
| 3 | breq1 3788 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓 ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) | |
| 4 | 2, 3 | bibi12d 233 | . . . 4 ⊢ (𝑓 = 𝐹 → (((𝑓 shift 𝑀) ⇝ 𝐴 ↔ 𝑓 ⇝ 𝐴) ↔ ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴))) |
| 5 | 4 | imbi2d 228 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴 ↔ 𝑓 ⇝ 𝐴)) ↔ (𝑀 ∈ ℤ → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)))) |
| 6 | znegcl 8382 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → -𝑀 ∈ ℤ) | |
| 7 | vex 2604 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
| 8 | zcn 8356 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 9 | ovshftex 9707 | . . . . . . 7 ⊢ ((𝑓 ∈ V ∧ 𝑀 ∈ ℂ) → (𝑓 shift 𝑀) ∈ V) | |
| 10 | 7, 8, 9 | sylancr 405 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (𝑓 shift 𝑀) ∈ V) |
| 11 | climshftlemg 10141 | . . . . . 6 ⊢ ((-𝑀 ∈ ℤ ∧ (𝑓 shift 𝑀) ∈ V) → ((𝑓 shift 𝑀) ⇝ 𝐴 → ((𝑓 shift 𝑀) shift -𝑀) ⇝ 𝐴)) | |
| 12 | 6, 10, 11 | syl2anc 403 | . . . . 5 ⊢ (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴 → ((𝑓 shift 𝑀) shift -𝑀) ⇝ 𝐴)) |
| 13 | eqid 2081 | . . . . . 6 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
| 14 | 8 | negcld 7406 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → -𝑀 ∈ ℂ) |
| 15 | ovshftex 9707 | . . . . . . 7 ⊢ (((𝑓 shift 𝑀) ∈ V ∧ -𝑀 ∈ ℂ) → ((𝑓 shift 𝑀) shift -𝑀) ∈ V) | |
| 16 | 10, 14, 15 | syl2anc 403 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) shift -𝑀) ∈ V) |
| 17 | 7 | a1i 9 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑓 ∈ V) |
| 18 | id 19 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℤ) | |
| 19 | eluzelcn 8630 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ ℂ) | |
| 20 | 7 | shftcan1 9722 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑓 shift 𝑀) shift -𝑀)‘𝑘) = (𝑓‘𝑘)) |
| 21 | 8, 19, 20 | syl2an 283 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (((𝑓 shift 𝑀) shift -𝑀)‘𝑘) = (𝑓‘𝑘)) |
| 22 | 13, 16, 17, 18, 21 | climeq 10138 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (((𝑓 shift 𝑀) shift -𝑀) ⇝ 𝐴 ↔ 𝑓 ⇝ 𝐴)) |
| 23 | 12, 22 | sylibd 147 | . . . 4 ⊢ (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴 → 𝑓 ⇝ 𝐴)) |
| 24 | climshftlemg 10141 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑓 ∈ V) → (𝑓 ⇝ 𝐴 → (𝑓 shift 𝑀) ⇝ 𝐴)) | |
| 25 | 7, 24 | mpan2 415 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑓 ⇝ 𝐴 → (𝑓 shift 𝑀) ⇝ 𝐴)) |
| 26 | 23, 25 | impbid 127 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴 ↔ 𝑓 ⇝ 𝐴)) |
| 27 | 5, 26 | vtoclg 2658 | . 2 ⊢ (𝐹 ∈ 𝑉 → (𝑀 ∈ ℤ → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴))) |
| 28 | 27 | impcom 123 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∈ wcel 1433 Vcvv 2601 class class class wbr 3785 ‘cfv 4922 (class class class)co 5532 ℂcc 6979 -cneg 7280 ℤcz 8351 ℤ≥cuz 8619 shift cshi 9702 ⇝ cli 10117 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-n0 8289 df-z 8352 df-uz 8620 df-shft 9703 df-clim 10118 |
| This theorem is referenced by: climshft2 10145 |
| Copyright terms: Public domain | W3C validator |