ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzosplitprm1 GIF version

Theorem fzosplitprm1 9243
Description: Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
Assertion
Ref Expression
fzosplitprm1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}))

Proof of Theorem fzosplitprm1
StepHypRef Expression
1 simp1 938 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℤ)
2 simp2 939 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℤ)
3 zre 8355 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
4 zre 8355 . . . . . 6 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
5 ltle 7198 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴𝐵))
63, 4, 5syl2an 283 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵𝐴𝐵))
763impia 1135 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴𝐵)
8 eluz2 8625 . . . 4 (𝐵 ∈ (ℤ𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵))
91, 2, 7, 8syl3anbrc 1122 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐵 ∈ (ℤ𝐴))
10 fzosplitsn 9242 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐴..^(𝐵 + 1)) = ((𝐴..^𝐵) ∪ {𝐵}))
119, 10syl 14 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^(𝐵 + 1)) = ((𝐴..^𝐵) ∪ {𝐵}))
12 zcn 8356 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
13 ax-1cn 7069 . . . . . . 7 1 ∈ ℂ
14 npcan 7317 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐵 − 1) + 1) = 𝐵)
1514eqcomd 2086 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → 𝐵 = ((𝐵 − 1) + 1))
1612, 13, 15sylancl 404 . . . . . 6 (𝐵 ∈ ℤ → 𝐵 = ((𝐵 − 1) + 1))
17163ad2ant2 960 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐵 = ((𝐵 − 1) + 1))
1817oveq2d 5548 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^𝐵) = (𝐴..^((𝐵 − 1) + 1)))
19 peano2zm 8389 . . . . . . 7 (𝐵 ∈ ℤ → (𝐵 − 1) ∈ ℤ)
20193ad2ant2 960 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐵 − 1) ∈ ℤ)
21 zltlem1 8408 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵𝐴 ≤ (𝐵 − 1)))
2221biimp3a 1276 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴 ≤ (𝐵 − 1))
23 eluz2 8625 . . . . . 6 ((𝐵 − 1) ∈ (ℤ𝐴) ↔ (𝐴 ∈ ℤ ∧ (𝐵 − 1) ∈ ℤ ∧ 𝐴 ≤ (𝐵 − 1)))
241, 20, 22, 23syl3anbrc 1122 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐵 − 1) ∈ (ℤ𝐴))
25 fzosplitsn 9242 . . . . 5 ((𝐵 − 1) ∈ (ℤ𝐴) → (𝐴..^((𝐵 − 1) + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}))
2624, 25syl 14 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^((𝐵 − 1) + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}))
2718, 26eqtrd 2113 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^𝐵) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}))
2827uneq1d 3125 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → ((𝐴..^𝐵) ∪ {𝐵}) = (((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}) ∪ {𝐵}))
29 unass 3129 . . 3 (((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}) ∪ {𝐵}) = ((𝐴..^(𝐵 − 1)) ∪ ({(𝐵 − 1)} ∪ {𝐵}))
30 df-pr 3405 . . . . . 6 {(𝐵 − 1), 𝐵} = ({(𝐵 − 1)} ∪ {𝐵})
3130eqcomi 2085 . . . . 5 ({(𝐵 − 1)} ∪ {𝐵}) = {(𝐵 − 1), 𝐵}
3231a1i 9 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → ({(𝐵 − 1)} ∪ {𝐵}) = {(𝐵 − 1), 𝐵})
3332uneq2d 3126 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → ((𝐴..^(𝐵 − 1)) ∪ ({(𝐵 − 1)} ∪ {𝐵})) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}))
3429, 33syl5eq 2125 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}) ∪ {𝐵}) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}))
3511, 28, 343eqtrd 2117 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 919   = wceq 1284  wcel 1433  cun 2971  {csn 3398  {cpr 3399   class class class wbr 3785  cfv 4922  (class class class)co 5532  cc 6979  cr 6980  1c1 6982   + caddc 6984   < clt 7153  cle 7154  cmin 7279  cz 8351  cuz 8619  ..^cfzo 9152
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030  df-fzo 9153
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator