![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ecoptocl | GIF version |
Description: Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
ecoptocl.1 | ⊢ 𝑆 = ((𝐵 × 𝐶) / 𝑅) |
ecoptocl.2 | ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) |
ecoptocl.3 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) |
Ref | Expression |
---|---|
ecoptocl | ⊢ (𝐴 ∈ 𝑆 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elqsi 6181 | . . 3 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) / 𝑅) → ∃𝑧 ∈ (𝐵 × 𝐶)𝐴 = [𝑧]𝑅) | |
2 | eqid 2081 | . . . . 5 ⊢ (𝐵 × 𝐶) = (𝐵 × 𝐶) | |
3 | eceq1 6164 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 = 𝑧 → [〈𝑥, 𝑦〉]𝑅 = [𝑧]𝑅) | |
4 | 3 | eqeq2d 2092 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 = 𝑧 → (𝐴 = [〈𝑥, 𝑦〉]𝑅 ↔ 𝐴 = [𝑧]𝑅)) |
5 | 4 | imbi1d 229 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 𝑧 → ((𝐴 = [〈𝑥, 𝑦〉]𝑅 → 𝜓) ↔ (𝐴 = [𝑧]𝑅 → 𝜓))) |
6 | ecoptocl.3 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) | |
7 | ecoptocl.2 | . . . . . . 7 ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) | |
8 | 7 | eqcoms 2084 | . . . . . 6 ⊢ (𝐴 = [〈𝑥, 𝑦〉]𝑅 → (𝜑 ↔ 𝜓)) |
9 | 6, 8 | syl5ibcom 153 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → (𝐴 = [〈𝑥, 𝑦〉]𝑅 → 𝜓)) |
10 | 2, 5, 9 | optocl 4434 | . . . 4 ⊢ (𝑧 ∈ (𝐵 × 𝐶) → (𝐴 = [𝑧]𝑅 → 𝜓)) |
11 | 10 | rexlimiv 2471 | . . 3 ⊢ (∃𝑧 ∈ (𝐵 × 𝐶)𝐴 = [𝑧]𝑅 → 𝜓) |
12 | 1, 11 | syl 14 | . 2 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) / 𝑅) → 𝜓) |
13 | ecoptocl.1 | . 2 ⊢ 𝑆 = ((𝐵 × 𝐶) / 𝑅) | |
14 | 12, 13 | eleq2s 2173 | 1 ⊢ (𝐴 ∈ 𝑆 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∈ wcel 1433 ∃wrex 2349 〈cop 3401 × cxp 4361 [cec 6127 / cqs 6128 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-xp 4369 df-cnv 4371 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-ec 6131 df-qs 6135 |
This theorem is referenced by: 2ecoptocl 6217 3ecoptocl 6218 mulidnq 6579 recexnq 6580 ltsonq 6588 distrnq0 6649 addassnq0 6652 ltposr 6940 0idsr 6944 1idsr 6945 00sr 6946 recexgt0sr 6950 archsr 6958 srpospr 6959 |
Copyright terms: Public domain | W3C validator |