ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1idsr GIF version

Theorem 1idsr 6945
Description: 1 is an identity element for multiplication. (Contributed by Jim Kingdon, 5-Jan-2020.)
Assertion
Ref Expression
1idsr (𝐴R → (𝐴 ·R 1R) = 𝐴)

Proof of Theorem 1idsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 6904 . 2 R = ((P × P) / ~R )
2 oveq1 5539 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R ·R 1R) = (𝐴 ·R 1R))
3 id 19 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → [⟨𝑥, 𝑦⟩] ~R = 𝐴)
42, 3eqeq12d 2095 . 2 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R ·R 1R) = [⟨𝑥, 𝑦⟩] ~R ↔ (𝐴 ·R 1R) = 𝐴))
5 df-1r 6909 . . . 4 1R = [⟨(1P +P 1P), 1P⟩] ~R
65oveq2i 5543 . . 3 ([⟨𝑥, 𝑦⟩] ~R ·R 1R) = ([⟨𝑥, 𝑦⟩] ~R ·R [⟨(1P +P 1P), 1P⟩] ~R )
7 1pr 6744 . . . . . 6 1PP
8 addclpr 6727 . . . . . 6 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
97, 7, 8mp2an 416 . . . . 5 (1P +P 1P) ∈ P
10 mulsrpr 6923 . . . . 5 (((𝑥P𝑦P) ∧ ((1P +P 1P) ∈ P ∧ 1PP)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R )
119, 7, 10mpanr12 429 . . . 4 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R )
12 distrprg 6778 . . . . . . . . 9 ((𝑥P ∧ 1PP ∧ 1PP) → (𝑥 ·P (1P +P 1P)) = ((𝑥 ·P 1P) +P (𝑥 ·P 1P)))
137, 7, 12mp3an23 1260 . . . . . . . 8 (𝑥P → (𝑥 ·P (1P +P 1P)) = ((𝑥 ·P 1P) +P (𝑥 ·P 1P)))
14 1idpr 6782 . . . . . . . . 9 (𝑥P → (𝑥 ·P 1P) = 𝑥)
1514oveq1d 5547 . . . . . . . 8 (𝑥P → ((𝑥 ·P 1P) +P (𝑥 ·P 1P)) = (𝑥 +P (𝑥 ·P 1P)))
1613, 15eqtr2d 2114 . . . . . . 7 (𝑥P → (𝑥 +P (𝑥 ·P 1P)) = (𝑥 ·P (1P +P 1P)))
17 distrprg 6778 . . . . . . . . 9 ((𝑦P ∧ 1PP ∧ 1PP) → (𝑦 ·P (1P +P 1P)) = ((𝑦 ·P 1P) +P (𝑦 ·P 1P)))
187, 7, 17mp3an23 1260 . . . . . . . 8 (𝑦P → (𝑦 ·P (1P +P 1P)) = ((𝑦 ·P 1P) +P (𝑦 ·P 1P)))
19 1idpr 6782 . . . . . . . . 9 (𝑦P → (𝑦 ·P 1P) = 𝑦)
2019oveq1d 5547 . . . . . . . 8 (𝑦P → ((𝑦 ·P 1P) +P (𝑦 ·P 1P)) = (𝑦 +P (𝑦 ·P 1P)))
2118, 20eqtrd 2113 . . . . . . 7 (𝑦P → (𝑦 ·P (1P +P 1P)) = (𝑦 +P (𝑦 ·P 1P)))
2216, 21oveqan12d 5551 . . . . . 6 ((𝑥P𝑦P) → ((𝑥 +P (𝑥 ·P 1P)) +P (𝑦 ·P (1P +P 1P))) = ((𝑥 ·P (1P +P 1P)) +P (𝑦 +P (𝑦 ·P 1P))))
23 simpl 107 . . . . . . 7 ((𝑥P𝑦P) → 𝑥P)
24 mulclpr 6762 . . . . . . . 8 ((𝑥P ∧ 1PP) → (𝑥 ·P 1P) ∈ P)
2523, 7, 24sylancl 404 . . . . . . 7 ((𝑥P𝑦P) → (𝑥 ·P 1P) ∈ P)
26 mulclpr 6762 . . . . . . . . 9 ((𝑦P ∧ (1P +P 1P) ∈ P) → (𝑦 ·P (1P +P 1P)) ∈ P)
279, 26mpan2 415 . . . . . . . 8 (𝑦P → (𝑦 ·P (1P +P 1P)) ∈ P)
2827adantl 271 . . . . . . 7 ((𝑥P𝑦P) → (𝑦 ·P (1P +P 1P)) ∈ P)
29 addassprg 6769 . . . . . . 7 ((𝑥P ∧ (𝑥 ·P 1P) ∈ P ∧ (𝑦 ·P (1P +P 1P)) ∈ P) → ((𝑥 +P (𝑥 ·P 1P)) +P (𝑦 ·P (1P +P 1P))) = (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))))
3023, 25, 28, 29syl3anc 1169 . . . . . 6 ((𝑥P𝑦P) → ((𝑥 +P (𝑥 ·P 1P)) +P (𝑦 ·P (1P +P 1P))) = (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))))
31 mulclpr 6762 . . . . . . . 8 ((𝑥P ∧ (1P +P 1P) ∈ P) → (𝑥 ·P (1P +P 1P)) ∈ P)
3223, 9, 31sylancl 404 . . . . . . 7 ((𝑥P𝑦P) → (𝑥 ·P (1P +P 1P)) ∈ P)
33 simpr 108 . . . . . . 7 ((𝑥P𝑦P) → 𝑦P)
34 mulclpr 6762 . . . . . . . 8 ((𝑦P ∧ 1PP) → (𝑦 ·P 1P) ∈ P)
3533, 7, 34sylancl 404 . . . . . . 7 ((𝑥P𝑦P) → (𝑦 ·P 1P) ∈ P)
36 addcomprg 6768 . . . . . . . 8 ((𝑧P𝑤P) → (𝑧 +P 𝑤) = (𝑤 +P 𝑧))
3736adantl 271 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑧 +P 𝑤) = (𝑤 +P 𝑧))
38 addassprg 6769 . . . . . . . 8 ((𝑧P𝑤P𝑣P) → ((𝑧 +P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P 𝑣)))
3938adantl 271 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P𝑣P)) → ((𝑧 +P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P 𝑣)))
4032, 33, 35, 37, 39caov12d 5702 . . . . . 6 ((𝑥P𝑦P) → ((𝑥 ·P (1P +P 1P)) +P (𝑦 +P (𝑦 ·P 1P))) = (𝑦 +P ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P))))
4122, 30, 403eqtr3d 2121 . . . . 5 ((𝑥P𝑦P) → (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))) = (𝑦 +P ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P))))
429, 31mpan2 415 . . . . . . . . 9 (𝑥P → (𝑥 ·P (1P +P 1P)) ∈ P)
437, 34mpan2 415 . . . . . . . . 9 (𝑦P → (𝑦 ·P 1P) ∈ P)
44 addclpr 6727 . . . . . . . . 9 (((𝑥 ·P (1P +P 1P)) ∈ P ∧ (𝑦 ·P 1P) ∈ P) → ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)) ∈ P)
4542, 43, 44syl2an 283 . . . . . . . 8 ((𝑥P𝑦P) → ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)) ∈ P)
467, 24mpan2 415 . . . . . . . . 9 (𝑥P → (𝑥 ·P 1P) ∈ P)
47 addclpr 6727 . . . . . . . . 9 (((𝑥 ·P 1P) ∈ P ∧ (𝑦 ·P (1P +P 1P)) ∈ P) → ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P))) ∈ P)
4846, 27, 47syl2an 283 . . . . . . . 8 ((𝑥P𝑦P) → ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P))) ∈ P)
4945, 48anim12i 331 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑥P𝑦P)) → (((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)) ∈ P ∧ ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P))) ∈ P))
50 enreceq 6913 . . . . . . 7 (((𝑥P𝑦P) ∧ (((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)) ∈ P ∧ ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P))) ∈ P)) → ([⟨𝑥, 𝑦⟩] ~R = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R ↔ (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))) = (𝑦 +P ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)))))
5149, 50syldan 276 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑥P𝑦P)) → ([⟨𝑥, 𝑦⟩] ~R = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R ↔ (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))) = (𝑦 +P ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)))))
5251anidms 389 . . . . 5 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R ↔ (𝑥 +P ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))) = (𝑦 +P ((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)))))
5341, 52mpbird 165 . . . 4 ((𝑥P𝑦P) → [⟨𝑥, 𝑦⟩] ~R = [⟨((𝑥 ·P (1P +P 1P)) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P (1P +P 1P)))⟩] ~R )
5411, 53eqtr4d 2116 . . 3 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨𝑥, 𝑦⟩] ~R )
556, 54syl5eq 2125 . 2 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R ·R 1R) = [⟨𝑥, 𝑦⟩] ~R )
561, 4, 55ecoptocl 6216 1 (𝐴R → (𝐴 ·R 1R) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919   = wceq 1284  wcel 1433  cop 3401  (class class class)co 5532  [cec 6127  Pcnp 6481  1Pc1p 6482   +P cpp 6483   ·P cmp 6484   ~R cer 6486  Rcnr 6487  1Rc1r 6489   ·R cmr 6492
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-i1p 6657  df-iplp 6658  df-imp 6659  df-enr 6903  df-nr 6904  df-mr 6906  df-1r 6909
This theorem is referenced by:  pn0sr  6948  axi2m1  7041  ax1rid  7043  axcnre  7047
  Copyright terms: Public domain W3C validator