![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0idsr | GIF version |
Description: The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.) |
Ref | Expression |
---|---|
0idsr | ⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nr 6904 | . 2 ⊢ R = ((P × P) / ~R ) | |
2 | oveq1 5539 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → ([〈𝑥, 𝑦〉] ~R +R 0R) = (𝐴 +R 0R)) | |
3 | id 19 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → [〈𝑥, 𝑦〉] ~R = 𝐴) | |
4 | 2, 3 | eqeq12d 2095 | . 2 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → (([〈𝑥, 𝑦〉] ~R +R 0R) = [〈𝑥, 𝑦〉] ~R ↔ (𝐴 +R 0R) = 𝐴)) |
5 | df-0r 6908 | . . . 4 ⊢ 0R = [〈1P, 1P〉] ~R | |
6 | 5 | oveq2i 5543 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R +R 0R) = ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) |
7 | 1pr 6744 | . . . . 5 ⊢ 1P ∈ P | |
8 | addsrpr 6922 | . . . . 5 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (1P ∈ P ∧ 1P ∈ P)) → ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) | |
9 | 7, 7, 8 | mpanr12 429 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) |
10 | simpl 107 | . . . . . 6 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → 𝑥 ∈ P) | |
11 | simpr 108 | . . . . . 6 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → 𝑦 ∈ P) | |
12 | 7 | a1i 9 | . . . . . 6 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → 1P ∈ P) |
13 | addcomprg 6768 | . . . . . . 7 ⊢ ((𝑧 ∈ P ∧ 𝑤 ∈ P) → (𝑧 +P 𝑤) = (𝑤 +P 𝑧)) | |
14 | 13 | adantl 271 | . . . . . 6 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (𝑧 +P 𝑤) = (𝑤 +P 𝑧)) |
15 | addassprg 6769 | . . . . . . 7 ⊢ ((𝑧 ∈ P ∧ 𝑤 ∈ P ∧ 𝑣 ∈ P) → ((𝑧 +P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P 𝑣))) | |
16 | 15 | adantl 271 | . . . . . 6 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P ∧ 𝑣 ∈ P)) → ((𝑧 +P 𝑤) +P 𝑣) = (𝑧 +P (𝑤 +P 𝑣))) |
17 | 10, 11, 12, 14, 16 | caov12d 5702 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P))) |
18 | addclpr 6727 | . . . . . . . 8 ⊢ ((𝑥 ∈ P ∧ 1P ∈ P) → (𝑥 +P 1P) ∈ P) | |
19 | 7, 18 | mpan2 415 | . . . . . . 7 ⊢ (𝑥 ∈ P → (𝑥 +P 1P) ∈ P) |
20 | addclpr 6727 | . . . . . . . 8 ⊢ ((𝑦 ∈ P ∧ 1P ∈ P) → (𝑦 +P 1P) ∈ P) | |
21 | 7, 20 | mpan2 415 | . . . . . . 7 ⊢ (𝑦 ∈ P → (𝑦 +P 1P) ∈ P) |
22 | 19, 21 | anim12i 331 | . . . . . 6 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P)) |
23 | enreceq 6913 | . . . . . 6 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ((𝑥 +P 1P) ∈ P ∧ (𝑦 +P 1P) ∈ P)) → ([〈𝑥, 𝑦〉] ~R = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ↔ (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P)))) | |
24 | 22, 23 | mpdan 412 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ↔ (𝑥 +P (𝑦 +P 1P)) = (𝑦 +P (𝑥 +P 1P)))) |
25 | 17, 24 | mpbird 165 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → [〈𝑥, 𝑦〉] ~R = [〈(𝑥 +P 1P), (𝑦 +P 1P)〉] ~R ) |
26 | 9, 25 | eqtr4d 2116 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R +R [〈1P, 1P〉] ~R ) = [〈𝑥, 𝑦〉] ~R ) |
27 | 6, 26 | syl5eq 2125 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R +R 0R) = [〈𝑥, 𝑦〉] ~R ) |
28 | 1, 4, 27 | ecoptocl 6216 | 1 ⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∧ w3a 919 = wceq 1284 ∈ wcel 1433 〈cop 3401 (class class class)co 5532 [cec 6127 Pcnp 6481 1Pc1p 6482 +P cpp 6483 ~R cer 6486 Rcnr 6487 0Rc0r 6488 +R cplr 6491 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-eprel 4044 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-1o 6024 df-2o 6025 df-oadd 6028 df-omul 6029 df-er 6129 df-ec 6131 df-qs 6135 df-ni 6494 df-pli 6495 df-mi 6496 df-lti 6497 df-plpq 6534 df-mpq 6535 df-enq 6537 df-nqqs 6538 df-plqqs 6539 df-mqqs 6540 df-1nqqs 6541 df-rq 6542 df-ltnqqs 6543 df-enq0 6614 df-nq0 6615 df-0nq0 6616 df-plq0 6617 df-mq0 6618 df-inp 6656 df-i1p 6657 df-iplp 6658 df-enr 6903 df-nr 6904 df-plr 6905 df-0r 6908 |
This theorem is referenced by: addgt0sr 6952 ltadd1sr 6953 caucvgsrlemoffval 6972 caucvgsrlemoffres 6976 caucvgsr 6978 addresr 7005 mulresr 7006 axi2m1 7041 ax0id 7044 axcnre 7047 |
Copyright terms: Public domain | W3C validator |