ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unpreima GIF version

Theorem unpreima 5313
Description: Preimage of a union. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
unpreima (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∪ (𝐹𝐵)))

Proof of Theorem unpreima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funfn 4951 . 2 (Fun 𝐹𝐹 Fn dom 𝐹)
2 elpreima 5307 . . . 4 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹 “ (𝐴𝐵)) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ (𝐴𝐵))))
3 elun 3113 . . . . . 6 (𝑥 ∈ ((𝐹𝐴) ∪ (𝐹𝐵)) ↔ (𝑥 ∈ (𝐹𝐴) ∨ 𝑥 ∈ (𝐹𝐵)))
4 elpreima 5307 . . . . . . 7 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹𝐴) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴)))
5 elpreima 5307 . . . . . . 7 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹𝐵) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)))
64, 5orbi12d 739 . . . . . 6 (𝐹 Fn dom 𝐹 → ((𝑥 ∈ (𝐹𝐴) ∨ 𝑥 ∈ (𝐹𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵))))
73, 6syl5bb 190 . . . . 5 (𝐹 Fn dom 𝐹 → (𝑥 ∈ ((𝐹𝐴) ∪ (𝐹𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵))))
8 elun 3113 . . . . . . 7 ((𝐹𝑥) ∈ (𝐴𝐵) ↔ ((𝐹𝑥) ∈ 𝐴 ∨ (𝐹𝑥) ∈ 𝐵))
98anbi2i 444 . . . . . 6 ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ (𝐴𝐵)) ↔ (𝑥 ∈ dom 𝐹 ∧ ((𝐹𝑥) ∈ 𝐴 ∨ (𝐹𝑥) ∈ 𝐵)))
10 andi 764 . . . . . 6 ((𝑥 ∈ dom 𝐹 ∧ ((𝐹𝑥) ∈ 𝐴 ∨ (𝐹𝑥) ∈ 𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)))
119, 10bitri 182 . . . . 5 ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ (𝐴𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)))
127, 11syl6rbbr 197 . . . 4 (𝐹 Fn dom 𝐹 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ (𝐴𝐵)) ↔ 𝑥 ∈ ((𝐹𝐴) ∪ (𝐹𝐵))))
132, 12bitrd 186 . . 3 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹 “ (𝐴𝐵)) ↔ 𝑥 ∈ ((𝐹𝐴) ∪ (𝐹𝐵))))
1413eqrdv 2079 . 2 (𝐹 Fn dom 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∪ (𝐹𝐵)))
151, 14sylbi 119 1 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∪ (𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wo 661   = wceq 1284  wcel 1433  cun 2971  ccnv 4362  dom cdm 4363  cima 4366  Fun wfun 4916   Fn wfn 4917  cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-fv 4930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator