ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluz1 GIF version

Theorem eluz1 8623
Description: Membership in the upper set of integers starting at 𝑀. (Contributed by NM, 5-Sep-2005.)
Assertion
Ref Expression
eluz1 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁)))

Proof of Theorem eluz1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 uzval 8621 . . 3 (𝑀 ∈ ℤ → (ℤ𝑀) = {𝑘 ∈ ℤ ∣ 𝑀𝑘})
21eleq2d 2148 . 2 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) ↔ 𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀𝑘}))
3 breq2 3789 . . 3 (𝑘 = 𝑁 → (𝑀𝑘𝑀𝑁))
43elrab 2749 . 2 (𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀𝑘} ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁))
52, 4syl6bb 194 1 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wcel 1433  {crab 2352   class class class wbr 3785  cfv 4922  cle 7154  cz 8351  cuz 8619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-cnex 7067  ax-resscn 7068
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-ov 5535  df-neg 7282  df-z 8352  df-uz 8620
This theorem is referenced by:  eluz2  8625  eluz1i  8626  eluz  8632  uzid  8633  uzss  8639  eluzp1m1  8642  eluzadd  8647  eluzsub  8648  raluz  8666  rexuz  8668  caucvgrelemcau  9866  caucvgre  9867  ialgcvga  10433
  Copyright terms: Public domain W3C validator